数据结构重点
数据结构的重点知识点

数据结构的重点知识点数据结构是计算机科学中非常重要的基础知识,它主要研究数据的组织、存储和管理方式。
在学习数据结构的过程中,有一些重点知识点需要特别关注和理解。
本文将从以下几个方面介绍数据结构的重点知识点。
一、线性表线性表是数据结构中最基本、最简单的一种结构。
它包括顺序表和链表两种实现方式。
1. 顺序表顺序表是线性表的一种实现方式,它使用一个连续的存储空间来存储数据。
顺序表的主要操作包括插入、删除和查找等。
2. 链表链表是线性表的另一种实现方式,它使用节点来存储数据,并通过指针将这些节点连接起来。
链表的主要操作包括插入、删除和查找等。
二、栈和队列栈和队列是线性表的特殊形式,它们的主要特点是插入和删除操作只能在特定的一端进行。
1. 栈栈是一种先进后出(LIFO)的数据结构,它的插入和删除操作都在栈顶进行。
栈的主要操作包括入栈和出栈。
2. 队列队列是一种先进先出(FIFO)的数据结构,它的插入操作在队尾进行,删除操作在队头进行。
队列的主要操作包括入队和出队。
三、树和二叉树树是一种用来组织数据的非线性结构,它由节点和边组成。
树的重点知识点主要包括二叉树、二叉搜索树和平衡树等。
1. 二叉树二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点。
二叉树的主要操作包括遍历、插入和删除等。
2. 二叉搜索树二叉搜索树是一种特殊的二叉树,它的左子树中的所有节点的值都小于根节点的值,右子树中的所有节点的值都大于根节点的值。
二叉搜索树的主要操作包括查找、插入和删除等。
四、图图是由节点和边组成的一种复杂数据结构。
图的重点知识点主要包括有向图和无向图、图的遍历和最短路径算法等。
1. 有向图和无向图有向图和无向图是图的两种基本形式,它们的区别在于边是否有方向。
有向图的边是有方向的,而无向图的边没有方向。
2. 图的遍历图的遍历是指对图中的每个节点进行访问的过程。
常见的图遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。
数据结构考研复习重点归纳

数据结构考研复习重点归纳数据结构是计算机科学中非常重要的一门基础课程,考研复习数据结构时,需要重点掌握的内容有以下几个方面。
1.线性表:线性表是数据结构中最基本的一种结构,常见的线性表有数组、链表和栈等。
考生需要掌握线性表的定义、插入、删除、查找等基本操作,并能够分析它们的时间复杂度。
2.树:树是一种非常重要且常见的数据结构,它具有分层结构和层次关系。
其中,二叉树是最简单也是最基本的一种树结构,树的遍历(如前序遍历、中序遍历和后序遍历)是树算法中的重要内容。
此外,还要了解一些特殊的树结构,如平衡树和B树等。
3.图:图是由节点和边组成的一种数据结构,它是一种非常灵活的结构,常用来表示各种实际问题中的关系。
在考研复习中,需要掌握图的基本概念(如顶点和边)、图的存储结构(如邻接矩阵和邻接表)以及图的遍历算法(如深度优先和广度优先)等。
4.查找和排序:在实际问题中,经常需要查找和排序数据。
查找算法(如顺序查找、二分查找和哈希查找)和排序算法(如冒泡排序、插入排序和快速排序)是数据结构中常见的算法,考生需要熟练掌握这些算法的原理和实现方法。
此外,还要了解一些高级的查找和排序算法,如二叉查找树和归并排序等。
5.散列表:散列表(也称哈希表)是一种特殊的数据结构,它利用散列函数将数据映射到一个固定大小的数组中。
散列表具有快速的查找和插入操作,常用于实现字典和数据库等应用。
在考研复习中,需要了解散列表的原理和实现方法,以及处理冲突的方法,如链地址法和开放地址法。
6.动态规划:动态规划是一种解决问题的数学方法,也是一种重要的算法思想。
在考研复习中,需要掌握动态规划的基本原理和解题思路,以及常见的动态规划算法,如背包问题和最长公共子序列等。
7.算法复杂度分析:在考研复习中,需要有一定的算法分析能力,能够对算法的时间复杂度和空间复杂度进行分析和估算。
此外,还要能够比较不同算法的效率,并选择合适的算法来解决实际问题。
除了以上重点内容,考生还要注意掌握一些基本的编程知识,如指针、递归和动态内存分配等。
数据结构重点难点

数据结构重点难点数据结构是计算机科学中非常重要的一门基础课程,它为我们理解和应用计算机中的数据提供了基础。
然而,由于其抽象性和概念性较强,学习数据结构往往是许多学生的一个挑战。
本文将介绍数据结构的几个重点难点,帮助读者更好地理解和掌握这门学科。
一、数组和链表数组和链表是数据结构中最基本的两种形式。
