基本初等函数初等函数

合集下载

基本初等函数知识点

基本初等函数知识点

基本初等函数知识点基本初等函数是指在数学中常见且重要的一类函数,包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。

这些函数在数学中广泛应用于各种数学问题和实际应用中,对于学习和理解高等数学和物理等学科具有重要意义。

本文将对这些基本初等函数进行详细介绍。

首先,常数函数是最简单的一个函数,它的函数值始终保持不变。

常数函数的一般形式为f(x)=c,其中c是常数。

常数函数在数学中常用于表示等级和水平等不变的情况。

例如,常用的数学常数π就是一个常数函数,表示圆周长与直径之比。

其次,幂函数是一类形如f(x)=x^n的函数,其中x是变量,n是常数。

幂函数的特点是通过改变幂指数n的大小可以得到不同形状的函数图像。

比如当n为正偶数时,函数图像是一个开口朝上的平滑曲线;当n为正奇数时,函数图像是一个开口朝下的平滑曲线;当n为负数时,函数图像则是一个经过坐标轴原点的曲线。

指数函数是一类形如f(x)=a^x的函数,其中a是常数,且a大于0且不等于1、指数函数的特点是函数值随着自变量的增大而指数级增长或指数级衰减。

当a大于1时,函数图像是一个增长的指数曲线;当0小于a小于1时,函数图像是一个衰减的指数曲线。

对数函数是指数函数的反函数,它表示一些数在一个给定的底数下的指数。

对数函数的一般形式为f(x) = log_a(x),其中a是常数,且a大于0且不等于1、对数函数和指数函数是一对互逆函数,它们的图像是关于y=x对称的。

三角函数是一类周期函数,包括正弦函数、余弦函数和正切函数等。

正弦函数的一般形式为f(x) = A*sin(Bx+C),余弦函数的一般形式为f(x) = A*cos(Bx+C),正切函数的一般形式为f(x) = A*tan(Bx+C)。

其中A、B、C是常数,分别表示振幅、频率和初相位。

三角函数的图像具有周期性和对称性,常用于描述波动和周期性现象。

反三角函数是三角函数的反函数,它表示一些角度在三角函数中的对应值。

基本初等函数16个公式

基本初等函数16个公式

基本初等函数16个公式1.幂函数公式:a^m*a^n=a^(m+n)幂函数指的是形如f(x)=a^x的函数,其中a是常数。

2.幂函数公式:(a^m)^n=a^(m*n)该公式表示对一个幂函数求幂。

3.倒数公式:1/a*a=1任何数的倒数乘以它本身等于14. 对数公式:log(a^n) = n * log(a)对数函数是幂函数的逆函数,将指数与底数互换。

5. 对数公式:log(a*b) = log(a) + log(b)对数函数在乘法上的性质。

6. 对数公式:log(a/b) = log(a) - log(b)对数函数在除法上的性质。

7. 对数公式:log(1) = 0对数函数中底数为1时,其结果为0。

8.指数函数公式:a^0=1任何常数的0次方等于19.指数函数公式:a^(-n)=1/(a^n)任何常数的负指数等于其正指数的倒数。

10. 三角函数公式:sin(-x) = -sin(x)正弦函数对称的性质。

11. 三角函数公式:cos(-x) = cos(x)余弦函数对称的性质。

12. 三角函数公式:tan(x) = sin(x)/cos(x)正切函数定义。

13. 三角函数公式:sec(x) = 1/cos(x), csc(x) = 1/sin(x),cot(x) = 1/tan(x)余切、正割和余割函数的定义。

14. 双曲函数公式:cosh(x) = (e^x + e^(-x))/2双曲余弦函数的定义。

15. 双曲函数公式:sinh(x) = (e^x - e^(-x))/2双曲正弦函数的定义。

16. 双曲函数公式:tanh(x) = sinh(x)/cosh(x)双曲正切函数的定义。

这些基本初等函数的公式是数学中非常重要的,它们在计算和应用中经常被使用。

通过理解并熟练掌握这些公式,我们可以更好地解决各种数学问题。

基本初等函数的图像与性质

基本初等函数的图像与性质

在数学的发展过程中,形成了最简单最常用的六类函数,即 常数函数 、 幂函数、 指数函数 、 对数函数 、 三角函数 与 反三角函数 ,这六类函数称为 基本初等函数。

