北航研究生数值分析作业第二题
北航数值分析大作业二(纯原创,高分版)

(R_5 ,I_5 )=(-1.493147080915e+000, 0.000000000000e+000)
(R_6 ,I_6 )=(-9.891143464723e-001, 1.084758631502e-001)
-0.8945216982
-0.0993313649
-1.0998317589
0.9132565113
-0.6407977009
0.1946733679
-2.3478783624
2.3720579216
1.8279985523
-1.2630152661
0.6790694668
-0.4672150886
6.220134985374e-001
-1.119962139645e-001
-2.521344456568e+000
-1.306189420531e+000
-3.809101150714e+000
8.132800093357e+000
-1.230295627285e+000
-6.753086301215e-001
而其本质就是
1.令 以及最大迭代步数L;
2.若m≤0,则结束计算,已求出A的全部特征值,判断 或 或m≤2是否成立,成立则转3,否则转4;
3.若 ,则得一个特征值 ,m=m-1,降阶;若 ,则计算矩阵:
的特征值得矩阵A的两个特征值,m=m-2,降阶,转2.;
4.若k≤L,成立则令
k=k+1,转2,否则结束计算,为计算出矩阵A的全部特征值;
北航数理统计大作业2-聚类与判别分析讲解

应用数理统计作业二学号:姓名:电话:二〇一四年十二月对NBA球队的聚类分析和判别分析摘要:NBA联盟作为篮球的最高殿堂深受广大球迷的喜爱,联盟的30支球队大家也耳熟能详,本文选取NBA联盟30支球队2013-2014常规赛赛季场均数据。
利用spss软件通过聚类分析对27个地区进行实力类型分类,并利用判断分析对其余3支球队对分类结果进行验证。
可以看出各球队实力类型与赛季实际结果相吻合。
关键词:聚类分析,判别分析,NBA目录1. 引言 (4)2、相关统计基础理论 (5)2.1、聚类分析 (5)2.2,判别分析 (6)3.聚类分析 (7)3.1数据文件 (7)3.2聚类分析过程 (9)3.3 聚类结果分析 (11)4、判别分析 (12)4.1 判别分析过程 (12)4.2判别检验 (17)5、结论 (20)参考文献 (21)致谢 (22)1. 引言1896年,美国第一个篮球组织"全国篮球联盟(简称NBL)"成立,但当时篮球规则还不完善,组织机构也不健全,经过几个赛季后,该组织就名存实亡了。
1946年4月6日,由美国波士顿花园老板沃尔特.阿.布朗发起成立了“美国篮球协会”(简称BAA)。
1949年在布朗的努力下,美国两大篮球组织BAA和NBL合并为“全国篮球协会”(简称NBA)。
NBA季前赛是 NBA各支队伍的热身赛,因为在每个赛季结束后,每支球队在阵容上都有相当大的变化,为了让各队磨合阵容,熟悉各自球队的打法,确定各队新赛季的比赛阵容、同时也能增进队员、教练员之间的沟通,所以在每个赛季开始之前,NBA就举办若干场季前赛,使他们能以比较好的状态投入到漫长的常规赛的比赛当中。
为了扩大NBA在全球的影响,季前赛有约三分之一的球队在美国以外的国家举办。
从总体上看,NBA的赛程安排分为常规赛、季后赛和总决赛。
常规赛采用主客场制,季后赛和总决赛采用七场四胜制的淘汰制。
[31]NBA常规赛从每年的11月的第一个星期二开罗,到次年的4月20日左右结束。
北航数值分析计算实习题目二 矩阵QR分解

数值分析实习二院(系)名称航空科学与工程学院专业名称动力工程及工程热物理学号SY0905303学生姓名解立垚1. 题目试用带双步位移QR 的分解法求矩阵A=[a ij ]10*10的全部特征值,并对其中的每一个实特征值求相应的特征向量。
已知()sin 0.50.2,1.5cos 1.2,ij i j i j a i j i j ⎧⎫+≠⎪⎪=⎨⎬+=⎪⎪⎩⎭(),1,2,...,10i j =。
说明:1、求矩阵特征值时,要求迭代的精度水平为1210ε-=。
2、打印以下内容:算法的设计方案;全部源程序(要求注明主程序和每个子程序的功能); 矩阵A 经过拟上三角话之后所得的矩阵()1n A -;对矩阵()1n A-进行QR 分解方法结束后所得的矩阵;矩阵A 的全部特征值()(),1,2,......10i i iR I i λ=,和A 的相应于实特征值的特征向量;其中()(),.i e i m i R R I I λλ==如果i λ是实数,则令0.i I =3、采用e 型输出数据,并且至少显示12位有效数字。
2. 算法设计方案本题采用带双步位移的QR 分解方法。
为了使程序简洁,自定义类Xmatrix ,其中封装了所需要的函数方法。
在Xmatrix 类中封装了运算符重载的函数,即定义了矩阵的加、减、乘、除、数乘运算及转置运算(T())。
同时为了避免传递数组带来的额外内存开销,使用引用(&)代替值传递,以节省内存空间,避免溢出.(1)此程序的主要部分为Xmatrix 中的doubleQR()方法,具体如下:Step1:使用矩阵拟上三角化的算法将A 化为拟上三角阵A (n-1)(此处调用Xmatrix 中的preQR()方法)Step2:令121,,10k m n ε-===, 其中k 为迭代次数。
Step3:如果,1m m a ε-≤,则得到A 的一个特征值,m m a ,令1m m =-,goto Step4;否则goto Step5.Step4: 如果1m =,则得到A 的一个特征值11a ,goto Step11;如果0m =,则goto Step11;如果1m >,则goto Step3;Step5(Step6):如果2m =,则得到A 的两个特征值12s s 和(12s s 和为右下角两阶子阵对应的特征方程21,1,()det 0m m m m a a D λλ---++=的两个根。
北航研究生数值分析试题

∗⎞ ⎟的 A1 ⎠
矩阵。
三、(12 分)试用高斯列主元素法求解线性方程组
⎡ 1 3 −2 −4 ⎤ ⎡ x1 ⎤ ⎡3 ⎤ ⎢ 2 6 −7 −10 ⎥ ⎢ x ⎥ ⎢ −2 ⎥ ⎢ ⎥⎢ 2⎥ = ⎢ ⎥ ⎢ −1 −1 5 9 ⎥ ⎢ x3 ⎥ ⎢14 ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ x4 ⎦ ⎥ ⎣ −6 ⎦ ⎣ −3 −5 0 15 ⎦ ⎣ 四、(12 分)利用矩阵 A 的三角分解 A = LU 求解下列方程组 ⎛ 1 2 1 ⎞ ⎛ x1 ⎞ ⎛ 0 ⎞ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ 2 2 3 ⎟ ⎜ x2 ⎟ = ⎜ 3 ⎟ ⎜ −1 −3 0 ⎟ ⎜ x ⎟ ⎜ 2 ⎟ ⎝ ⎠⎝ 3 ⎠ ⎝ ⎠
第一章
1、近似数 x = 0.231 关于真值 x = 0.229 有( (1)1;(2)2;(3)3;(4)4。
∗
绪论
一、选择题(四个选项中仅有一项符合题目要求,每小题 3 分,共计 15 分) )位有效数字。
2、取 3 ≈ 1.732 计算 x = ( 3 − 1) ,下列方法中哪种最好?(
4
)
Ax
∞和
A ∞ 的值分别为(
)
3
(1) 8 , 8 ;
(2) 8 , 7 ;
(3) 8 , 6 ;
(4) 7 , 7 。
5 、若解线性代数方程组的 Gauss 部分选主元方法第二步得到的系数矩阵的第三列向量为
(2
6 3 2 −5 4 2 ) ,则第三步主行是(
T
) (4) 第 6 行。
(1) 第 2 行;
1 − cos x , sin x
x ≠ 0且 x << 1 ;
(2)
1 1− x , − 1+ 2x 1+ x
北航数值分析第二次大作业--QR分解

《数值分析A》计算实习题目二姓名学号联系方式班级指导教师2012年10月一、算法设计方案整个程序主要分为四个函数,主函数,拟上三角化函数,QR分解函数以及使用双步位移求解矩阵特征值、特征向量的函数。
因为在最后一个函数中也存在QR分解,所以我没有采用参考书上把矩阵M进行的QR分解与矩阵Ak的迭代合并的方法,而是在该函数中调用了QR分解函数,这样增强了代码的复用性,减少了程序长度;但由于时间关系,对阵中方法的运算速度没有进行深入研究。
1.为了减少QR分解法应用时的迭代次数,首先对给定矩阵进行拟上三角化处理。
2.对经过拟上三角化处理的矩阵进行QR分解。
3.注意到计算特征值与特征向量的过程首先要应用前面两个函数,于是在拟上三角化矩阵的基础上对QR分解函数进行了调用。
计算过程中,没有采用goto语句,而是根据流程图采用其他循环方式完成了设计,通过对迭代过程的合并,简化了程序的循环次数,最后在计算特征向量的时候采用了列主元高斯消去法。