数组是一种连续的存储结构,可以通过索引访问元素,而链表是一种非连续的存储结构,每个节点都包含一个元素和一个指向下一个节点的指针。
数组的插入和删除操作比较麻烦,而链表的访问操作比较耗时。
在实际应用中,需要根据具体的场景选择数组还是链表。
二、栈和队列栈和队列是经常用到的数据结构。
栈是一种后进先出(LIFO)的结构,只允许在栈顶进行插入和删除操作,类似于堆叠盘子。
而队列是一种先进先出(FIFO)的结构,允许在队尾进行插入操作,在队头进行删除操作,类似于排队。
在实际应用中,栈和队列经常用于解决问题的算法设计。
三、树和二叉树树是一种非线性的数据结构,它由节点和边组成。
树的一个节点可以有多个子节点,而每个节点都有一个父节点,除了根节点外。
特殊的一种树结构是二叉树,它每个节点最多有两个子节点。
树和二叉树在很多应用中被广泛使用,如文件系统、数据库索引等。
四、图图是由节点和边构成的非线性数据结构,它可以用来表示复杂的关系和网络。
图由顶点集合和边集合组成,顶点表示图中的元素,边表示顶点之间的关系。
图可以是有向的或无向的,带权重的或不带权重的。
图的遍历算法和最短路径算法是图的重点难点,它们在图的应用中具有重要的作用。
五、排序和查找算法排序和查找是数据结构中常用的操作。
排序算法的目的是将一个无序的数据序列按照一定的规则进行整理,使其按照升序或降序排列。
常见的排序算法有冒泡排序、插入排序、选择排序、快速排序等。
查找算法的目的是在一个有序的数据序列中寻找指定的元素,常见的查找算法有顺序查找、二分查找、哈希查找等。
综上所述,数据结构是计算机科学中非常重要的一门课程,也是许多学生的挑战。
数据结构重点

数据结构重点1.数据结构+算法=程序设计2.数据元素是数据的基本单位,数据项是数据的不可分割的最小单位3.数据对象:性质相同的数据元素的集合,是数据的一个子集。
4.数据结构:带有某种结构的数据元素的集合。
5.数据结构的4种基本类型:(1)集合(2)线性结构(3)树形结构(4)图状结构或网状结构6.数据的物理结构(又称存储结构):数据结构在计算机中的表示(又称映像)7.在计算机中,表示信息最小单位是二进制数的一位叫做(位)8.数据元素之间的关系在计算机中的表示方法有:(1)顺序映像(2)非顺序映像9.线性结构的特点:在数据元素的非空有限集合中(1)存在唯一的一个被称作“第一个”的数据元素(2)存在唯一的一个被称作“最后一个”的数据元素(3)除第一个外,集合中的每个元素均只有一个前驱;(4)除最后一个外,集合中每个数据元素均只有一个后继10.线性表的顺序表示用一组地址连续的存储单元依次存储线性表的数据元素。
11.线性表的第i个元素的存储位置为LOC(ai)=LOC(a1)+(i-1)*L12.队列:先进先出。
它只允许在表的一端插入,而在另一端删除元素描述以下三个概念的区别:头指针,头结点,首元结点(第一个元素结点)。
解:头指针是指向链表中第一个结点的指针。
首元结点是指链表中存储第一个数据元素的结点。
头结点是在首元结点之前附设的一个结点,该结点不存储数据元素,其指针域指向首元结点,其作用主要是为了方便对链表的操作。
它可以对空表、非空表以及首元结点的操作进行统一处理。
2.2 填空题。
解:(1) 在顺序表中插入或删除一个元素,需要平均移动表中一半元素,具体移动的元素个数与元素在表中的位置有关。
(2) 顺序表中逻辑上相邻的元素的物理位置必定紧邻。
单链表中逻辑上相邻的元素的物理位置不一定紧邻。
(3) 在单链表中,除了首元结点外,任一结点的存储位置由其前驱结点的链域的值指示。
(4) 在单链表中设置头结点的作用是插入和删除首元结点时不用进行特殊处理。
《数据结构》第一章重点知识梳理

第一章 绪论
求绝对值 abs(表达式) 求不足整数值 floor(表达式) 求进位整数值 ceil(表达式) 判定文件结束 eof(文件变量) (10)逻辑运算 与运算&&:对于A&&B,当A的值为0时,不在对B求值。 或运算||:对于A||B,当A的值为非0时,不在对B求值。 四、算法和算法分析 1.算法 (1)算法的定义
由于算法的时间复杂度考虑的只是对于问题规模n的增长率,因此在难以精确计算基本操作 执行次数(或语句频度)的情况下,只需求出它关于n的增长率或阶即可。 4.算法的存储空间需求
类似于算法的时间复杂度,以空间复杂度(spacecomplexity)作为算法所需存储空间的量 度,记作S(n)=O(f(n))其中n为问题的规模。
18
的表示。
①元素的表示。计算机数据元素用一个由若干位组合 起来形成的一个位串表示。
图1-1四类基本结构的关系图。
5
第一章 绪论