一、常数函数y = c 或 f ( x ) = c , x ∈ R ,其中 c 是常数。

它的图像是通过点 (0,c),且平行 x轴的直线,如下图所示:常数函数的图像常数函数的性质:1、常数函数是有界函数,周期函数(没有最小的正周期)、偶函数;2、常数函数既是单调增加函数又是单调减少函数,特别的当 c = 0 时,它还是奇函数。

二、幂函数1、形如 y = x^a 的函数是幂函数,其中 a 是实数 。

幂函数图(1)2、常见幂函数的图像:幂函数图(2)注:画幂函数图像时,先画第一象限的部分,在根据函数奇偶性完成整个图像。

3、幂函数的性质:① 幂函数的图像最多只能同时出现在两个象限,且不经过第四象限;如图与坐标轴相交,则交点一定是坐标原点 。

② 所有幂函数在 (0,+∞)上都有定义,并且图像都经过点 (1,1)。

③ 若 a > 0 , 幂函数图像都经过点 (0,0)和(1,1),在第一象限内递增;若 a三、指数函数1、一般地,函数 y = a^x (a > 0 且 a ≠ 1)叫做 指数函数 ,自变量 x 叫做 指数 ,a 叫做 底数 ,函数的定义域是 R 。

2、指数函数的图像:指数函数图象3、指数函数的性质:① 指数函数 y = a^x (a > 0 且 a ≠ 1)的函数值恒大于零 ,定义域为 R ,值域为(0,+∞);② 指数函数 y = a^x (a > 0 且 a ≠ 1)的图像经过点 (0,1);③ 指数函数 y = a^x (a > 1)在 R 上递增 ,指数函数 y = a^x (0四、对数函数1、对数及其运算:一般地,如果 a (a > 0 , a ≠ 1)的 b 次幂等于 N ,即 a^b = N,那么 b 叫做以 a 为底N 的 对数 ;记作: log aN = b , 其中 a 叫做对数的 底数 , N 叫做 真数 。

基本初等函数及函数的应用

基本初等函数及函数的应用
(1) log23.4 , log28.5 ;
(2) log0.31.8 , log0.32.7; (3) log3 , log20.8. (4) log67, log76;

小 结 比较大小的方法
(1) 利用函数单调性(同底数) (2) 利用中间值(如:0,1.) (3) 变形后比较
(4) 作差比较
N
对数运算性质如下:
如果a>0,且a≠1,M>0,ห้องสมุดไป่ตู้>0 ,那么:
(1)
log a (M N ) log a M log a N ;
M (2) log log a M log a N ; a N
(3)
log a M n log a M (n R).
n
几个重要公式
n (1) log am b log a b m log c b (2) log a b (换底公式) log c a 1 (3) log a b log b a
是R上的增函数
是R上的减函数
比较两个幂的形式的数大小的方法:
(1) 对于底数相同指数不同的两个幂的大小 比较,可以利用指数函数的单调性来判断.
(2) 对于底数不同指数相同的两个幂的大 小比较,可以利用比商法来判断.
(3) 对于底数不同也指数不同的两个幂的 大小比较,则应通过中间值来判断.常用1和0.
(1)正数的分数指数幂: 当a 0, m, n N , n 1时,规定
a a
n
m n
m
a (2)零的正分数指数幂为零,零
,a