二、源程序代码#include<stdio.h>#include<math.h>#include<string.h>int i,j,k,l,m; //定义外部变量double d,h,b,c,t,s;double A[10][10],AA[10][10],R[10][10],Q[10][10],RQ[10][10]; double X[10][10],Y[10][10],Qt[10][10],M[10][10];double U[10],P[10],T[10],W[10],Re[10]={0},Im[10]={0}; double epsilon=1e-12;void main(){void Quasiuppertriangular(double A[][10]);void QRdecomposition(double A[][10]);void DoublestepsQR(double A[][10]);int i,j;for(i=0;i<10;i++){for(j=0;j<10;j++){A[i][j]=sin(0.5*(i+1)+0.2*(j+1));Q[i][j]=0;AA[i][j]=A[i][j];}A[i][i]=1.5*cos(2.2*(i+1));AA[i][i]=A[i][i];}Quasiuppertriangular(A); //调用拟上三角化函数printf( "\n A经过拟上三角化矩阵为:\n\n");for(i=0;i<10;i++) //输出拟上三角化矩阵{for(j=0;j<10;j++){printf("%.12e ",A[i][j]); //输出拟上三角化矩阵}printf( "\n\n");}QRdecomposition(A); //调用QR分解函数printf( " 进行QR分解后,R矩阵为:\n\n"); //输出R矩阵for(i=0;i<10;i++){for(j=0;j<10;j++){printf("%.12e ",R[i][j]);}printf( "\n\n");}printf( " Q矩阵为:\n\n"); //输出Q矩阵for(i=0;i<10;i++){for(j=0;j<10;j++){printf("%.12e ",Q[i][j]);}printf( "\n\n");}printf( " RQ矩阵为:\n\n"); //输出RQ矩阵for(i=0;i<10;i++){for(j=0;j<10;j++){printf("%.12e ",RQ[i][j]);}printf( "\n\n");}DoublestepsQR(A); //调用双步位移函数printf( "\n\n 特征值实部依次为:\n\n"); //输出特征值实部for(j=0;j<10;j++){printf("%.12e ",Re[j]);}printf("\n\n 特征值虚部依次为:\n\n "); //输出特征值虚部for(j=0;j<10;j++){printf("%.12e ",Im[j]);}//按行输出特征向量printf( "\n\n 按行输出实特征根相应特征向量为:\n\n");for(i=0;i<10;i++){if(i==1||i==2||i==5||i==6){continue;}for(j=0;j<10;j++){printf("%.12e ",X[i][j]);}printf( "\n\n");}getchar();}//拟上三角化函数void Quasiuppertriangular(double A[][10]) {for(j=0;j<8;j++){for(i=0;i<10;i++){U[i]=0;P[i]=0;T[i]=0;W[i]=0;}m=0;for(i=j+2;i<10;i++){if(A[i][j]!=0){m=m+1;}}if(m==0){continue;}d=0;for(i=j+1;i<10;i++){d=d+pow(A[i][j],2);}d=sqrt(d);c=-d;if(A[j+1][j]<=0){c=d;}h=c*(c-A[j+1][j]);U[j+1]=A[j+1][j]-c;for(i=j+2;i<10;i++){U[i]=A[i][j];}for(i=0;i<10;i++){for(k=0;k<10;k++){P[i]=P[i]+U[k]*A[k][i];}P[i]=P[i]/h;}t=0;for(i=0;i<10;i++){for(k=0;k<10;k++){T[i]=T[i]+U[k]*A[i][k];}T[i]=T[i]/h;t=t+P[i]*U[i];}t=t/h;for(i=0;i<10;i++){W[i]=T[i]-t*U[i];for(k=0;k<10;k++){A[i][k]=A[i][k]-W[i]*U[k]-U[i]*P[k];if(abs(A[i][k])<1e-12){A[i][k]=0;}}}}}//QR分解函数void QRdecomposition(double A[][10]) {for(i=0;i<10;i++){for(j=0;j<10;j++){RQ[i][j]=0;Q[i][j]=0;R[i][j]=A[i][j];}Q[i][i]=1;}for(j=0;j<9;j++){for(i=0;i<10;i++){U[i]=0;P[i]=0;W[i]=0;}m=0;for(i=j+1;i<10;i++){if(R[i][j]!=0){m=m+1;}}if(m==0){continue;}d=0;for(i=j;i<10;i++){d=d+pow(R[i][j],2);}d=sqrt(d);c=-d;if(R[j][j]<=0){c=d;}h=c*(c-R[j][j]);U[j]=R[j][j]-c;for(i=j+1;i<10;i++){U[i]=R[i][j];}for(i=0;i<10;i++){for(k=0;k<10;k++){W[i]=W[i]+U[k]*Q[i][k];}}for(i=0;i<10;i++){for(k=0;k<10;k++){Q[i][k]=Q[i][k]-((W[i]*U[k])/h);}}for(i=0;i<10;i++){for(k=0;k<10;k++){P[i]=P[i]+U[k]*R[k][i];}P[i]=P[i]/h;}for(i=0;i<10;i++){for(k=0;k<10;k++){R[i][k]=R[i][k]-U[i]*P[k];if(abs(R[i][k])<epsilon){R[i][k]=0;}}}}for(i=0;i<10;i++) //计算A(n+1)=RQ {for(j=0;j<10;j++){for(k=0;k<10;k++){RQ[i][j]=RQ[i][j]+R[i][k]*Q[k][j];}}}}//双步位移法计算特征值特征向量函数void DoublestepsQR(double A[][10]){int L=1000,m=9; //定义最大循环次数for(i=0;i<L;i++){for(;m>-1;){if(abs(A[m][m-1])<=epsilon){Re[m]=A[m][m];m=m-1; //降阶if(m==0) //4{Re[0]=A[0][0];break;}if(m==-1){break;}if(m>1){continue;}}b=-A[m][m]-A[m-1][m-1]; //5c=A[m][m]*A[m-1][m-1]-A[m][m-1]*A[m-1][m];if(m==1) //6{if((b*b-4*c)>=0){Re[m]=(-b+sqrt(b*b-4*c))/2;Re[m-1]=(-b-sqrt(b*b-4*c))/2;}if((b*b-4*c)<0){Re[m]=-b/2; Im[m]=sqrt(4*c-b*b)/2;Re[m-1]=-b/2; Im[m-1]=-sqrt(4*c-b*b)/2;}m=m-1; //循环出口条件break;}if((m>1)&&(abs(A[m-1][m-2])>epsilon)) //8{if(i==L-1){printf("No results! \n");m=0; //循环出口条件break;}break;}if((m>1)&&(abs(A[m-1][m-2])<=epsilon)) //7 {if((b*b-4*c)>0){Re[m]=(-b+sqrt(b*b-4*c))/2;Re[m-1]=(-b-sqrt(b*b-4*c))/2;}if((b*b-4*c)<0){Re[m]=-b/2; Im[m]=sqrt(4*c-b*b)/2;Re[m-1]=-b/2; Im[m-1]=-sqrt(4*c-b*b)/2;}m=m-2; //降阶if(m>0){continue;}if(m==0){Re[0]=A[0][0];break;}}}if(m<=0){break;}s=A[m-1][m-1]+A[m][m]; //9t=A[m][m]*A[m-1][m-1]-A[m][m-1]*A[m-1][m];for(j=0;j<10;j++){for(k=0;k<10;k++){Qt[j][k]=0;Q[j][k]=0;M[j][k]=0;X[j][k]=0;Y[j][k]=0;}}for(j=0;j<m+1;j++){for(k=0;k<m+1;k++){for(l=0;l<m+1;l++){M[j][k]=M[j][k]+A[j][l]*A[l][k];}}}for(j=0;j<m+1;j++){for(k=0;k<m+1;k++){M[j][k]=M[j][k]-s*A[j][k];}M[j][j]=M[j][j]+t;}//调用QR分解函数对M矩阵进行分解并传递参数矩阵QQRdecomposition(M);for(j=0;j<10;j++){for(k=0;k<10;k++