电解水制氢 PPT

合集下载

水电解制氢工艺课件

水电解制氢工艺课件

第二章 水电解制氢装置
• 电解液循环的目的在于向电极区域补充电解消耗的纯水,带走电解过 程中产生的氢气、氧气和热量,增加电极区域电解液的搅拌,减少浓 差极化电压,降低碱液中的含气度,降低小室电压,减少能耗等,以 使电解槽在稳定条件下工作。碱液循环的大小影响槽内小室电压和气 体纯度。对手一个特定的电解槽,应有一个合适的循环量。一般槽内 电解液更换次数为每小时2--4次。在常压电解系统中,通常用自然循 环,而在压力电解系统中,因电解装置体积小,管道细,气液流通阻 力大,加上电流密度较大,要求电解液更换的次数比较多,采用自然 循环难于达到,因而采用碱液循环泵来强制循环。
第一章 氢气的性质和用途
• 氢气在多晶硅生产中的应用
• H2 + Cl2 =2HCl + Q(燃烧) • Si+3HCl= H2 + SiHCl3 + Q (280-330℃) • SiHCl3+2H2=Si+3HCl↑ (1050-1100℃) • SiCl4+2H2=SiHCl3 + 3HCl↑(1200 ℃ )
第二章 水电解制氢装置
第二章 水电解制氢装置
气液处理器(包括氢氧分离器、气体洗涤器、
工控机是控制碱部分液的核心及。 气体冷却器、碱液过滤器、屏蔽泵等)
第三章 氢气纯化装置
于是,水溶液中就产生了大量的K+和OH-。
其中的杂质主要是O2 和H2O ,还有微量的N2、CH4等。
66V,所以,在水溶液中同时存在H+和K+时,H+将在阴极上首先得到电子而变成氢气,而K+则仍将留在溶液中。
第二章 水电解制氢装置
• 电解过程中,装置内的原料水一直不停地在消耗,因此, 为保证水电解的连续进行,需要定期向装置内补充原料 水。水箱中的水通过加水泵分别打入氢氧洗涤器,然后 通过溢流管注入分离器下部的液相部分和循环碱液一并 进入电解小室进行连续电解,同时使电解液中碱的浓度 保持在最佳使用范围。补水过程中,只开启单个补水回 路,即只开氢侧或氧侧补水回路。

电解水制氢ppt课件

电解水制氢ppt课件

9
极板与端极板

极板:电解槽中间的隔板。
极板由三片钢板组成,中间一块起分隔电解室及支
持作用,无孔。其两侧分别铆接一块带小孔的钢板, 一侧为阳极,一侧为阴极。 阳极的一侧为防止氧腐蚀而镀有镍保护层。

端极板:电解槽两端的极板。
阴、阳端极板内侧各焊不镀镍的பைடு நூலகம்极和一块镀镍的
阳极。 端极板除了起引入电流的作用外,也起紧固整个电 解槽钢板的作用,所以要厚一些。
名 称 含量(%) KOH NaCl Na2CO3 >95 <0.5 <0.2
当电解液含有碳酸盐和氯化物时,阳极 上会发生下列有害反应:
2 2CO3 4e 2CO2 O2
2Cl 2e Cl 2
上述反应的发生,导致: •消耗电能, •使氧气中混入氯气等而降低其纯度,
3
氢侧系统
由电解槽1各间隔电解出来的氢气汇集于总管,经过氢侧分离 器2、洗涤器3、压力调节器4、平衡箱5,再经两级冷却器 6后,存入储氢罐备用。
4
氧侧系统

由电解槽1各间隔分解出来的氧气汇集于总管,经过氧侧分 离器8、洗涤器9、压力调节器10和水封槽11后,排放大气 或存罐备用。
5
补给水系统

•生成的二氧化碳立刻被碱液吸收,复原成碳酸盐,致使CO的放电 反应反复进行下去,耗费掉大量电能。
•反应生成的氯气也可被碱液吸收生成次氯酸盐和氯酸盐,它们又 有被阴极还原的可能,这也要消耗电能。
14
补充水质量要求
名 称
Fe2++Fe3+ Cl干燥残渣
含量(mg/L)
<1 <6 <7