m n

1
n m
的负分数指数幂没有意义
(3)常用公式

基本初等函数的定义

基本初等函数的定义

基本初等函数的定义基础初等函数是指构成大多数数学模型的基本函数。

它们也被称为标准函数,因为必须具备某些特定的属性和构成,才能被认定为基础初等函数。

它们通常被用来描述或推断各种自然现象,比如流体运动、声学波动、光学表象。

二、基础初等函数的类型1、指数函数指数函数是由一个“基数”乘以一个“指数”组成的函数,经常用于描述指数增长的现象。

指数函数可以使用形如y = a x^b的方程来表示,其中a是基数,而b是指数。

2、对数函数对数函数是指将一个函数的指数变换成自变量的函数。

许多实际情况都以对数函数的形式表示,比如音量与频率的关系、气温与加热量的关系等。

常见的对数函数有以自然对数e为底,以10为底等。

3、幂函数幂函数是一类指数函数,它将自变量的指数变换成函数的指数。

常见的幂函数有平方函数、立方函数、开平方函数等。

此外,也可以将任意的指数变换成幂函数。

4、三角函数三角函数是一类函数,在计算机科学中使用得比较多。

它们可以使用三角形的角度和边长来求出自变量的值,或者将一个值映射到复平面的三角函数曲线上,通常也被称为极坐标函数。

常见的三角函数包括正弦函数、余弦函数、正切函数等。

5、指数型函数指数型函数是一类特殊的指数函数,它们的结构比普通的指数函数更加复杂,可以呈现出更多的曲线形状。

指数型函数可以用来描述不同种类的物理运动模型,比如速度-距离关系、物体受重力运动的轨迹等。

6、微积分函数微积分函数是用来描述微分表达式的一类特殊的函数。

它们十分复杂,可以更准确的描述不同的现象,比如热力学图、普朗克振动等。

微积分函数可以用来描述连续函数,比如平滑函数、抛物函数等。

7、微分函数微分函数是对复杂函数求微分的一类特殊函数。

它们可以用来描述不断变化的现象,比如速度的变化、温度的变化等。

微分函数也可以用来求多元函数的驻点、极值等级。

三、基础初等函数的应用基础初等函数在许多学科领域都有着广泛的应用。

1、工程领域在工程领域,基础初等函数可以用来描述力学、振动学、热学等物理性质以及材料特性,以求得最佳的工程设计结果。

1.5基本初等函数、初等函数、复合函数

1.5基本初等函数、初等函数、复合函数
(5)降幂公式
1 cos 2 x 1 cos 2 x 2 sin x , cos x 2 2
2
《微积分》(第三版) 电子教案
首页
上一页
下一页
结束
6 反三角函数 三角函数都是周期函数,对于值域中的任何都有无 穷多个与之对应,故三角函数在其定义域内不存在 反函数.为了定义它们的反函数,必须限制自变量的 取值范围,使得该函数在这个范围内单调.
《微积分》(第三版) 电子教案
首页
上一页
下一页
结束
常用的三角函数公式:
(1)商的关系
sin x cos x 1 1 1 tan x , cot x ,sec x , csc x , tan x cos x sin x cos x sin x cot x
(2)平方关系
sin 2 x cos2 x 1,sec2 x 1 tan 2 x,csc2 x 1 cot 2 x
《微积分》(第三版) 电子教案
首页
上一页
下一页
结束
二、复合函数
设yf(u) ug(x) 如果将ug(x)代入f(u)中 得到的表达式 f[g(x)]是有意义的 则yf[g(x)]是一个以x为自变量 y为因变量 的新函数 称为由yf(u)和ug(x)复合而成的复合函数
《微积分》(第三版) 电子教案
《微积分》(第三版) 电子教案
首页
上一页
下一页
结束
6 反三角函数 常用的反三角函数有yarcsin x yarccos x yarctanx 函数值的确定
求arccos x 在[0, ]内确定一点 使cos x 则arccos x
1) 例如 求 arccos( 2 1 ) 2 因为 cos2 1 所以 arccos( 3 2 2 3

基本初等函数


图乙
一种对应 p q r B
A
图丙
图 2-1-3
图丁
图甲不是映射,因为集合A中的一个元素对应了 集合B中的两个元素; 图乙是映射,符合映射的定义; 图丙是映射,虽然,集合B中有的元素没有A中 的元素与之对应,但仍符合映射的定义; 图丁不是映射,因为集合A中的每一个元素都要 对应集合B中的元素,但是A中的元素-1,-2没有对 应B中的元素.
课堂例题
例1.某种笔记本的单价是5元,买 x(x∈{1,2,3,4,5})个笔记本需要y元.试用函数的三种表 示法表示函数y=f(x). 解:函数的定义域是数集{1,2,3,4,5}. 用解析法可将函数y=f(x)表示为y=5x,
x∈{1,2,3,4,5}.
用列表法可将函数y=f(x)表示为
笔记本数x
其中x叫做自变量,x的取值范围A叫作函数的定义域 (domain);与x的值对应的y值叫作函数值,函数值的 集合 f ( x) x A 叫作函数的值域(range). 值域是集合B的子集.
2.对概念的理解
(1)定义域、值域和对应关系是决定函数的三要素, 这是一个整体.一般来说值域由定义域和对应关系所确 定,因为对于定义域中的数x,按照确定的对应关系f, 在集合B中都有唯一确定的数f(x)和x对应. (2)记住y=f(x)的内涵.例如对于f(x)=x2,对应 关系f就是“取平方”,而对于 f ( x) x ,对应关 系f就是“开平方”,f就是函数符号,对于具体的函 数它有具体的涵义.函数符号还可以记作 y=g(x),y=u(x)等.
(2)f(x)=1和g(x)=x0.
2.请你再举出函数相等的例子.
课堂小结
1.函数的值域由定义域和对应关系确定. 2.如果两个函数的定义域、对应关系都相同,