②关系的表示。 计算机中数据元素之间的关系有两种不同的表示方法:顺序映象和非顺序映象。 并由这两种不同的表示方法得到两种不同的存储结构:顺序存储结构和链式存储结构。 a.顺序映象的特点是借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系。 b.非顺序映象的特点是借助指示元素存储地址的指针(pointer)表示数据元素之间的逻辑
数据元素(dataelement)是数据的基本单位,在计算机程序中通常作为一个整体进行考 虑和处理。
3
第一章 绪论
3.数据对象 数据对象(dataobject)是性质相同的数据元素的集合,是数据的一个子集。
4.数据结构 数据结构(datastructure)是相互之间存在一种或多种特定关系的数据元素的集合。 (1)数据结构的基本结构 根据数据元素之间关系的不同特性,通常有下列四类基本结构: ①集合。数据元素之间除了“同属于一个集合”的关系外,别无其它关系。 ②线性结构。数据元素之间存在一个对一个的关系。 ③树形结构。数据元素之间存在一个对多个的关系。 ④图状结构或网状结构。数据元素之间存在多个对多个的关系。
大二数据结构重点知识点

大二数据结构重点知识点在计算机科学领域中,数据结构是非常重要的一门学科。
它涉及到如何组织和管理数据的方法和技巧。
在大二时学习数据结构,我们主要学习了各种不同类型的数据结构以及它们的特点和应用场景。
本文将会介绍一些大二数据结构的重点知识点。
一、数组数组是一种将相同类型的数据元素按一定顺序排列的数据结构。
它的优点是可以快速访问元素,但是插入和删除的效率相对较低。
另外,数组的大小是固定的,不能动态改变。
二、链表链表是一种动态数据结构,它由多个节点组成,节点之间通过指针链接。
链表分为单向链表和双向链表两种类型。
链表的优点是可以动态调整大小,但是在访问节点时需要遍历整个链表。
三、栈和队列栈和队列是两种常见的数据结构。
栈是一种后进先出(LIFO)的数据结构,只允许在一端进行操作。
队列是一种先进先出(FIFO)的数据结构,允许在一端进行插入操作,另一端进行删除操作。
四、树树是一种非线性的数据结构,它由节点组成,其中一个节点被称为根节点,其他节点按照层次关系组织。
树的常见应用包括二叉树、平衡树、二叉搜索树等。
树的特点是可以用来表示层次关系,例如文件系统、组织结构等。
五、图图是一种由节点和边组成的数据结构,它用来表示事物之间的关系。
图分为无向图和有向图两种类型。
图的应用非常广泛,例如社交网络、路线规划等领域。
六、哈希表哈希表是一种通过哈希函数来计算键值对应的存储位置的数据结构。
哈希表的优点是可以快速地插入和查找元素,但是在处理冲突时需要解决哈希碰撞的问题。
七、堆堆是一种特殊的树形数据结构,它满足堆性质:对于任意节点X,其父节点的值大于或等于X的值(最大堆)或者小于或等于X的值(最小堆)。
堆常用来实现优先队列和堆排序算法。
八、排序算法排序算法是用来将一组数据按照特定规则进行排序的算法。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
每种排序算法都有其适用的场景和时间复杂度。
九、高级数据结构在大二数据结构中,我们还会接触一些高级的数据结构,例如红黑树、B树、AVL树等。
(完整word版)大学数据结构期末知识点重点总结(考试专用)
第一章概论1。
数据结构描述的是按照一定逻辑关系组织起来的待处理数据元素的表示及相关操作,涉及数据的逻辑结构、存储结构和运算2。
数据的逻辑结构是从具体问题抽象出来的数学模型,反映了事物的组成结构及事物之间的逻辑关系可以用一组数据(结点集合K)以及这些数据之间的一组二元关系(关系集合R)来表示:(K, R)结点集K是由有限个结点组成的集合,每一个结点代表一个数据或一组有明确结构的数据关系集R是定义在集合K上的一组关系,其中每个关系r(r∈R)都是K×K上的二元关系3.数据类型a。
基本数据类型整数类型(integer)、实数类型(real)、布尔类型(boolean)、字符类型(char)、指针类型(pointer)b。
复合数据类型复合类型是由基本数据类型组合而成的数据类型;复合数据类型本身,又可参与定义结构更为复杂的结点类型4.数据结构的分类:线性结构(一对一)、树型结构(一对多)、图结构(多对多)5。
四种基本存储映射方法:顺序、链接、索引、散列6。