电解液中的杂质除来源于药品之外,还可能 来自不纯净的补充水常用的补充水是汽轮机 的凝结水

电解水制氢系统中自动控制的应用课件

电解水制氢系统中自动控制的应用课件

电解水制氢系统中自动控制的应用
结论
自动控制对工业化过程意义非凡,虽不直接带来经济效益,但却有着 提高生产过程的安全性;提高生产效率;提高产品质量;减少生产过程 的原材料、能源损耗等作用。并且逐步减少工作人员暴露在制氢站这类 危险工作环境的时间是电力生产的发展方向。自动控制系统在电解水过 程中的应用, 降低了操作人员的风险, 确保了制氢站对氢冷机组稳定安全 的氢气供应, 极大地提高了操作人员和维护人员工作效率。
电解水制氢系统中自动控制的应用
控制系统的组成
水电解控制系统采用PLC+上位机的组成形式,其中PLC是控制系统的核心。 由上位机(工业控制计算机或商用PC机)构成控制系统的过程监控层,在其上完 成系统监测、故障显示、运行操作、报表生成、历史记录、参数设定、用户 管理和在线帮助等系统功能。由PLC构成控制系统的过程控制层,在其上完成 信号采集、数据处理、逻辑运算、顺序控制等系统功能,并通过其上不同类型 的模块与现场检测、执行装置进行连接。
电解水制氢系统中自动控制的应用
槽温控制系统
槽温控制系统如图4所示:
图4 槽温控制系统
电解槽工作温度是装置的一个重 要参数,槽温的控制通过安装在 电解槽氧侧出口上温度变送器测 量氧槽温,输出一个4~20mA 信 号送至PLC,在此与输入PLC 的 槽温控制系统 槽温设定值进行比较,并进行反 作用PID 运算,再输出信号给电 气转换器产生0.02~0.1MPa 的气 信号,控制安装在冷却水管道上 的调节阀的开度,从而达到控制 氧槽温的目的。
电解水制氢系统中自动控制的应用
参考文献
【1】贾同国、王银山、李志伟;氢能源发展研究现状;《节能技术》;2011年5月, 第29卷第3期。
【2】吴川、张华民、衣宝廉;化学制氢技术研究进展;《化学进展》; 2005年5月, 第17卷第3期。

电解水制氢工艺讲解ppt

电解水制氢工艺讲解ppt

2012.0介
• 重量最轻的元素 标准状态下,密度为 0.8999g/l
• 导热性最好的气体 比大多数气体的导热系数高出10倍
• 自然界存在最普遍的元素 据估计它构成了宇宙质量的 75%,除空气中含有氢气外,它主要以化合物的形态贮存于 水中,而水是地球上最广泛的物质
2012.03.05
运输液态氢短距离可用专门的液氢管道输送,长距 离用绝热保护的车船运输。如国外已有3.5~80m3的 公路专用液氢槽车;深冷铁路槽车也已问世,储液氢 量可达100~200m3,可以满足用氢大户的需要,是 较快速和经济的运氢方法。美国宇航局还专门建造了 输送液氢的大型驳船,船上的杜瓦罐储液氢的容积可 达1000m3左右,能从海上将路易斯安娜州的液氢运 到佛罗里达州的肯尼迪空间发射中心,这样无疑比陆 上运氢更加经济和安全。
• 减少温室效应 氢取代化石燃料能最大限度地减弱温室效应
2012.03.05
总结汇报
II 氢能源的工业应用
1、石油化工
• 合成氨、甲醇: • 石油炼制:利用加氢工艺可以改善石油化学品的
质量,增加最有价值的石油化学品的产量. • 合成多重有机化合物:如乙二醇的合成、合成聚
甲烯、醇的同系化反应、与不饱和烃反应制醛等
IV氢能源利用的障碍
能否将氢气像运输煤气一样用管道从储存库运往用量最多 的消费部门。国外有些国家已经建成了这种输氢管道:现在 美国德克萨斯州有条约20 km的输氢管道,管径203 mm,采 用40号新钢种,输送1.38× kPa的纯洁1氢03 ,已安全运行24年 ;德国有条200多千米长的输氢管道,采用无缝钢管,管道
• 食用油加氢的产品可加工成人造奶油和食用蛋白质等 • 非食用油加氢可得到生产肥皂和畜牧业饲料的原料

