生物反应工程(知识点参考)

生物反应工程(知识点参考)
生物反应工程(知识点参考)

名词解释

1,返混:不同停留时间的物料的混合。

2,双膜理论:作为界面传质动力学的理论,该理论较好地解释了液体吸收剂对气体吸收质吸收的过程。一种关于两个流体相在界面传质动力学的理论

3,构象改变:在分子生物学里,一个蛋白质可能为了执行新的功能而改变去形状;每一种可能的形状被称为构象,而在其之间的转变即称为构象改变。

4,分配效应:分配的马太效应(Matthew Effect),是指好的愈好,坏的愈坏,多的愈多,少的愈少的一种现象。

5,酶的固定化技术:酶固定化技术是通过物理或化学的方法将酶连接在一定的固相载体上成为固定化酶,从而发挥催化作用。固定化后的酶在保持原有催化活性的同时,又可以同一般催化剂一样能回收和反复使用,可在生产工艺上实现连续化和自动化,更适应工业化生产的需要。

6,结构模型:就是应用有向连接图来描述系统各要素间的关系,以表示一个作为要素集合体的系统的模型.

7,固定化酶:水溶性酶经物理或化学方法处理后,成为不溶于水的但仍具有酶活性的一种酶的衍生物。在催化反应中以固相状态作用于底物。

8,停留时间:又称寄宿时间,是指在稳定态时,某个元素或某种物质从进入某物到离开该物所度过的平均时间。

9,恒化器:一种微生物连续培养器。它以恒定的速度流出培养液,使容器中的微生物生长繁殖始终低于最快生长速度。这种容器反映的是培养基的化学环境恒定。而恒浊器反映的是细胞浊度(浓度)的恒定。

10,恒浊器:一种连续培养微生物的装置。可以根据培养液中的微生物的浓度,通过光电系统观控制培养液的流速,从而使微生物高密度的以恒定的速度生长。11,生物反应工程:一个由生物反应动力学与化学反应工程结合的交叉分支学科。着重解决不同性质的生物反应在不同型式的生物反应器中以不同的操作方式操作时的优化条件

12,连续灭菌:就是将配制好的培养基在通入发酵罐时进行加热,保温,降温的灭菌过程,也称连消。

13,间歇灭菌:在100℃条件下,灭菌30分钟,间隔24小时再重复操作三次。

14,有效电子转移:是指物质在氧化过程中伴随着能量释放所进行的电子转移。

15,能量生长偶联型:当有大量合成菌体材料存在时,微生物生长取决于ATP的供能,这种生长就是能量生长偶联型。

16,能量生长非偶联型:在A TP的供能充分,而合成细胞的材料受限制时,这种生长就是能量生长非偶联型。

17,不可逆抑制:抑制剂与酶的必需基团或活性部位以共价键结合而引起酶活力丧失,不能用透析、超滤或凝胶过滤等物理方法去除抑制剂而使酶活力恢复的作用。18,流加式操作:能够任意控制反应液中基质浓度的操作方式。

19,代谢工程:通过基因工程的方法改变细胞的代谢途径。

20,连续培养及稳态:又叫开放培养,是相对分批培养或密闭培养而言的。连续培养是采用有效的措施让微生物在某特定的环境中保持旺盛生长状态的培养方法. 生理学家把正常机体在神经系统和体液以及免疫系统的调控下,使得各个器官、系统的协调活动,共同维持内环境的相对稳定状态,叫做稳态。

21,反馈流加:分间接控制,直接控制,定值控制和程序控制等流加培养。

22,高细胞浓度培养:

23,生物反应系统优化:

24,生物反应过程的优化:

公式

1,米氏方程 v=Vmax ×[S]/(Km+[S])

2,monod 方程

3,停留时间 f V

4,稀释率 V F

D =

5,转化率 0

0S S S t

-=χ

6,Da 准数 m

m

N r Da =

7,内扩散效率因子 8,外扩散效率因子 o

out out r r =η

9,菌体得率 dS dX

Y S X -=/

10,菌体得率常数 G

G dS dX

Y )(-=

11,反应器生产能力 (分批式)

(连续) 12,产物生成比速 Xdt dP

Q P =

13,换热装置的传热面积

14,呼吸商22/O CO Q Q RQ =

t

S t P P t r 0?==χτχτin out r S P P ?==m

all

t K Q F ??=o

in

in

r r =η

问答

1,比较米氏方程和monod 方程

莫诺方程:S K S

S +=max μμ 米氏方程:S

K S r r m +=max 描述微生物生长

描述酶促反应 经验方程

理论推导的机理方程 方程中各项含义:

μ:生长比速(h -1)

μmax :最大生长比速(h -1) S: 单一限制性底物浓度(mol/L) K S :半饱和常数(mol/L)