算法的特性:通用性、有效性、确定性、有穷性7.算法分析:目的是从解决同一个问题的不同算法中选择比较适合的一种,或者对原始算法进行改造、加工、使其优化8.渐进算法分析a.大Ο分析法:上限,表明最坏情况b.Ω分析法:下限,表明最好情况c.Θ分析法:当上限和下限相同时,表明平均情况第二章线性表1.线性结构的基本特征a.集合中必存在唯一的一个“第一元素”b。
集合中必存在唯一的一个“最后元素"c.除最后元素之外,均有唯一的后继d。
除第一元素之外,均有唯一的前驱2.线性结构的基本特点:均匀性、有序性3。
顺序表a.主要特性:元素的类型相同;元素顺序地存储在连续存储空间中,每一个元素唯一的索引值;使用常数作为向量长度b。
线性表中任意元素的存储位置:Loc(ki)= Loc(k0)+ i * L(设每个元素需占用L个存储单元)c. 线性表的优缺点:优点:逻辑结构与存储结构一致;属于随机存取方式,即查找每个元素所花时间基本一样缺点:空间难以扩充d.检索:ASL=【Ο(1)】e。
数据结构复习要点(整理版)
第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。
2.数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。
数据项是数据的不可分割的最小单位。
)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
(有时候也叫做属性。
)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系。
2.线性结构:结构中的数据元素之间存在“一对一“的关系。
若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。
3.树形结构:结构中的数据元素之间存在“一对多“的关系。
若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。
4.图状结构:结构中的数据元素存在“多对多”的关系。
若结构为非空集,折每个数据可有多个(或零个)直接后继。
(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。
想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。
逻辑结构可以映射为以下两种存储结构:1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系。
2.链式存储结构:借助指针表达数据元素之间的逻辑关系。
不要求逻辑上相邻的数据元素物理位置上也相邻。
自考数据结构重点(珍藏版)
自考数据结构重点(珍藏版)自考数据结构重点(珍藏版)一、介绍数据结构是计算机科学中非常重要的概念,它涉及到组织、管理和存储数据的方法。
掌握数据结构的核心概念对于程序设计和算法的实现至关重要。
本文将介绍自考数据结构课程的重点内容,帮助您更好地理解和应用这些知识。
二、线性表1. 数组数组是最简单的一种数据结构,它是一种线性表的结构,其中的元素按照一定顺序排列。
我们可以通过数组下标来访问和修改对应位置的元素。
2. 链表链表是另一种常用的线性表结构,它由一系列节点组成。
每个节点包含数据和指向下一个节点的指针。
链表的优点是插入和删除操作的效率较高,但访问任意位置的元素需要遍历整个链表。
三、栈和队列1. 栈栈是一种具有后进先出(LIFO)特点的数据结构,主要包含入栈和出栈两种操作。
入栈将元素压入栈顶,出栈将栈顶元素移除。
2. 队列队列是一种具有先进先出(FIFO)特点的数据结构,主要包含入队和出队两种操作。
入队将元素插入队尾,出队将队头元素移除。
四、树树是一种自然且常用的数据结构,它具有层次结构和分支结构的特点。
1. 二叉树二叉树是树结构中最简单且常见的一种形式。
每个节点最多有两个子节点,分别是左子节点和右子节点。
2. 二叉搜索树二叉搜索树是一种特殊的二叉树,它的左子树中的值都小于根节点,右子树中的值都大于根节点。
这个特点使得二叉搜索树在查找和插入操作上有较高的效率。
五、图图是一种非线性的数据结构,它由节点和边组成。
图的节点可以表示不同的实体,边表示节点之间的联系。
1. 有向图和无向图有向图中的边有方向性,而无向图中的边没有方向性。
2. 最短路径算法最短路径算法用于计算两个节点之间的最短路径长度。
常见的最短路径算法包括迪杰斯特拉算法和弗洛伊德算法。
六、排序算法排序算法用于将一组数据按照特定顺序进行排列。
1. 冒泡排序冒泡排序通过交换相邻的元素来进行排序。
它重复地遍历数列,每次比较相邻的两个元素,将较大的元素移动到后面。
408数据结构重点难点笔记