制氢系统ppt课件

制氢系统ppt课件
冷却器的目的是为了冷却从再生干燥器出来的氢气,使之温度在 100℃以下。所以当干燥器不再生时,气体不必过冷却器。 • (4)气体过滤器
• 放在干燥器后面,滤去气体中所含的微尘。
完整版ppt课件
23
氢气干燥装置使用注意事项
• 1.干燥装置间严禁明火,操作人员严禁穿带钉的鞋入内。 • 2 .应注意观察氢气的含氧量应≤0.5%,若≥0.5%应停机。 • 3. 再生进气温度不得超过 350℃,再生加热终止温度不得超过 300℃。 • 4 .当没有氢气流过加热器时,禁止长时间开启加热器(不超过 15s),
• 捕滴器一般装在洗涤器的上顶部或是分离器(如卧式分离器)的气
体出口处,用于分离氢(氧)气中夹带的直径为 0 . 3 µm以上微液滴。
它是在一定直径的圆筒内装填一定规格和数量的不锈钢捕滴网。当进
入捕滴器的气体流速控制在一定范围内时,气体中夹带的液滴撞到丝
网并附在其上,水滴聚集到一定程度,在重力作用下沿丝网下流,达
• 3、故障及排除方法:
• 碱液循环量不断下降,槽体温度升高,或者分离器冷却正常而槽温 又难以下降,这说明过滤器的滤网堵塞,应取出滤芯进行清洗。
• 过滤器的清洗在停车状态下进行,清洗方法是:关闭过滤器进出口 截止阀,打开过滤器顶部排气阀,泄掉过滤器内压力。拆开过滤器法
兰螺拴,取下法兰盖,卸下滤筒进行清洗。
2H2O → 2H2↑+ O2↑
完整版ppt课件
3
工艺流程
完整版ppt课件
4
气液处理器典型流程图
完整版ppt课件
5
系统组成
2.1电解槽:
1)、单极性电解槽:
单极电解槽是由外部并联若干个电解槽组成的。而单元电解槽由若干 个彼此交替的、彼此平行的阳极版和阴极版组成。对于一个电极而言只 能做阳极或阴极。单极性电解槽安装、维修简便,效率低,体积大。

氢的制备与储存技术ppt演示课件

氢的制备与储存技术ppt演示课件
12
5.各种化工过程副产氢气的回收
多种化工过程如电解食
盐制碱工业、发酵制酒 工艺、合成氨化肥工业、 石油炼制工业等均有大 量副产氢气,如能采取 适当的措施进行氢气的 分离回收,每年可得到 数亿立方米的氢气。这 是一项不容忽视的资源, 应设法加以回收利用。
氢回收工厂
13
二、氢的储存
14
氢可以气态、液态和固态3种方式进 行储存。
氢储存装置
16
3、而利用吸氢材料与氢气反应生成固溶体和 氢化物的固体储氢方式,能有效克服气、 液两种储存方式的不足,而且储氢体积密 度大、安全度高、运输方便、操作容易, 特别适合于对体积要求较严格的场合,如 在燃料电池汽车上的使用。
17
目前,有希望达到或接近该要求的材 料有3大系列: a.镁基合金材料; b.碳基材料; c.络合物储氢材料。
7
(3)以重油为原料部份氧化法制取 氢气
重油原料包括有常压、
减压渣油及石油深度加 工后的燃料油。重油与 水蒸汽及氧气反应制得 含氢气体产物。
该法生产的氢气产物成
本中,原料费约占三分
之一,而重油价格较低,
故为人们重视。
我国建有大型重油部份
氧化法制氢装置,用于
氢气氨分解炉
制取合成氨的原料。
8
3.生物质制氢
生物质资源丰富,是重要的可再生能源。 生物质可通过气化和微生物制氢。
9
(1)生物质气化制氢
将生物质原料如薪柴、锯未、麦秸、稻草 等压制成型,在气化炉(或裂解炉)中进 行气化或裂解反应可制得含氢燃料气。
10
(2)微生物制氢
利用微生物在常温常压下进行酶催化反应 可制得氢气。
11
4.其它含氢物质制氢
1、气态方式较为简 单方便,也是目前储 存压力低于17 MPa 氢气的常用方法,但 体积密度较小是该方 法最严重的技术缺陷, 另外气态氢在运输和 使用过程中也存在安 全隐患。