){Qt[j][k]=Q[k][j];}}for(j=0;j<m+1;j++){for(k=0;k<m+1;k++){for(l=0;l<m+1;l++){X[j][k]=X[j][k]+Qt[j][l]*A[l][k];}}}for(j=0;j<m+1;j++){for(k=0;k<m+1;k++){for(l=0;l<m+1;l++){Y[j][k]=Y[j][k]+X[j][l]*Q[l][k];}}}for(j=0;j<10;j++){{A[j][k]=Y[j][k];}}}//应用列主元高斯消元法计算实部特征向量for(l=0;l<10;l++){if(l==1||l==2||l==5||l==6){continue;}for(k=0;k<10;k++){for(m=0;m<10;m++){A[k][m]=AA[k][m];}A[k][k]=A[k][k]-Re[l];}for(j=0;j<9;j++){m=j;for(i=j+1;i<10;i++){if(abs(A[i][j])>abs(A[m][j])){m=i;}}{Y[j][k]=A[j][k];A[j][k]=A[m][k];A[m][k]=Y[j][k];}for(k=j+1;k<10;k++){b=A[k][j]/A[j][j];for(i=j;i<10;i++){A[k][i]=A[k][i]-A[j][i]*b;}}}X[l][9]=1;for(i=8;i>=0;i--){c=0;for(j=i+1;j<10;j++){c=c+A[i][j]*X[l][j];}X[l][i]=-c/A[i][i];}}}三、程序输出结果1819。
北航数值分析大作业二

数值分析第二题1 算法设计方案要想得出该题的答案首先要将矩阵A 进行拟上三角化,把矩阵A 进行QR 分解。
要得出矩阵A 的全部特征值先对A 进行QR 的双步位移得出特征值。
采用列主元的高斯消元法求解特征向量。
1.1 A 的拟上三角化因为对矩阵进行QR 分解并不改变矩阵的结构,因此在进行QR 分解前对矩阵A 进行拟上三角化可以大大减少计算机的计算量,提高程序的运行效率。
具体算法如下所示,记A A =)1(,并记)(r A 的第r 列至第n 列的元素为()n r r j n i a r ij,,1,;,,2,1)( +==。
对于2,,2,1-=n r 执行1. 若()n r r i a r ir,,3,2)( ++=全为零,则令)()1(r r A A =+,转5;否则转2。
2. 计算()∑+==nr i r irr a d 12)(()()r r r r r r r r r r d c a d a c ==-=++则取,0sgn )(,1)(,1若 )(,12r rr r r r a c c h +-=3. 令()n Tr nrr r r r r r r r R a a c a u ∈-=++)()(,2)(,1,,,,0,,0 。
4. 计算r r T r r h u A p /)(= r r r r h u A q /)(=r r Tr r h u p t /=r r r r u t q -=ωTrr T r r r r p u u A A --=+ω)()1(5. 继续。
1.2 A 的QR 分解具体算法如下所示,记)1(1-=n A A ,并记[]nn r ij r a A ⨯=)(,令I Q =1 对于1,,2,1-=n r 执行1.若()n r r i a r ir,,3,1)( ++=全为零,则令r r Q Q =+1r r A A =+1,转5;否则转2。
2.计算()∑==nri r irr a d 2)(()()r r r r r r r r r r d c a d a c ==-=++则取,0sgn )(,1)(,1若)(,2r r r r r r a c c h -=3.令()n Tr nrr r r r r r r r R a a c a u ∈-=+)()(,2)(,,,,,0,,0 。
研究生《数值分析》课程作业(二) (含答案)
研究生《数值分析》课程作业(二)姓名: 学号: 专业: 1、据如下函数值表,建立二次的Lagrange 插值多项式及Newton 插值多项式。
20012222()()()()()()()(1)(2)(0)(2)(-0)(1)593143(01)(02)(10)(12(20)(21)22L x f x l x f x l x f x l x x x x x x x x x =++-----=⨯+⨯+⨯=-+------解: 二次 l agr ange插值)Newton 插值多项式:200100120122()()[,](-)[,,](-)(-)555932(0)(0)(1)32()32222N x f x f x x x x f x x x x x x x x x x x x x x x =++=-⨯-+--=-+-=-+ ()y f x =2、已知单调连续函数在如下采样点处的函数值*()0[2,4],f x x =求方程在内根的近似值使误差尽可能小。
解:1()()y f x x f y -==解:对的反函数进行二次插值1110201122012010210122021(0)(0)(0)(0)(0)(0)(0)()()()()()()()()()(0 2.25)(05)(03)(05)(03)(0 2.25)2 3.54(3 2.25)(35)(2.253)(2.255)(53)(5 2.25)y y y y y y L f y f y f y y y y y y y y y y y y y ---------=++--------+-+-=⨯+⨯+⨯----+-+- 2.945≈()(1)01(1)1()[,]()(,),()[,],()()()()()(1)!,n n n n n n n n f x a b f x a b a x x x b L x x a b f R x f x L x x n a b x ξωξ+++≤<<<≤∈=-=+∈ 3、证明:设在上连续,在内存在,节点是满足拉格朗日插值条件的多项式,则对任何插值余项这里()且依赖于。
北航数值分析大作业 第二题 QR分解
《数值分析B》课计算实习第一题设计文档与源程序姓名:杨彦杰学号:SY10171341 算法的设计方案(1)运行平台操作系统:Windows XP;开发平台:VC6.0++;工程类型:文档视图类;工程名:Numanalysis;(2)开发描述首先新建类CMetrix,该类完成矩阵之间的相关运算,包括相乘、加减等,以主程序方便调用;题目的解算过程在视图类CNumanalysisView中实现,解算结果在视图界面中显示;(3)运行流程(4)运行界面2、全部源代码(1)类CMetrixMetrix.h文件:class CMetrix{public:double** MetrixMultiplyConst(double**A,int nRow,int nCol,double nConst);//矩阵乘常数double** MetrixMultiplyMetrix(double**A,double**mA,int nRow,int nCol);//矩阵相乘double** MetrixSubtractMetrix(double **A, double **subA, int nRow,int nCol);//矩阵减矩阵double VectorMultiplyVector(double*V,double*mulV,int nV);//向量点积double** VectorMultiplyVectortoMetrix(double*V,double*VT,int nV);//向量相乘为矩阵double* VectorSubtractVector(double*V,double*subV,int nV);//向量相减double* VectorMultiplyConst(double *V, int nV, double nConst);//向量乘常数double LengthofVector(double *V,int nV);//求向量的长度double* MetrixMultiplyVector(double**A,int nRow,int nCol,double*V,int nV);//矩阵与向量相乘double** AtoAT(double **A,int Row,int Col);//矩阵转置运算void FreeMem();CMetrix(int nRow,int nCol);uCMetrix();virtual ~CMetrix();double* vector; //过渡向量double** B; //过渡矩阵};Metrix.cpp文件:CMetrix::CMetrix(int nRow, int nCol){B = new double*[nRow];for (int i = 0;i < nCol;i++){B[i] = new double[nCol];}vector = new double[nRow];}CMetrix::~CMetrix(){delete vector;B = NULL;delete B;}double** CMetrix::AtoAT(double **A, int nRow, int nCol){for (int row = 0;row < nRow;row++){for (int col = 0;col < nCol;col++){B[col][row] = A[row][col];}}return B;}double* CMetrix::MetrixMultiplyVector(double **A, int nRow, int nCol, double *V, int nV) {if (nCol != nV){AfxMessageBox("矩阵列数和向量维数不等,不能相乘!");return 0;}double sum = 0.0;for (int row = 0;row < nRow;row++){for (int col = 0;col < nCol;col++){sum += A[row][col]*V[col];}vector[row] = sum;sum = 0.0;}return vector;}double CMetrix::LengthofVector(double *V, int nV){double length = 0.0;for (int col = 0;col < nV;col++){length += V[col]*V[col];}return length;}double* CMetrix::VectorMultiplyConst(double *V, int nV, double nConst){for (int col = 0;col < nV;col++){vector[col] = V[col]*nConst;}return vector;}double* CMetrix::VectorSubtractVector(double *V, double *subV, int nV){for (int col = 0;col < nV;col++){vector[col] = V[col]-subV[col];}return vector;}double** CMetrix::VectorMultiplyVectortoMetrix(double*V, double *VT, int nV){for (int row = 0;row < nV;row++){for (int col = 0;col < nV;col++){B[row][col] = V[row]*VT[col];}}return B;}double CMetrix::VectorMultiplyVector(double *V, double *mulV, int nV){double length = 0.0;for (int col = 0;col < nV;col++){length += V[col]*mulV[col];}return length;}double** CMetrix::MetrixSubtractMetrix(double **A, double **subA, int nRow, int nCol) {for (int row = 0;row < nRow;row++){for (int col = 0;col < nCol;col++){B[row][col] = A[row][col]-subA[row][col];}}return B;}double** CMetrix::MetrixMultiplyMetrix(double **A, double **mA, int nRow, int nCol) {double sum = 0.0;for (int row = 0;row < nRow;row++){for (int col = 0;col < nCol;col++){for(int n = 0;n < nCol;n++){sum += A[row][n]*mA[n][col];}B[row][col] = sum;sum = 0.0;}}return B;}double** CMetrix::MetrixMultiplyConst(double **A, int nRow, int nCol, double nConst) {for (int row = 0;row < nRow;row++){for (int col = 0;col < nCol;col++){B[row][col] = A[row][col]*nConst;}}return B;}(2)类CNumanalysisViewNumanalysisview.hclass CNumanalysisView : public CEditView{…………public:double Sign(double x);void DisplayVector(double*V,int nV); // 显示向量数据void DisplayMetrix(double **A,int Row,int Col); //显示矩阵void DisplayText(CString str); //显示文本protected://{{AFX_MSG(CNumanalysisView)afx_msg void OnQRanalyze(); //运行主函数…………};Numanalysisview.cppvoid CNumanalysisView::OnQRanalyze(){//开辟空间int nRow = 10;int nCol = 10;CString str;CMetrix Metrix(nRow,nCol);double tempa = 0.0;double *V = new double[nCol]; //分配10*10矩阵空间double *ur = new double[nCol];double *pr = new double[nCol];double *qr = new double[nCol];double *wr = new double[nCol];double *tempV = new double[nCol];double **Ar = new double*[nRow];double **C = new double*[nRow];double **Cr = new double*[nRow];double **tempA = new double*[nRow];double **A = new double*[nRow];double **R = new double*[nRow];for (int col = 0;col < nRow;col++){A[col] = new double[nCol];Ar[col] = new double[nCol];C[col] = new double[nCol];Cr[col] = new double[nCol];tempA[col] = new double[nCol];R[col] = new double[nCol];}//矩阵A求解for (int i = 0;i < nRow;i++){for (int j = 0;j < nCol;j++){if(i == j)A[i][j] = 1.5*cos((i+1.0)+1.2*(j+1.0));elseA[i][j] = sin(0.5*(i+1.0)+0.2*(j+1.0));}}//--------------------拟上三角化-------------------------// double dr = 0.0,cr = 0.0,hr = 0.0,tr = 0.0;for (int r = 0;r < nCol - 2;r++){dr = 0.0;for (i = r+1;i < nCol;i++) //dr{dr += A[i][r]*A[i][r];}dr = sqrt(dr);for (i = r+2;i < nCol;i++) //判断air是否全为零tempa += fabs(A[i][r]);if (tempa <= IPSLEN)continue;if (A[r+1][r] == 0.0) //crcr = dr;elsecr = -1*Sign(A[r+1][r])*dr;hr = cr*cr - cr*A[r+1][r]; //hrstr.Format("dr = %.6e, cr = %.6e, hr = %.6e",dr,cr,hr);for (int row = 0;row < nRow;row++) //ur{if (row < r+1)ur[row] = 0.0;else if (row == r+1)ur[row] = A[row][r]-cr;elseur[row] = A[row][r];}tempA = Metrix.AtoAT(A,nRow,nCol);for (row = 0;row < nRow;row++){for (col = 0;col < nCol;col++)Ar[row][col] = tempA[row][col];}tempV = Metrix.MetrixMultiplyVector(Ar,nRow,nCol,ur,nCol); //pr memcpy(pr,tempV,nCol*8);tempV = Metrix.VectorMultiplyConst(pr,nCol,1.0/hr);memcpy(pr,tempV,nCol*8);tempV = Metrix.MetrixMultiplyVector(A,nRow,nCol,ur,nCol); //qr memcpy(qr,tempV,nCol*8);tempV = Metrix.VectorMultiplyConst(qr,nCol,1.0/hr);memcpy(qr,tempV,nCol*8);tr = Metrix.VectorMultiplyVector(pr,ur,nCol)/hr; //trtempV = Metrix.VectorMultiplyConst(ur,nCol,tr); //wr memcpy(wr,tempV,nCol*8);tempV = Metrix.VectorSubtractVector(qr,wr,nCol);memcpy(wr,tempV,nCol*8);tempA = Metrix.VectorMultiplyVectortoMetrix(wr,ur,nCol); //Arfor (row = 0;row < nRow;row++){for (col = 0;col < nCol;col++)Ar[row][col] = tempA[row][col];}tempA = Metrix.MetrixSubtractMetrix(A,Ar,nRow,nCol);for (row = 0;row < nRow;row++){for (col = 0;col < nCol;col++)A[row][col] = tempA[row][col];}tempA = Metrix.VectorMultiplyVectortoMetrix(ur,pr,nCol);for (row = 0;row < nRow;row++){for (col = 0;col < nCol;col++)Ar[row][col] = tempA[row][col];}tempA = Metrix.MetrixSubtractMetrix(A,Ar,nRow,nCol);for (row = 0;row < nRow;row++){for (col = 0;col < nCol;col++){A[row][col] = tempA[row][col];if (fabs(A[row][col]) < IPSLEN){A[row][col] = 0.0;}}}}DisplayText("矩阵A拟上三角化后所得的矩阵为:");DisplayMetrix(A,nRow,nCol);for (int row = 0;row < nRow;row++) //用于计算特征向量{for (col = 0;col < nCol;col++)R[row][col] = A[row][col];}// -------------------------------------------------////--------------------带双步位移的QR分解-------------------------// int m = nCol;struct EigenVal //定义特征值结构,实数和虚数{double Realnum;double Imagnum;};EigenVal *eigenvalue = new EigenVal[m];EigenVal tmpEigen1,tmpEigen2;double b = 0.0,c = 0.0,delta = 0.0,s = 0.0,t = 0.0;double *vr = new double[m];for (int k = 1;k < 100; k++){//m代表矩阵阶数,判断式中直接用,运算中需要-1while (m > 1 && fabs(A[m-1][m-2]) <= IPSLEN)//第三步和第四步{eigenvalue[m-1].Realnum = A[m-1][m-1];eigenvalue[m-1].Imagnum = 0.0;m = m - 1;}if (m == 1){eigenvalue[m-1].Realnum = A[m-1][m-1];eigenvalue[m-1].Imagnum = 0.0;DisplayText("已求出A的全部特征值:");break;}b = -(A[m-2][m-2]+A[m-1][m-1]); //第五步求一元二次方程式的根s1,s2c = A[m-2][m-2]*A[m-1][m-1]-A[m-2][m-1]*A[m-1][m-2];delta =b*b - 4*c;if (delta >= 0.0){tmpEigen1.Realnum = (-b-sqrt(delta))/2;tmpEigen1.Imagnum = 0.0;tmpEigen2.Realnum = (-b+sqrt(delta))/2;tmpEigen2.Imagnum = 0.0;}else{tmpEigen1.Realnum = -b/2;tmpEigen1.Imagnum = -sqrt(fabs(delta))/2 ;tmpEigen2.Realnum = -b/2;tmpEigen2.Imagnum = sqrt(fabs(delta))/2;}if (m == 2) //第六步 m=2时结束运算{eigenvalue[m-1] = tmpEigen1;eigenvalue[m-2] = tmpEigen2;DisplayText("已求出A的全部特征值:");break;}else //第七步 m > 1{if (fabs(A[m-2][m-3]) <= IPSLEN){eigenvalue[m-1] = tmpEigen1;eigenvalue[m-2] = tmpEigen2;m = m - 2;continue;}}for (int row = 0;row < m;row++) //Mk求之前需要把A付给C{for (int col = 0;col < m;col++)C[row][col] = A[row][col];}double **I = new double*[m]; //第九步求Mk和Mk的QR分解for (int i = 0;i < m;i++) //求单位矩阵I,分配m*m矩阵空间{I[i] = new double[m];}for (i = 0;i < m;i++){for (int j = 0;j < m;j++){if(i == j)I[i][j] = 1;else I[i][j] = 0;}}s = A[m-2][m-2]+A[m-1][m-1];t = A[m-2][m-2]*A[m-1][m-1] - A[m-2][m-1]*A[m-2][m-1];tempA = Metrix.MetrixMultiplyMetrix(A,A,m,m);//A*Afor (row = 0;row < m;row++){for (col = 0;col < m;col++)Ar[row][col] = tempA[row][col];}tempA = Metrix.MetrixMultiplyConst(A,m,m,s);//s*Afor (row = 0;row < m;row++){for (col = 0;col < m;col++)A[row][col] = tempA[row][col];}tempA = Metrix.MetrixSubtractMetrix(Ar,A,m,m);//A*A-s*Afor (row = 0;row < m;row++){for (col = 0;col < m;col++)A[row][col] = tempA[row][col]; }tempA = Metrix.MetrixMultiplyConst(I,m,m,-1*t);//-t*Ifor (row = 0;row < m;row++){for (col = 0;col < m;col++)Ar[row][col] = tempA[row][col]; }tempA = Metrix.MetrixSubtractMetrix(A,Ar,m,m);//A*A - s*A + r*I for (row = 0;row < m;row++){for (col = 0;col < m;col++){A[row][col] = tempA[row][col];if (fabs(A[row][col]) < IPSLEN){A[row][col] = 0.0;}}}delete I;//Mk的QR分解for (int r = 0;r < m - 1;r++){dr = 0.0;for (i = r;i < m;i++) //dr{dr += A[i][r]*A[i][r];}dr = sqrt(dr);for (i = r+1;i < m;i++) //判断air是否全为零tempa += fabs(A[i][r]);if (tempa <= IPSLEN)continue;if (A[r][r] == 0.0) //crcr = dr;elsecr = -1*Sign(A[r][r])*dr;hr = cr*cr - cr*A[r][r]; //hrfor (int row = 0;row < m;row++) //ur{if (row < r)ur[row] = 0.0;else if (row == r)ur[row] = A[row][r]-cr;elseur[row] = A[row][r];}tempA = Metrix.AtoAT(A,m,m); //Btfor (row = 0;row < m;row++){for (col = 0;col < m;col++)Ar[row][col] = tempA[row][col];}tempV = Metrix.MetrixMultiplyVector(Ar,m,m,ur,m); //Bt*ur memcpy(vr,tempV,m*8);tempV = Metrix.VectorMultiplyConst(vr,m,1.0/hr); //vr = Bt*ur/hr memcpy(vr,tempV,m*8);tempA = Metrix.VectorMultiplyVectortoMetrix(ur,vr,m);//Ur*vrfor (row = 0;row < m;row++){for (col = 0;col < m;col++)Ar[row][col] = tempA[row][col];}tempA = Metrix.MetrixSubtractMetrix(A,Ar,m,m); //Br-ur*vrfor (row = 0;row < m;row++){for (col = 0;col < m;col++){A[row][col] = tempA[row][col];if (fabs(A[row][col]) < IPSLEN){A[row][col] = 0.0;}}}tempA = Metrix.AtoAT(C,m,m); //Ctfor (row = 0;row < m;row++){for (col = 0;col < m;col++)Cr[row][col] = tempA[row][col]; }tempV = Metrix.MetrixMultiplyVector(Cr,m,m,ur,m); //pr memcpy(pr,tempV,m*8);tempV = Metrix.VectorMultiplyConst(pr,m,1.0/hr);memcpy(pr,tempV,m*8);tempV = Metrix.MetrixMultiplyVector(C,m,m,ur,m); //qr memcpy(qr,tempV,m*8);tempV = Metrix.VectorMultiplyConst(qr,m,1.0/hr);memcpy(qr,tempV,m*8);tr = Metrix.VectorMultiplyVector(pr,ur,m)/hr; //trtempV = Metrix.VectorMultiplyConst(ur,m,tr); //wr memcpy(wr,tempV,m*8);tempV = Metrix.VectorSubtractVector(qr,wr,m);memcpy(wr,tempV,m*8);tempA = Metrix.VectorMultiplyVectortoMetrix(wr,ur,m);//Cr+1for (row = 0;row < m;row++){for (col = 0;col < m;col++)Cr[row][col] = tempA[row][col]; }tempA = Metrix.MetrixSubtractMetrix(C,Cr,m,m);for (row = 0;row < m;row++){for (col = 0;col < m;col++)C[row][col] = tempA[row][col]; }tempA = Metrix.VectorMultiplyVectortoMetrix(ur,pr,m);for (row = 0;row < m;row++){for (col = 0;col < m;col++)Cr[row][col] = tempA[row][col]; }tempA = Metrix.MetrixSubtractMetrix(C,Cr,m,m);for (row = 0;row < m;row++){for (col = 0;col < m;col++){C[row][col] = tempA[row][col];if (fabs(C[row][col]) < IPSLEN){C[row][col] = 0.0;}}}}str.Format("矩阵A%d QR分解结束后所得到的矩阵为:",m);//计算结果输出DisplayText(str);DisplayMetrix(A,m,m);for (row = 0;row < m;row++) //Mk的QR分解后需要把C付给A{for (col = 0;col < m;col++)A[row][col] = C[row][col];}str.Format("迭代完成后的矩阵A%d = ",k);DisplayText(str);DisplayMetrix(A,m,m);}DisplayText("矩阵A的全体特征值如下: ");for (i = 0;i<nCol;i++){str.Format("%.6e + j%.6e",eigenvalue[i].Realnum,eigenvalue[i].Imagnum);DisplayText(str);}// -------------------------------------------------//求实特征值的特征向量,在拟上三角矩阵基础上直接求解即可////(A-egiI)X = 0.0;m = nRow;for (row = 0;row < nRow;row++) //用于计算特征向量{for (col = 0;col < nCol;col++)A[row][col] = R[row][col];}double **I = new double*[m]; //求单位矩阵I,分配m*m矩阵空间double sum = 0.0;for (i = 0;i < m;i++){I[i] = new double[m];}for (i = 0;i < m;i++){for (int j = 0;j < m;j++){if(i == j)I[i][j] = 1;else I[i][j] = 0;}}for (i = 0;i < nRow;i++){if (eigenvalue[i].Imagnum != 0.0){str.Format("特征值%.6e+j%.6e为虚数,不需要求特征向量。
北航数值分析大作业第二题(fortran)
!计算A(r+1) DO I=1,N DO J=1,N A(I,J)=A(I,J)-W(I)*U(J)-U(I)*P(J) ENDDO ENDDO ENDIF ENDDO RETURN END
!***************符号函数子程序*****************! FUNCTION SGN(X) REAL(8) X IF(X>0) THEN SGN=1 ELSE IF(X<0) THEN SGN=-1 ELSE IF(X==0) THEN SGN=0 ENDIF END
DIMENSION A(N,N),A1(N,N),A2(N,N),C(2,N),Q(N,N),R(N,N),CR(N),CM(N)!C为存储特征值的数 组,1为实部,为虚部 REAL(8) A,A1,A2,C,Q,R,CM E=1E-12 L=1000 !精度水平 !迭代最大次数
OPEN(1,FILE='数值分析大作业第二题计算结果.TXT') DO I=1,N DO J=1,N IF(I==J) THEN A(I,J)=1.52*COS(I+1.2*J) ELSE A(I,J)=SIN(0.5*I+0.2*J) ENDIF ENDDO ENDDO A1=A WRITE(*,"('矩阵A为:')") WRITE(1,"('矩阵A为:')") DO I=1,N DO J=1,N WRITE(*,"(2X,E20.13,2X,\)") A(I,J) WRITE(1,"(2X,E20.13,2X,\)") A(I,J) ENDDO WRITE(*,"(' ')") WRITE(1,"(' ')") ENDDO !使用矩阵的拟上三角化的算法将矩阵A化为拟上三角矩阵A(n-1) CALL HESSENBERG(A,N) WRITE(*,"('拟上三角化后矩阵A(n-1)为:')") WRITE(1,"('拟上三角化后矩阵A(n-1)为:')") DO I=1,N DO J=1,N WRITE(*,"(2X,E20.13,2X,\)") A(I,J) WRITE(1,"(2X,E20.13,2X,\)") A(I,J) ENDDO WRITE(*,"('')") WRITE(1,"('')") ENDDO !计算对矩阵A(n-1)实行QR方法迭代结束后所得矩阵 A2=A CALL QRD(A2,N,Q,R)
北航研究生数理统计第二次大作业-聚类分析
Z 场均 角球数 0.11373 2.18400 -0.22977 0.02089 0.21585 0.09516 0.32725 -0.90749 -1.22314 0.51293 -0.44330 1.62698 -1.68732 0.32725 -0.83322 1.09780 1.37632 -1.83586 0.79144 1.09780 0.16943 0.94926 -1.68732 -0.13694 -0.75895 -0.50829 -0.13694 -0.44330 -1.37168