408数据结构重点难点笔记一、线性表。
1. 顺序表。
- 重点。
- 顺序表的定义和存储结构,理解数组如何表示顺序表。
例如,在C语言中,可以用一个结构体来定义顺序表,结构体中包含一个数组和表示当前表长的变量。
- 顺序表的基本操作实现,如插入、删除、查找操作。
插入操作需要注意移动元素的顺序,平均时间复杂度为O(n);删除操作类似,也要移动元素;查找操作根据不同的查找算法(如顺序查找时间复杂度为O(n),如果表是有序的可以采用二分查找,时间复杂度为O(log n))。
- 难点。
- 顺序表的动态分配内存,涉及到内存管理的知识。
当顺序表空间不足时,如何重新分配更大的空间并将原数据正确地复制到新空间中。
例如,采用倍增策略重新分配内存时,要确保数据的完整性和操作的正确性。
- 顺序表操作中的边界条件处理。
例如,在插入操作时,插入位置的合法性检查(是否在有效范围内),以及表满时的处理;在删除操作时,删除位置不存在的情况处理等。
2. 链表。
- 重点。
- 单链表、双链表和循环链表的结构定义。
单链表每个节点包含数据域和指向下一个节点的指针域;双链表节点有两个指针域,分别指向前一个和后一个节点;循环链表的尾节点指向头节点(单循环链表)或尾节点的下一个节点指向头节点(双循环链表)。
- 链表的基本操作,如创建链表(头插法、尾插法)、插入节点、删除节点、查找节点等。
链表插入和删除操作的时间复杂度为O(1)(如果已知操作位置的指针),但查找操作时间复杂度为O(n)。
- 难点。
- 链表操作中的指针操作。
例如,在双链表中插入节点时,需要正确修改四个指针(前驱节点的后继指针、后继节点的前驱指针、新节点的前驱和后继指针),任何一个指针修改错误都可能导致链表结构破坏。
- 带环链表的相关问题,如判断链表是否带环(可以使用快慢指针法,快指针每次移动两步,慢指针每次移动一步,如果存在环,快慢指针最终会相遇),以及带环链表的环入口点查找等。
二、栈和队列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章:绪论:数据结构课程的任务是:讨论数据的各种逻辑结构、在计算机中的存储结构以及各种操作的算法设计;:数据:是客观描述事物的数字、字符以及所有的能输入到计算机中并能被计算机接收的各种集合的统称;数据元素:表示一个事物的一组数据称作是一个数据元素,是数据的基本单位;数据项:是数据元素中有独立含义的、不可分割的最小标识单位;数据结构概念包含三个方面:数据的逻辑结构、数据的存储结构的数据的操作;数据的逻辑结构指数据元素之间的逻辑关系,用一个数据元素的集合定义在此集合上的若干关系来表示,数据结构可以分为三种:线性结构、树结构和图;:数据元素及其关系在计算机中的存储表示称为数据的存储结构,也称为物理结构;数据的存储结构基本形式有两种:顺序存储结构和链式存储结构;:算法:一个算法是一个有穷规则的集合,其规则确定一个解决某一特定类型问题的操作序列;算法规则需满足以下五个特性:输入——算法有零个或多个输入数据;输出——算法有一个或多个输出数据,与输入数据有某种特定关系;有穷性——算法必须在执行又穷步之后结束;确定性——算法的每个步骤必须含义明确,无二义性;可行性——算法的每步操作必须是基本的,它们的原则上都能够精确地进行,用笔和纸做有穷次就可以完成;有穷性和可行性是算法最重要的两个特征;:算法与数据结构:算法建立数据结构之上,对数据结构的操作需用算法来描述;算法设计依赖数据的逻辑结构,算法实现依赖数据结构的存储结构;:算法的设计应满足五个目标:正确性:算法应确切的满足应用问题的需求,这是算法设计的基本目标;健壮性:即使输入数据不合适,算法也能做出适当的处理,不会导致不可控结高时间效率:算法的执行时间越短,时间效率越高; 果;高空间效率:算法执行时占用的存储空间越少,空间效率越高;可读性:算法的可读性有利于人们对算法的理解;:度量算法的时间效率,时间复杂度,课本39页;:递归定义:即用一个概念本身直接或间接地定义它自己;递归定义有两个条件:至少有一条初始定义是非递归的,如1=1.