电解水制氢PPT课件


-
29
循环干燥器结构图
1-过滤网; 2-顶盖; 3-罐壳; 4-干燥剂; 5-窥视窗(水位计) 6-放水阀门
-
30
水封槽、档火器
• 系统运行时为保障安全而设置水封槽和档 火器。
• 如果气体出口处发生火灾,两个设备可以 阻止火焰延烧到系统内部,避免造成重大 事故。
-
31
水封槽
• 氧侧系统中设有水 封槽,
出气小孔,造成电解液循环不良。 – 在电解过程中不断地补充水和碱都将可能引入上述杂
质离子。
为了保证电解槽的正常运行和延长使用周期,固 体碱、补充水和电解液应当符合要求。
-
13
氢氧化钾的纯度要求
电解质KOH的纯度,直接影响电解后 产生气体的品质和对设备的腐蚀。
名 称 含量(%)
当电解液含有碳酸盐和氯化物时,阳极 上会发生下列有害反应:
• 氢侧系统:由电解槽1各间隔电解出来的氢气汇集于总管,经过氢侧分离器2、洗涤器3、 压力调节器4、平衡箱5,再经两级冷却器6后,存入储氢罐备用。
• 氧侧系统:由电解槽1各间隔分解出来的氧气汇集于总管,经过氧侧分离器8、洗涤器9、 压力调节器10和水封槽11后,排放大气或存罐备用。
-
3
氢侧系统
由电解槽1各间隔电解出来的氢气汇集于总管,经过氢侧分离 器2、洗涤器3、压力调节器4、平衡箱5,再经两级冷却器6 后,存入储氢罐备用。
• 平衡水箱还起到对氢气的缓冲作用,使氢气压力变得更均 匀,因此又称为缓冲水箱。
-
26
冷却器
• 冷却器的构造与分 离器的基本相同。
• 容器内有蛇形管, 冷却水在容器内由 下至上进行循环冷 却。
• 冷却器与分离器的 不同之处是氢气走 蛇形管,冷却水走 管外。冷却器只在 氢侧系统中设置。

矿产

矿产资源开发利用方案编写内容要求及审查大纲
矿产资源开发利用方案编写内容要求及《矿产资源开发利用方案》审查大纲一、概述
㈠矿区位置、隶属关系和企业性质。

如为改扩建矿山, 应说明矿山现状、
特点及存在的主要问题。

㈡编制依据
(1简述项目前期工作进展情况及与有关方面对项目的意向性协议情况。

(2 列出开发利用方案编制所依据的主要基础性资料的名称。

如经储量管理部门认定的矿区地质勘探报告、选矿试验报告、加工利用试验报告、工程地质初评资料、矿区水文资料和供水资料等。

对改、扩建矿山应有生产实际资料, 如矿山总平面现状图、矿床开拓系统图、采场现状图和主要采选设备清单等。

二、矿产品需求现状和预测
㈠该矿产在国内需求情况和市场供应情况
1、矿产品现状及加工利用趋向。

2、国内近、远期的需求量及主要销向预测。

㈡产品价格分析
1、国内矿产品价格现状。

2、矿产品价格稳定性及变化趋势。

三、矿产资源概况
㈠矿区总体概况
1、矿区总体规划情况。

2、矿区矿产资源概况。

3、该设计与矿区总体开发的关系。

㈡该设计项目的资源概况
1、矿床地质及构造特征。

2、矿床开采技术条件及水文地质条件。

水电解制氢工艺课件


内蒙古鄂尔多斯多晶硅业有限公司
4e 4H 2O 2H 2 4OH
• (1)阴极反应。电解液中的H+(水电离后产生的)受阴 极的吸引而移向阴极,接受电子而析出氢气,其放电反应 为:
4e 4 H 2 O 2 H 2 4OH