北京航空航天大学 数理统计第二次大作业
欧洲足球俱乐部竞技水平的聚类分析和判别分析
2015 年 12 月
欧洲足球俱乐部竞技水平的聚类分析和判别分析
摘要:近年来,人们对足球的关注越来越多。欧洲作为足球的发源地,其五大联 赛自然吸引着大批人的目光。尤其是欧洲冠军杯联赛更是代表着欧洲足球的最高 水平,吸引着各国最好的球队参加。本文从参加 2014-2015 赛季欧洲冠军杯联赛 的球队中选取 29 支球队,根据这些球队的一些技术统计资料,用 SPSS 软件对 其进行聚类分析,将这些球队按水平层次分为了 5 类。并选取 3 支球队,利用聚 类分析的结果对这 3 支球队进行判别分析。结果表明,聚类分类结果与判别分析 结果基本符合实际情况。
由于不同的变量之间存在着较大的数量级的差别,因此要对数据变量进行标
准化处理。本文采用 Z 得分值法标准化的方法进行标准化,用 x 的值减去 x 的
均值再除以样本的方差。也就是把个案转换为样本均值为 0、标准差为 1 的样本。
如果不同变量的变量值数值相差太大,会导致计算个案间距离时,由于绝对值较
小的数值权数较小,个案距离的大小几乎由大数值决定,标准化过程可以解决此
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北航研究生数值分析作业第二题北航研究生数值分析作业第二题:一、算法设计方案1.按照题目给出的矩阵定义对矩阵A赋初值:对应的函数为a_init();2.对矩阵A进行householder变换,使其拟上三角化:对应的函数为householder();3.输出拟上三角化后的A:对应的函数为aout(int);4.对拟上三角化后的矩阵A使用带双步位移的QR分解法逐次迭代(最大迭代次数L=500),逐个求出其特征值,对应的函数为eigen_a();中间包含两个子程序:calc_mk()和qr_analyze(),分别用来计算矩阵M k和对M k进行QR 分解并得到A k+1;5.输出QR分解过程完毕后的A及求得的特征向量:对应的函数为aout()和eigenvalout();6.对于在第三步中求得的每个实特征值,使用带原点平移的反幂法求出其对应的特征向量,对应的函数为eigenvec();其中包含一个解方程(A-μI)=y k-1的程序段。
这部分也用迭代完成,仍然将最大迭代次数L设置为500;7.输出矩阵A的特征向量,结束计算:对应的函数为eigenvecout()。
算法编译环境:vlsual c++6.0二、源程序如下:#include#include#define N 10 //矩阵阶数;#define EPSL 1.0e-12 //迭代的精度水平;#define L 500 //迭代最大次数;#define OUTPUTMODE 1 //输出格式:0--输出至屏幕,1--输出至文件double a[N][N], a2[N][N], eigen[N][N]; //声明矩阵A;double sa_re[N] = {0}, sa_im[N] = {0}; //声明矩阵的特征值数组;double u_init[N] = {2,1,2,1,2,1,2,1,2,1}; //定义反幂法中使用的初始向量u;//主程序开始;int main(){FILE *p;void a_init();void householder();void equal_zero(double matrix[N][N], int);void eigenvec();int eigen_a();void aout(int);void eigenvalout(int);void eigenvecout(int);if(OUTPUTMODE){p = fopen("Result.txt", "w+");fprintf(p, "计算结果:\n");fclose(p);}a_init(); //对矩阵A进行初始化;householder(); //对矩阵A进行拟上三角化;equal_zero(a, N); //对矩阵A的元素进行归零处理,消除误差;aout(OUTPUTMODE); //输出A;if(eigen_a()) printf("迭代超过最大次数,特征值求解结果可能不正确。
\n");//求矩阵A的特征值;equal_zero(a, N); //对矩阵A的元素进行归零处理,消除误差;aout(OUTPUTMODE); //输出A;eigenvalout(OUTPUTMODE); //输出矩阵的特征值;eigenvec(); //求矩阵A的特征向量;eigenvecout(OUTPUTMODE); //输出矩阵A的特征向量;getchar();}void a_init(){int i,j;for(i = 1; i <= N; i++){for(j = 1; j <= N; j++)a2[i - 1][j - 1] = a[i - 1][j - 1] = sin(0.5 * i + 0.2 *j);}for(i = 1; i <= N; i++)a2[i - 1][i - 1] = a[i - 1][i - 1] = cos(i + 1.2 * i) * 1.5; //这里使用if语句反而更慢,所以赋值赋了两次。
}void householder() //对矩阵进行拟上三角化;{int r,i,j;double tmp_ir, tmp_dr, tmp_pr, tmp_qr, tmp_tr, dr, cr, hr, tr;double ur[N] = {0}, pr[N] = {0}, qr[N] = {0}, wr[N] = {0};int sgn2(double);for(r = 0; r < N-2; r++)//第一步;tmp_ir = 0;for(i = r + 2; i < N; i++) tmp_ir = tmp_ir + (a[i][r]==0); if (tmp_ir == N-2 - r) continue;else{//第二步;tmp_dr = 0;for(i = r+1; i < N; i++) tmp_dr = tmp_dr + a[i][r] *a[i][r];dr = sqrt(tmp_dr);cr = -1.0 * sgn2(a[r + 1][r]) * dr;hr = cr * cr - cr * a[r + 1][r];//第三步;for(i = 0; i < r + 1; i++) ur[i] = 0;for(i = r + 2; i < N; i++) ur[i] = a[i][r];ur[r + 1] = a[r + 1][r] - cr;//第四步;for(i = 0; i < N; i++){tmp_pr = 0;tmp_qr = 0;for(j = 0; j < N; j++){tmp_pr = tmp_pr + a[j][i] * ur[j];tmp_qr = tmp_qr + a[i][j] * ur[j];}pr[i] = tmp_pr / hr;qr[i] = tmp_qr / hr;tmp_tr = 0;for(i = 0; i < N; i++) tmp_tr = tmp_tr + pr[i] * ur[i];tr = tmp_tr / hr;for(i = 0; i < N; i++) wr[i] = qr[i] - tr * ur[i];for(i = 0; i < N; i++){for(j = 0; j < N; j++){a[i][j] = a[i][j] - wr[i] * ur[j] - ur[i] *pr[j];}}}//第五步:(继续)}}int sgn2(double a) //求cr时用到的sgn子程序{if(a >= 0) return 1;else return -1;}void equal_zero(double matrix[N][N], int rank) //对矩阵进行归零处理;{int i,j;for(i = 0; i < rank; i++){for(j = 0; j < rank; j++) if (-EPSL < a[i][j] && a[i][j] < EPSL) matrix[i][j] = 0;}int eigen_a() //计算A的特征值;{int snum = N-1, m = N-1, flag = 0, flag_7to4 = 0, step4_cont = 0,k=1;double mk[N][N], det_dk, stmpb, s1_re, s1_im, s2_re, s2_im, ms,mt, b24ac;void calc_mk(double mk[N][N], int, double, double);void qr_analyze(double mk[N][N], int);while (1){//第三步;if ((-EPSL < a[m][m - 1] && a[m][m - 1] < EPSL) && !flag_7to4) {sa_re[snum] = a[m][m], snum--, m--, flag = 1;}else {}//第四步;flag_7to4 = 0;if (flag){flag = 0;if (m==0){sa_re[snum] = a[0][0];return 0;}else if (m==-1) return 0;else step4_cont = 1;}//第五步;else{det_dk = a[m - 1][m - 1] * a[m][m] - a[m - 1][m] * a[m][m - 1];stmpb = -1.0 * (a[m - 1][m - 1] + a[m][m]);b24ac = stmpb * stmpb - 4.0 * det_dk;if(b24ac < 0){b24ac = -b24ac;s1_re = -0.5 * stmpb;s1_im = 0.5 * sqrt(b24ac);s2_re = -0.5 * stmpb;s2_im = -0.5 * sqrt(b24ac);}else{s1_re = (-1.0 * stmpb + sqrt(b24ac)) / 2;s1_im = 0;s2_re = (-1.0 * stmpb - sqrt(b24ac)) / 2;s2_im = 0;}}if (step4_cont){step4_cont = 0;continue;}//第六步;if (m==1){sa_re[1] = s2_re;sa_im[1] = s2_im;sa_re[0] = s1_re;sa_im[0] = s1_im;return 0;}//第七步;else{if (-EPSL < a[m - 1][m - 2] && a[m - 1][m - 2] < EPSL) {sa_re[snum] = s2_re, sa_im[snum] = s2_im, snum--, m--;sa_re[snum] = s1_re, sa_im[snum] = s1_im, snum--, m--;flag = flag_7to4 = 1;}else{//第八步;if (k==L) return 1;//第九步;ms = a[m - 1][m - 1] + a[m][m];mt = a[m - 1][m - 1] * a[m][m] - a[m - 1][m] * a[m][m - 1];calc_mk(mk, m, ms, mt); //计算矩阵Mk;qr_analyze(mk, m); //对Mk进行QR分解并更新Ak;//第十步;k++;}}}}void calc_mk(double mk[N][N], int m, double ms, double mt) //函数eigen_a()中计算Mk的子程序;{int i,j,k;double tmp_sum;for(i = 0; i <= m; i++){for(j = 0; j <= m; j++){tmp_sum = 0;for(k = 0; k <= m; k++) tmp_sum+= a[i][k] * a[k][j];mk[i][j] = tmp_sum - ms * a[i][j];}}for(i = 0; i <= m; i++) mk[i][i]+= mt;}void qr_analyze(double mk[N][N],int m) //函数eigen_a()中对Mk进行QR分解并更新Ak的子程序{int tmp_ir, r, i, j;double ur[N], vr[N], pr[N], qr[N], wr[N], tmp_dr, tmp_vr, tmp_pr,tmp_qr, tmp_tr, dr, cr, hr, tr;for(r = 0; r < m; r++){//第一步;tmp_ir = 0;for(i = r + 1; i <= m; i++)tmp_ir = tmp_ir + (mk[i][r]==0);if (tmp_ir == m-r)continue;else{//第二步;tmp_dr = 0;for(i = r; i <= m; i++) tmp_dr = tmp_dr + mk[i][r] * mk[i][r];dr = sqrt(tmp_dr);cr = -1.0 * sgn2(mk[r][r]) * dr;hr = cr * cr - cr * mk[r][r];//第三步;for(i = 0; i < r; i++) ur[i] = 0;for(i = r + 1; i <= m; i++) ur[i] = mk[i][r];ur[r] = mk[r][r] - cr;//第四步;for(i = 0; i <= m; i++){tmp_vr = 0;tmp_pr = 0;tmp_qr = 0;for(j = 0; j <= m; j++){tmp_vr = tmp_vr + mk[j][i] * ur[j];tmp_pr = tmp_pr + a[j][i] * ur[j];tmp_qr = tmp_qr + a[i][j] * ur[j];}vr[i] = tmp_vr / hr;pr[i] = tmp_pr / hr;qr[i] = tmp_qr / hr;}tmp_tr = 0;for(i = 0; i <= m; i++) tmp_tr = tmp_tr + pr[i] * ur[i];tr = tmp_tr / hr;for(i = 0; i <= m; i++) wr[i] = qr[i] - tr * ur[i];for(i = 0; i <= m; i++){for(j = 0; j <= m; j++){mk[i][j] = mk[i][j] - ur[i] * vr[j];a[i][j] = a[i][j] - wr[i] * ur[j] - ur[i] *pr[j];}}}//第五步:(继续)}}void eigenvec() //计算矩阵A的特征向量;{int i, j, k, s = 0, ik = 0, n=0;double u[N], y[N], mik, beta = 0, beta_tmp, yita, tmp_yita, tmp;double abs(double);void aout();for(i = 0; i < N; i++) u[i] = u_init[i];for(s = 0; s < N; s++){if(!sa_im[s]){n = 0;do{for(i = 0; i < N; i++){for(j = 0; j < N; j++) a[i][j] = a2[i][j];}tmp_yita = 0;for(i = 0; i < N; i++) tmp_yita+= u[i] * u[i]; yita = sqrt(tmp_yita);for(i = 0; i < N; i++) y[i]= u[i] / yita;for(i = 0; i < N; i++) a[i][i]-= sa_re[s];if(!n) beta = beta_tmp;else{if(abs((beta_tmp - beta) / beta) < EPSL) {for(i = 0; i < N; i++) eigen[s][i] = y[i]; break;}else beta = beta_tmp;}//解方程组(A-uI)uk = yk;for(k = 0; k < N-1; k++)ik = k;for(i = k; i < N; i++) if(abs(a[ik][k]) < abs(a[i][k])) ik = i; for(j = k; j < N; j++){tmp = a[k][j]; a[k][j] = a[ik][j]; a[ik][j] = tmp; }tmp = y[k]; y[k] = y[ik]; y[ik] = tmp;for(i = k + 1; i < N; i++){mik = a[i][k] / a[k][k];for(j = k; j < N; j++) a[i][j] = a[i][j] - mik * a[k][j];y[i]-= mik * y[k];}}u[N-1] = y[N-1] / a[N-1][N-1];for(k = N-2; k >= 0; k--){tmp = 0;for(j = k+1; j < N; j++) tmp+= a[k][j] * u[j];u[k] = (y[k] - tmp) / a[k][k];}beta_tmp = 0;for(i = 0; i < N; i++) beta_tmp+= y[i] * u[i];}while(n++ <= L);}else {}}}double abs(double x) //求绝对值;if(x < 0) return -x;return x;}void aout(int opmode) //打印A;opmode=1: 到文件,0: 到屏幕;{int i,j;FILE *p;if(opmode){p= fopen("Result.txt","at+");fprintf(p,"Matrix(A)=\n{\n");for(i = 0; i < N; i++){fprintf(p,"{");for(j = 0; j < N-1; j++) fprintf(p,"%.12le,", a[i][j]);fprintf(p,"%.12le", a[i][N-1]);fprintf(p,"},\n");}fprintf(p,"}\n\n");fclose(p);printf("矩阵拟上三角化完成。