由已知函数值逐步递推计算出未知函数值,如用n-1定义n;第二章:线性表线性表:线性表是由nn>=0个类型相同的数据元素a0,a1,a2,…an-1,组成的有限序列,记作:Linear List = a0,a1,a2,…an-1其中,元素ai可以是整数、浮点数、字符、也可以是对象;n是线性表的元素个数,成为线性表长度;若n=0,则LinearList为空表;若n>0,则a0没有前驱元素,an-1没有后继元素,ai0<i<n-1有且仅有一个直接前驱元素ai-1和一个直接后继元素ai+1;线性表的顺序存储是用一组连续的内存单元依次存放线性表的数据元素,元素在内存的物理存储次序与它们在线性表中的逻辑次序相同;线性表的数据元素数据同一种数据类型,设每个元素占用c字节,a0的存储地址为Loca0,则ai的存储地址Locai为:Locai = Loca0+ ic数组是顺序存储的随机存储结构,它占用一组连续的存储单元,通过下标识别元素,元素地址是下标的线性函数;:顺序表的插入和删除操作要移动数据元素;平均移动次数是属数据表长度的一半;课本第50页:线性表的链式存储是用若干地址分散的存储单元存储数据元素,逻辑上相邻的数据元素在物理位置上不一定相邻,必须采用附加信息表示数据元素之间的顺序关系;它有两个域组成:数据域和地址域;通常成为节点;课本第55页及56页单链表课本56页单链表的遍历:Node<E> p = head; whilep=null{ 访问p节点;p = ;}单链表的插入和删除操作非常简便,只要改变节点间的链接关系,不需移动数据元素;单链表的插入操作:1:空表插入/头插入2中间插入/尾插入ifhead == null Node<E> q = new Node<E>x;{ head = new Node<E>x; = ;}else{ = q;Node<E> q=new Node<E>x; 中间插入或尾插入都不会改变单表= head; 的头指针head;head = q;}单链表的删除操作:头删除:head = ;中间/尾删除:if=null{ =循环单链表:如果单链表最后一个节点的next链保存单链表的头指针head值,则该单链表成为环形结构,称为循环单链表;课本67若rear是单链表的尾指针,则执行=head;语句,使单链表成为一条循环单链表;当==head时,循环单链表为空;:双链表结构:双链表的每个结点有两个链域,分别指向它的前驱和后继结点,当==null时,双链表为空;设p指向双链表中非两端的某个结点,则成立下列关系:p=;双链表的插入和删除:1插入2删除q=new DLinkNodex;= ;=; =p; if=null{= q;=q; .prev = ;}循环双链表:当==head且==head时,循环双链表为空;第三章:栈和队列栈:栈是一种特殊的线性表,其中插入和删除操作只允许在线性表的一端进行;允许操作的一端称为栈顶,不允许操作的一端称为栈底;栈有顺序栈和链式栈;栈中插入元素的操作称为入栈,删除元素的操作称为出栈;没有元素的中称为空栈;栈的进出栈顺序:后进先出,先进后出;及75页的思考题;:队列:队列是一种特殊的线性表,其中插入和删除操作分别在线性表的两端进行;向队列中插入元素的过程称为入队,删除元素的过程称为出对,允许入队的一端称为队尾,允许出队的一端称为对头;没有元素的队列称为空队列;队列是先进先出;第四章:串:串是一种特殊的线性表,其特殊性在于线性表中的每个元素是一个字符;一个串记为:s=“s0s1s2…sn-1” 其中n>=0,s是串名,一对双引号括起来的字符序列s0s1s2…sn-1是串值,sii=0,1,2,…n-1为特定字符集合中的一个字符;一个串中包含的字符个数称为串的长度;长度为0的串称为空串,记作“”,而由一个或多个空格字符构成的字符串称为空格串;子串:由串s中任意连续字符组成的一个子序列sub称为s的子串,s称为sub 的主串;子串的序号是指该子串的第一个字符在主串中的序号;串比较:两个串可比较是否相等,也可比较大小;两个串子串相等的充要条件是两个串子串的长度相同,并且各对应位置上的字符也相同;两个串的大小由对应位置的第一个不同字符的大小决定,字符比较次序是从头开始依次向后;当两个串长度不等而对应位置的字符都相同时,较长的串定义为较“大”;第五章:数组和广义表:数组是一种数据结构,数据元素具有相同的数据类型;一维数组的逻辑结构是线性表,多维数组是线性表的扩展;:一维数组:一维数组采用顺序存储结构;一个一维数组占用一组连续的存储单元;设数组第一个元素a0的存储地址为Loca0,每个元素占用c字节,则数组其他元素ai的存储地址Locai为:Locai= Loca0+ic数组通过下标识别元素,元素地址是下标的线性函数;一个下标能够唯一确定一个元素,所划给的时间是O1;因此数组是随机存取结构,这是数组最大的优点;:多维数组的遍历:有两种次序:行主序和列主序;行主序:以行为主序,按行递增访问数组元素,访问完第i行的所有元素之后再访问第i+1行的元素,同一行上按列递增访问数组元素;a00,a01,…a0n-1, a10,a11,…a1n-1,…am-10,am-11,…,am-1n-12列主序:以列为主序,按列