(2)阳极反应。电解液中的OH-受阳极的吸引而移向阳 极,最后放出电子而成为水和氧气,其放电反应为:
内蒙古鄂尔多斯多晶硅业有限公司
第二节:制氢设备的制氢量衡算和电能消耗
• 1、法拉第定律 • 电解水溶液制氢时,在物质量上严格遵守法拉第定律:各种不同的电 解质溶液,每通过96485.309C的电量,在任一电极上发生得失1 mol 电子的电极反应,同时与得失1 mol电子相对应的任一电极反应的物质 量亦为1mol。 • F=96485.309C/mol称为法拉第常数,它表示每摩尔电子的电量。在 一般计算中,可以近似取F=96500C/mol。根据拉第定律,可以得到 下式: • M=kIt=kQ • 式中 k——表示1h内通过1A电流时析出的物质量,g/(A· h); • I——电流,A; • t——通电时间,h; • m——电极上析出的物质的质量,g; • Q——通过电解池的电荷量,A· h。 • 由于库仑单位很小,所以工业上常用的电荷量单位是安培· 小时,它与 法拉第常数F的关系是: • 1F=96500/3600=26.8 A· h
附属设备框架 (气液处 250Nm3/h 理器) 纯化干燥装置 原料水箱 碱液箱 补水泵 分离器(氢氧) QCZ-1000-01-03 SX4.0-00 4M3 JX2.0-00 4M3 XBS-1200/4.0 DQ250
内蒙古鄂尔多斯多晶硅业有限公司
表1-1 一条生产线制氢设备清单
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ቤተ መጻሕፍቲ ባይዱ 氧侧系统
• 由电解槽1各间隔分解出来的氧气汇集于总管,经过氧侧分 离器8、洗涤器9、压力调节器10和水封槽11后,排放大气 或存罐备用。
补给水系统
• 图中的虚线部分为补给水系统 • 在电解水的过程中,必须连续不断地补充被消耗的纯水。 • 各系统中的分离器、洗涤器和压力调节器中分离和洗涤下来的KOH溶
补充水质量要求
• 电解液中的杂质除来源于药品之外,还可能 来自不纯净的补充水常用的补充水是汽轮机 的凝结水
电解液质量标准
• 电解液的主要质量指标是氢氧化钾含量。 • 在配制和运行监督中,为方便起见,重点掌握其比重。
气体分离器
• 电解槽产生的氢气与氧气由电解槽溢出时,携带 了部分呈雾状的电解液与气体一同进入各系统中。
液也必须重新回到电解槽中,所以它们都与补给水箱(平衡箱5)连通, 以达到节省KOH的目的。
碱液系统
• 双点划线部分为碱液系统。 • 在电解水装置实际运行时,由于漏泄、携带等原因,
KOH溶液的浓度会逐渐降低,因此必须每隔一定时 间向电解槽中补充碱液
电解槽
• 电解槽是制氢装置的主体设备。发电厂广泛使用压滤式水电解槽 • 主要性能要求:
• 石棉布呈多微孔组织,以便通过K+和OH-。 • 隔膜框上部在氢、氧两侧均开有小孔,称为气道
圈,用以通过氢气和氧气。隔膜框下部设有液道 圈,用以通过电解液。 • 气体总出口和碱液进口均设在电解槽中部,称为 中心隔膜框,它比其他隔膜框稍厚,这样可以改 善电解液的均匀性,并使各部分的温差减小。
绝缘材料
– 制得的氢气纯度高; – 能耗低; – 结构简单; – 制造维修方便且使用寿命长; – 材料的利用率高; – 价格低廉。
大家有疑问的,可以询问和交流
可以互相讨论下,但要小声点
• 电解槽中平行、直立地设置数块至数十块 电极板,它们将整个电解槽分成若干个电 解室,串联相接。
• 电解槽的总电压为各电解室电压之和,总 电流与各电解室电流相等。
出气小孔,造成电解液循环不良。
– 在电解过程中不断地补充水和碱都将可能引入上述杂 质离子。
为了保证电解槽的正常运行和延长使用周期,固 体碱、补充水和电解液应当符合要求。
氢氧化钾的纯度要求
电解质KOH的纯度,直接影响电解后 产生气体的品质和对设备的腐蚀。