基本初等函数

基本初等函数一.函数的五个要素:自变量,因变量,定义域,值域,对应法则二.函数的四种特性:有界限,单调性,奇偶性,周期性三.函数的图像:1、幂函数(a为实数)定义域:指代一切实数(-∞,+∞),就是R值域:对于一切指数函数y=a^x来讲。

他的a满足a>0且a≠1,即说明y>0。

所以值域为(0,+∞)。

a=1是也可以,此时值域恒为1。

有界性:单调性:若a>0,函数在内单调增加;若a<0,函数在内单调减少。

奇偶性:(自己观察)每种函数的图像.2. 指数函数定义域:值域:有界性:单调性:若a>1 函数单调增加;若0<a<1 函数单调减少奇偶性:周期性:注意:图形过(0,1)点a^0=1直线y=0为函数图形的水平渐近线用的较多此函数的图形,性质很重要3.对数函数1、定义域:2、值域:有界性:单调性:a>1时,函数单调增加;0<a<1时,函数单调减少奇偶性:周期性:主要性质:与指数函数互为反函数,图形过(1,0)点,直线x=0为函数图形的铅直渐近线e=2.7182……,无理数经常用到以e为底的对数4.三角函数(图像很重要)①正弦函数:定义域:值域:[-1,1]有界性:[-1,1] 有界函数单调性:(-T/2,T/2)单调递增奇偶性:奇函数周期性:以为周期的周期函数;②余弦函数:定义域:值域:[-1,1]有界性:[-1,1] 有界函数单调性:奇偶性:偶函数周期性:③正切函数:定义域:值域:有界性:单调性:奇偶性:奇函数周期性:④余切函数:,定义域:值域:有界性:单调性:奇偶性:奇函数周期性:,5.反三角函数①反正弦函数:定义域:[-1,1]值域:有界性:单调性:单调增加奇偶性:奇函数周期性:②反余弦函数:定义域:[-1,1]值域:有界性:单调性:单调减少奇偶性:周期性:③反正切函数:---定义域定义域:值域:有界性:单调性:单调增加奇偶性:奇函数周期性:反余切函数---定义域定义域:值域:有界性:单调性:单调减少;奇偶性:周期性:以上是五种基本初等函数,关于它们的常用运算公式都应掌握。

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形1.幂函数函数称为幂函数。

如,,,都是幂函数。

没有统一的定义域,定义域由值确定。

如,。

但在内总是有定义的,且都经过(1,1)点。

当时,函数在上是单调增加的,当时,函数在内是单调减少的。

下面给出几个常用的幂函数:的图形,如图1-1-2、图1-1-3。

图1-1-2图1-1-32.指数函数函数称为指数函数,定义域,值域;当时函数为单调增加的;当时为单调减少的,曲线过点。

高等数学中常用的指数函数是时,即。

以与为例绘出图形,如图1-1-4。

图1-1-43.对数函数函数称为对数函数,其定义域,值域。

当时单调增加,当时单调减少,曲线过(1,0)点,都在右半平面内。

与互为反函数。

当时的对数函数称为自然对数,当时,称为常用对数。

以为例绘出图形,如图1-1-5。

图1-1-54.三角函数有,它们都是周期函数。

对三角函数作简要的叙述:(1)正弦函数与余弦函数:与定义域都是,值域都是。

它们都是有界函数,周期都是,为奇函数,为偶函数。

图形为图1-1-6、图1-1-7。

图1-1-6 正弦函数图形图1-1-7 余弦函数图形(2)正切函数,定义域,值域为。

周期,在其定义域内单调增加的奇函数,图形为图1-1-8图1-1-8(3)余切函数,定义域,值域为,周期。

在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9(4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。