递增访问数组元素,访问完第j列的所有元素之后再访问第j+1列的元素,同一列上按列递增访问数组元素;多维数组的存储结构:多维数组也是由多个一维数组组合而成,组合方式有一下两种;静态多维数组的顺序存储结构:可按行主序和列主序进行顺序存储;按行主序存储时,元素aij的地址为:Locaij= Loca00+in+jc按列主序存储时,Locaij= Loca00+jm+ic动态多维数组的存储结构;二维数组元素地址就是两个下标的线性函数;无论采用哪种存储结构,多维数组都是基于一维数组的,因此也只能进行赋值、取值两种存取操作,不能进行插入,删除操作;第六章:树是数据元素结点之间具有层次关系的非线性结构;在树结构中,除根以外的结点只有一个直接前驱结点,可以有零至多个直接后继结点;根没有前驱结点;树是由nn>=0个结点组成的有限集合树中元素通常称为结点;N=0的树称为空树;n>0大的树T;有一个特殊的结点称为根结点,它只有后继结点,没有前驱结点;除根结点之外的其他结点分为mm>=0个互不相交的集合T0,T1,T3……..,Tm-1,其中每个集合Ti0<=i<m本身又是一棵树,称为根的子树;树是递归定义的;结点是树大的基本单位,若干个结点组成一棵子树,若干棵互不相交的子树组成一棵树;树的每个结点都是该树中某一棵子树的根;因此,树是由结点组成的、结点之间具有层次关系大的非线性结构;结点的前驱结点称为其父母结点,反之,结点大的后继结点称为其孩子结点;一棵树中,只有根结点没有父母结点,其他结点有且仅有一个父母结点;拥有同一个父母结点的多个结点之间称为兄弟结点;结点的祖先是指从根结点到其父母结点所经过大的所有结点;结点的后代是指该结点的所有孩子结点,以及孩子的孩子等;结点的度是结点所拥有子树的棵数;度为0的结点称为叶子结点,又叫终端结点;树中除叶子结点之外的其他结点称为分支结点,又叫非叶子结点或非终端结点;树的度是指树中各结点度的最大值;结点的层次属性反应结点处于树中的层次位置;约定根结点的层次为1,其他结点的层次是其父母结点的层次加1;显然,兄弟结点的层次相同;树的高度或深度是树中结点的最大层次树;设树中x结点是y结点的父母结点,有序对x,y称为连接这两个结点的分支,也称为边;设X0,X1,….,Xk-1是由树中结点组成的一个序列,且Xi,Xi+10<=i<k-1都是树中的边,则该序列称为从X0到Xk-1的一条路径;路径长度为路径上的边数;在树的定义中,结点的子树T0,T1…..,Tm-1之间没有次序,可以交换位置,称为无序树,简称树;如果结点的子树T0,T1……,Tm-1从左到右是有次序的,不能交换位置,则称该树为有序树;森林是mm>=0棵互不相干的树的集合;给森林加上一个根结点就变成一棵树,将树的根节点删除就变成森林;二叉树的性质1:若根结点的层次为1,则二叉树第i层最多有2 的i-1次方i>=1个结点;二叉树的性质2:在高度为k的二叉树中,最多有2的k次方减一个结点;二叉树的性质3:设一棵二叉树的叶子结点数为n0,2度结点数为n2,则n0=n2+1;一棵高度为k的满二叉树是具有2的k次方减一个结点的二叉树;满二叉树中每一层的结点数目都达到最大值;对满二叉树的结点进行连续编号,约定根节点的序号为0,从根节点开始,自上而下,每层自左至右编号;一棵具有n个结点高度为k的二叉树,如果他的每个节点都与高度为k的满二叉树中序号为0~n-1的结点一一对应,则这棵二叉树为为完全二叉树;满二叉树是完全二叉树,而完全二叉树不一定是满二叉树;完全二叉树的第1~k-1层是满二叉树第k层不满,并且该层所有结点必须集中在该层左边的若干位置上;二叉树的性质4:一棵具有n个结点的完全二叉树,其高度k=log2n的绝对值+1二叉树的性质5:一棵具有n个结点的完全二叉树,对序号为i的结点,有若i=0,则i为根节点,无父母结点;若i>0,则i的父母结点的序号为i-1/2;若2i+1<n,则i的左孩子结点序号为2i+1;否则i无左孩子;若2i+2<n,则i的右孩子结点的序号为2i+2,否则i无右孩子;二叉树的遍历二叉树的遍历是按照一定规则和次序访问二叉树中的所有结点,并且每个结点仅被访问一次;二叉树的三种次序遍历1:先根次序;访问根节点,遍历左子树,遍历右子树;2:中根次序;遍历左子树,访问右子树,遍历右子树;3:后根次序;遍历左子树,遍历右子树,访问根节点;先根次序遍历时,最先访问根节点;后根次序遍历时,最后访问根节点;中根次序遍历时,左子树上的结点在根节点之前访问,右子树上的结点在根节点之后访问;二叉树的插入和删除操作P147二叉树的层次遍历P149习题P167 