当电解液含有碳酸盐和氯化物时,阳极 上会发生下列有害反应:
• 隔膜框与极板之间设有难解难分缘垫圈。 要求绝缘垫圈能够耐碱、耐热、耐压力。 它能起到绝缘作用,使隔膜框不带电,而 且有密封作用,以防止电解液外漏。
电解液
• 电解液中的杂质对水的电解有很大的影响。
– Cl-和SO42-能强烈地腐蚀镍阳极; – Fe3+附着于石棉布隔膜和阴极上,会增大电解池电压, – CO32+能恶化电解液的导电度,含量过高会析出结晶; – Ca2+、Mg2+有可能生成其碳酸盐沉淀,堵塞进液孔和
– 阳极的一侧为防止氧腐蚀而镀有镍保护层。
• 端极板:电解槽两端的极板。
– 阴、阳端极板内侧各焊不镀镍的阴极和一块镀 镍的阳极。
– 端极板除了起引入电流的作用外,也起紧固整 个电解槽钢板的作用,所以要厚一些。
隔膜框
• 隔膜框是构成各电解室的主要部分,每一个隔膜 框构成一个电解室。
• 它是一种空心环状厚钢板,在里圈由压环将石棉 布固定在上面。
• 电解液是以一根总管供给各电解室的。
• 每一电解室又用石棉布分隔成氢侧(阴极) 和氧侧(阳极)。
• 电解产生的氢气和氧气分别汇总于隔膜框 上的氢气总管和氧气总管后导出。
极板与端极板
• 极板:电解槽中间的隔板。
– 极板由三片钢板组成,中间一块起分隔电解室 及支持作用,无孔。其两侧分别铆接一块带小 孔的钢板,一侧为阳极,一侧为阴极。
• 氢侧系统:由电解槽1各间隔电解出来的氢气汇集于总管,经过氢侧分离器2、洗涤器3、 压力调节器4、平衡箱5,再经两级冷却器6后,存入储氢罐备用。
• 氧侧系统:由电解槽1各间隔分解出来的氧气汇集于总管,经过氧侧分离器8、洗涤器9、 压力调节器10和水封槽11后,排放大气或存罐备用。
氢侧系统
由电解槽1各间隔电解出来的氢气汇集于总管,经过氢侧分离 器2、洗涤器3、压力调节器4、平衡箱5,再经两级冷却器6 后,存入储氢罐备用。
• 在洗涤器中将气体温度降至常温,
• 系统中有氢、氧 分离器,
分离器液位
• 在运行过程中要求分离器中的液位高于电 解槽,以保证电解槽中充满电解液,不使 隔膜外露,并使分离器与电解槽之间电解 液的正常循环和冷却得到保证,否则会使 阴阳极之间浓度差增大,降低电解效率, 并形成浓差电池而腐蚀设备。
气体洗涤器
• 从分离器送出的氢、氧气体的温度较高, 其中仍然含有水蒸气和少量电解液,所以 必须再经过气体洗涤器进一步冷却、洗涤
电解水制氢
制氢装置
• 中压电解水制氢装置:
– 工作温度:70~80℃ – 电解液:KOH溶液
• 系统构成:
– 电解槽:主设备 – 氢侧系统、 – 氧侧系统 – 补给水系统 – 碱液系统 – 纯水制备 – 其它:氢气和氧气的储存、纯化、压缩输送设备以及
有关控制仪表和电源等。
制氢系统图
• 1-电解槽;2-氢侧分离器;3-氢侧洗涤器;4-氢侧压力调节器;5-平衡箱;6-冷却器;7储氢罐;8-氧侧分离器;9-氧侧洗涤器;10-氧侧压力调节器;11-氧侧水封槽;12-碱液 箱;13-碱液过滤器;14-挡火器
2 C3 2 O 4 e 2 C2 O O 2
2Cl2eC2l
上述反应的发生,导致: •消耗电能, •使氧气中混入氯气等而降低其纯度, •生成的二氧化碳立刻被碱液吸收,复原成碳酸盐,致使CO的放电 反应反复进行下去,耗费掉大量电能。
•反应生成的氯气也可被碱液吸收生成次氯酸盐和氯酸盐,它们又 有被阴极还原的可能,这也要消耗电能。
• 分离器的作用:
– 利用冷却和扩容作用充分分离出电解液,并使之重新 流回电解槽,
– 保证电解槽在满负荷或空载时,始终充满电解液。 – 由于电流通过电解液时有一部分电能变为热能而使电
解液温度升高,分离器还有冷却电解液的作用,使温 度保持在80℃以下。
分离器
• 分离器的外形为 圆筒形立式容器, 内部设有冷却用 蛇形管,
相关文档
最新文档