图1-1-10(5)余割函数,定义域,值域为,为无界函数,周期在定义域为奇函数,图形如图1-1-11。

图1-1-115.反三角函数反正弦函数,定义域,值域,为有界函数,在其定义域内是单调增加的奇函数,图形如图1-1-12;图1-1-12,为有界函数,在其定义域内为单调减少的非奇非偶函数,图形如图1-1-13;图1-1-13反正切函数,定义域,值域为,为有界函数,在定义域内是单调增加的奇函数,图形如图1-1-14;图1-1-14为有界函数,在其定义域内单调减少的非奇非偶函数。

基本初等函数定义

基本初等函数定义
1基本初等函数定义
基本初等函数是数学中的一个概念,它也可以称为基本函数,Primary functions,或基础函数。

它被用来定义和描述许多不同的数学模型。

它的定义是:具有某种形式的函数,可以用对数、指数函数、三角函数或其他几何函数组合而成,用来分析某类特定问题。

基本初等函数主要有三种:偶函数、奇函数和其他函数。

偶函数是指在其定义域上,它的取值在坐标轴的对称轴上是对称的,例如二次函数、sinx函数和cosx函数。

奇函数的取值则保持对称,但对称轴不是坐标轴,而是原点,例如tanx函数和cotx函数。

最后,还有一些特殊的函数,例如圆函数、非偶函数和非奇函数,它们可以组合在一起构造特殊的数学模型。

基本初等函数不仅用于模型建构,还可以用来分析数学函数在定义域上的取值规律,以便预测它们在实际问题中的行为。

在几何学中,它常常用于描述和表示不同几何形状的性质,例如点、线、圆、矩形、多边形等。

此外,它还可以用于描述空间几何形状的性质,例如平面、球体等。

因此,基本初等函数在数学和几何学的应用是非常重要的,它们为我们理解数学和几何学中的复杂概念和问题提供了方便的工具和实用的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基本初等函数初等函数
基本初等函数是指那些可以用加减乘除及有限次数的幂函数、指数函数、对数函数、三角函数和反三角函数组合而成的函数。

这些函数在数学中具有重要的地位和广泛的应用。

本文将详细介绍一些常见的基本初等函数及其性质。

1.幂函数
幂函数是形如f(x)=a^x(a>0,a≠1)的函数,其中a称为底数,x称为指数。

幂函数具有以下性质:
-若a>1,则f(x)随着x的增大而迅速增大,随着x的减小而迅速减小;
-若0<a<1,则f(x)随着x的增大而迅速减小,随着x的减小而迅速增大;
-当x为负数时,若a为正数,则f(x)为定义良好的正数,若a为负数,则f(x)为定义良好的负数;
-当x为零时,f(x)的值始终为1
2.指数函数
指数函数是形如f(x)=a^x(a≠0,a≠1)的函数。

指数函数具有以下性质:
-若a>1,则f(x)随着x的增大而迅速增大,随着x的减小而迅速减小;
-若0<a<1,则f(x)随着x的增大而迅速减小,随着x的减小而迅速
增大;
-当x为负数时,f(x)的值可能为定义良好的正数或负数,具体取决
于a的值;
-当x为零时,f(x)的值始终为1
3.对数函数
对数函数是形如f(x) = logₐ(x) (a>0, a≠1)的函数。

其中a为对数
的底数,x为实数。

对数函数具有以下性质:
-若x为正数,且a>1,则f(x)的值为正数;
-若x为正数,且0<a<1,则f(x)的值为负数;
-若x为零,则f(x)的值为负无穷大;
- 对于任意的正数a和b,有logₐ(ab) = logₐ(a) + logₐ(b)的性质。

4.三角函数与反三角函数
三角函数包括正弦函数、余弦函数、正切函数等。

正弦函数和余弦函
数的定义域是整个实数集,而正切函数的定义域是除去π/2的奇倍数的
实数集。

反三角函数是正弦函数、余弦函数、正切函数的逆函数,分别记
作sin^(-1)(x)、cos^(-1)(x)、tan^(-1)(x)。

-正弦函数与余弦函数的值范围在-1到1之间;
-正切函数的值范围是整个实数集;
-反三角函数的定义域和值域与对应的三角函数相互对调。

总结起来,基本初等函数是一类可以通过对加减乘除及有限次幂函数、指数函数、对数函数、三角函数和反三角函数进行组合运算得到的函数。

它们具有独特的性质和规律,并在数学中被广泛应用于描述各种实际问题。

熟练掌握基本初等函数的性质和计算方法,对于理解和解决数学问题具有
重要的意义。

相关文档
最新文档