6—10,6—19第七章图是由定点集合及顶点间的关系集合组成的一种数据关边系;顶点之间的关系成为边;一个图G记为G=V,E,V是顶点A的有限集合,E是边的有限集合;即V={A|A属于某个数据元素集合}E={A,B|A,B属于V}或E={<A,B>|A,B属于V且PathA,B}其中PathA,B表示从顶点A到B的一条单向通路,即PathA,B是有方向的;无向图中的边事没有方向,每条边用两个顶点的无序对表示;有向图中的边是有方向,每条边用两个顶点的有序对表示;完全图指图的边数达到最大值;n个顶点的完全图记为Kn;无向完全图Kn的边数为nn-1/2,有向完全图Kn的边数为nn-1;子图:设图G==V,E,G’=V’,E’,若V’包含于V且E’包含于E,则称图G’是G的子图;若G’是G的真子图;连通图:在无向图G中,若从顶点VI到Vj有路径,则称Vi和Vj是联通的;若图G 中任意一对顶点Vi和VjVi不等于Vj都是联通的,则称G为连通图;非连通图的极大联通子图称为该图的联通分量;强连通图:在有向图中,若在每一对顶点Vi和VjVi不等于Vj之间都存在一条从Vi到Vj的路径,也存在一条从Vi到Vj的路径,也存在一条从Vi到Vj的路径,则称该图的强连通图;非强连通图的极大强连通子图称为该图的强连通图分量;图的遍历遍历图是指从图G中任意一个顶点V出发,沿着图中的边前行,到达并访问图中的所有顶点,且每个顶点仅被访问一次;遍历图要考虑一下三个问题:指定遍历的第一个访问顶点由于一个顶点可能与多个顶点相邻,因此要在多个邻接顶点之间约定一种访问次序;由于图中可能存在回路,在访问某个顶点之后,可能沿着某条路径又回到该顶点;深度优先搜索图的深度优先搜索策略是,访问某个顶点v,接着寻找v的另一个未被访问的邻接顶点w访问,如此反复执行,走过一条较长路径到达最远顶点;若顶点v没有未被访问的其他邻接顶点,则回到前一个被访问顶点,再寻找其他访问路径;图的深度优先搜索遍历算法P188联通的无回路的无向图,简称树;树中的悬挂点又成为树叶,其他顶点称为分支点;各连通分量均为树的图称为森林,树是森林;由于树中无回路,因此树中必定无自身环也无重边否则他有回路若去掉树中的任意一条边,则变成森林,成为非联通图;若给树加上一条边,形成图中的一条回路,则不是树;P191生成树和生成森林:一个连通无向图的生成树是该图的一个极小联通生成子图,它包含原图中所有顶点n个以及足以构成一棵树的n-1条边;一个非联通的无向图,其各连通图分量的生成图组成该图的生成森林;图的生成图或生成森林不是唯一的,从不同顶点开始、采用不同遍历可以得到不同的生成树或森林;在生成树中,任何树中,任何两个顶点之间只有唯一的一条路径;第八章折半查找算法描述P206,P207二叉排序树及其查找:二叉排序树或者是一棵空树;或者是具有下列性质的二叉树:每个结点都有一个作为查找依据的关键字,所有结点的关键字互不相同;若一个结点的左子树不空,则左子树上所有结点的关键字均小于这个节点的关键字;每个结点的左右子树也分别为二叉排序树;在一棵二叉排序树中,查找值为value的结点,算法描述如下:从根结点开始,设p指向根结点将value与p结点的关键字进行比较,若两者相等,则查找成功;若value值较小,则在p的左子树中继续查找;若value值较大,则在p的右子树中继续查找;重复执行上一步,直到查找成功或p为空,若p为空,则查找不成功;习题8-6第九章直接插入排序算法描述:p228冒泡排序算法的描述:p232快速排序算法描述p233直接选择排序算法描述p236直接选择排序算法实现如下:Public static void selectSortinttable{forint i=0;i<;i++{int min=I;forint j=i+1;j<;j++{iftablej<tableminmin=j;ifmin=i{int temp=tablei;tablei==tablemin;tablemin=temp;}}}}堆排序是完全二叉树的应用,是充分利用完全二叉树特性的一种选择排序;堆定义:设n个元素的数据序列{k0,k1,;;;;kn-1},当且仅当满足下列关系k1<=k2i+1且ki<=k2i+2 i=0,1,2,3,….,n/2-1或ki>==k2i+1且ki>=2i+2i=0,1,2,3,…..n/2-1时,序列{k0,k1…….kn-1}称为最小堆或最大堆;将最小大堆看成是一颗完全二叉树的层次遍历序列,则任意一个结点的关键字都小于等于大于等于它的孩子节点的关键字值,由此可知,根结点值最小大;根据二叉树的性质5,完全二叉树中的第i0<=i<n个结点,如果有孩子,则左孩子为第2i+1个结点,右孩子为第2i+2个结点;。