方程中各项含义: r :反应速率(mol/L.h) r max :最大反应速率(mol/L.h)

S :底物浓度(mol/L)

K m :米氏常数(mol/L) 适用于单一限制性底物、不存在抑制的情况

适用于单底物酶促反应不存在抑制的情况

2,比较CSTR 和PFR 型酶反应器的性能 答:CSTR 代表连续全混流酶反应器。PFR 代表连续活塞式酶反应器。

CSTR 型和PFR 型酶反应器的性能比较:

1)达到相同转化率χ时,PFR 型酶反应器所需停留时间较短。

2)在相同的停留时间达到相同转化率时,CSTR 型反应器所需酶量要大大高于PFR 型反应器。因此一般来说,CSTR 型反应器的效果比PFR 型差,但是,将多个CSTR 型反应器串联时,可克服这种不利情况。

3)与CSTR 型酶反应器相比,PFR 型酶反应器中底物浓度较高,而产物浓度较低,因此,发生底物抑制时,PFR 型酶反应器转化率的降低要比CSTR 型剧烈得多;而产物抑制对CSTR 型酶反应器影响更显著。

3,气体溶解过程的双模理论

答:当气体与液体相互接触时,即使在流体的主体中已呈湍流,气液相际两侧仍分别存在有稳定的气体滞流层(气膜)和液体滞流层(液膜),而吸收过程是吸收质分子从气相主体运动到气膜面,再以分子扩散的方式通过气膜到达气液两相界面,在界面上吸收质溶入液相,再从液相界面以分子扩散方式通过液膜进入液相主体。

4,影响发酵介质流变特性的因素

答:发酵介质的流变特性主要取决于细胞的浓度和其形态。一般发酵介质中液相部分粘度较低,但是随着细胞浓度的增加,发酵介质的粘度也相应增大,流体偏离牛顿特性越大。细胞的形态对发酵介质流动特性也有较大影响,如细胞为丝状形态时会导致发酵介质成为非牛顿型流体。

影响发酵介质流变特性的另一个因素为胞外产物,如产物为多糖,此时细胞的存在对发酵介质的流变特性影响较小,而多糖浓度的高低则对介质的粘度有较大影响。

5,生物反应过程中比氧消耗速率与溶解氧的关系

答:微生物反应过程中比氧消耗速率和溶解氧浓度间的关系可以通过试验来测定。从数据可以看出,当

[DO]在某一值以上时, [DO] 随时间线性减少,其比氧消耗速率qO2与[DO] 无关,为一常数;当[DO]在某

一值以下时, qO2与[DO]有一定关系,随 [DO]的减少,两者呈双曲线关系。这一值,我们称为临界溶解氧浓度,记为[DO]cri 。

讨论:

当 时, [DO] 随时间线性减少,qo2与[DO]无关。这意味微生物反应对于DO 为0级反应,而与细胞内呼吸系统有关的酶完全被氧所饱和,微生物反应过程成为酶催化反应控制。进一步,当溶氧浓度大于空气饱和值时,过高的溶氧反而会使微生物生长受到抑制。

当溶氧浓度小于临界溶氧浓度时,比氧消耗速率随溶氧而变化,可认为是由于与呼吸作用有关的酶未被氧饱和,微生物反应成为供氧控制。多数情况下,比氧消耗速率和溶氧的关系可用米氏方程近似表示:

6,固定化酶促反应的主要因素

(1) 分子构象的改变。酶固定化过程中,酶和载体的相互作用引起酶的活性中心或调节中心的构象发生变

化,导致酶的活力下降。

(2) 位阻效应。指由于载体的遮蔽作用,使酶与底物无法接触。

(3) 微扰效应。是指由于载体的亲水性、疏水性及介电常数等,使固定化酶所处微环境发生变化,导致酶

活力的变化。

(4) 分配效应。由于载体内外物质分配不等,影响酶促反应速率。

(5) 扩散效应。底物、产物及其他效应物受传递速度限制,当酶的催化活性很高时,在固定化酶周围形成

浓度梯度,造成微环境与宏观环境之间底物、产物的浓度产生差别。

7,比较恒化器和恒浊器

答:恒化器、恒浊器指的是两种控制方法。恒化器是通过控制流量而达到相应的菌体浓度。恒浊器则是通过监测菌体密度来反馈调节流量。前者通过计量泵、溢流管来保证恒定的流量;后者通过光电池监测细胞密度,以反馈调节流量来保证细胞密度的恒定。恒化器便于控制,其应用更为广泛。

8,连续培养的应用

答:由于连续培养存在杂菌污染问题、菌种变异问题、成本问题,使其在生产中的应用受到限制,目前主要用于面包酵母的生产、及污水处理。连续培养在科研领域有着重要的应用,主要表现在以下几个方面:

(1) 利用恒化器测定微生物反应动力学参数。例如μm 、Ks 的测定。

(2) 确定最佳培养条件。例如面包酵母生产中最佳葡萄糖浓度的确定。

(3) 利用冲出现象进行菌种的筛选。 1.生物反应工程的定义:一生物反应动力学为基础,将传质过程原理、设备工程学、过程动态学及最优化原理等化学方法生物过程方面的知识相结合,进行生物反应过程分析与开发,以及生物反应器的设计、操作和控制。

2.生物反应动力学:主要研究生物反应速率和各种因素对反应速率的影响。

生物反应器的研究内容:(1)生物反应器中的传递特质即传质、传热及动量;(2)生物器的设计与放大;(3)生物反应器的优化与控制,包括优化操作与优化设计。

3.生物反应器的研究内容(1-34)

(1)生物反应器中的传递特性。

(2)生物反应器的设计与放大。

(3)生物反应器的优化与控制。

[][]q q DO K DO o o m 22=+,max [][]DO DO

cri ?

3.酶促反应中竞争性抑制动力学方程

4.酶促反应中非竞争性抑制动力学方程

5.酶促反应中反竞争性抑制动力学方程

6.判断酶促反应中竞争性抑制、非竞争性抑制、反竞争性抑制曲线

竞争型

非竞争型

反竞争型

7.比较酶促反应中竞争性抑制、非竞争性抑制、反竞争性抑制Km、rmax的变化

8.双底物酶催化反应的机理有哪些?

随机机制:两个底物S1和S2随机地与酶相结合,产物P1和P2也随机地释放出来。许多激酶类的催化机制属于此种。

顺序机制:两个底物S1和S2与酶结合形成复合物是有顺序的,酶先与底物S1结合形成ES1复合物,然后ES1再与S2结合形成具有催化活性的ES1S2。

乒乓机制:最主要的特点是底物S1和S2始终不同时与酶结合,其机理式。转氨酶

9.固定化酶的优点:

(1) 可连续稳定地生产产物;

(2) 反应产物地纯度高、质量好;

(3) 生产的副产物少;

(4) 反应的动力学常数、反应的最佳pH和反应温度可能按意愿经固定化调整;(5) 固定

化酶、细胞在使用时可以再生或回收,可反复使用;

(6) 容易实现连续自动控制,节约劳动力;

(7) 可大大提高酶、细胞的比生产能力

10.酶固定化的方法:

(1)载体结合法:将酶或细胞利用共价键或离子键、物理吸附等方法结合于水不溶性载体上的一种固定化方法。水不溶性载体:纤维素、琼脂糖等多糖类或多孔玻璃、离子交换树脂等。

(2)交联法:利用双功能试剂的作用,在酶分子之间发生交联、凝聚成网状结构,构成固定化酶(细胞)

(3)包埋法:将酶包埋在微细网格或半透性的聚合膜中,使酶分子不能从凝胶的网格中漏出,而小分子的底物和产物可自由通过凝胶网格。包埋法使用的载作主要有聚丙烯酰胺、卡拉胶、琼脂糖和海藻酸钠等。

11.单克莱尔准数物理意义?(2-2,-46)

Da(Damkohler准数)是C*的函数,其物理意义是最大反应速率与最大传质速率之比。Da >> 1,CS → 0,ηout → 0过程为外扩散控制

Da << 1 CS → C,ηout → 1 过程为反应控制

12.提高固定化酶外扩散效率,应设法减小Da准数。减小Da准数的措施?

1、降低固定化酶颗粒的粒径,增大比表面积,但由于粒径减小会伴随压降增加,因此应

用中综合考虑,确定合适的粒径。 2、使固定化酶表面流体处于湍流状态以增大

13.西勒准数φ的物理意义:是表面反应速率与内扩散速率之比。对各类反应动力学与固定

化酶的形状,普遍化的φ的定义式为:

14.提高固定化酶内扩散效率的措施?

应设法减小φ。减小φ的措施主要是适当降低固定化酶颗粒粒径。

15.什么是酶的半衰期? 具有活性的酶浓度降至酶的总浓度一半的时间

16.呼吸商:CO 2生成速率/O 2消耗速率

17.细胞得率:消耗1g 基质生成细胞的克数(指干细胞重),Y x/s =生成细胞的质量/消耗基质的质量

18.理想的微生物生长模型应具备条件:

(1) 要明确建立模型的目的。使用模型的目的,与其说是对微生物生长增殖的复杂现象有

统一、深刻的理解,不如说是为了进行微生物反应器的设计,找到最佳操作条件和确定出反应过程的合理管理方法。

(2)明确地给出建立模型的假定条件,这样才能明确模型的适用范围

(3)希望所含有的参数,能够通过实验逐个确定

(4)模型应尽可能地简单。

19.代谢产物的生成动力学的类型 根据产物生成速率与细胞生长速率之间的关系, Gaden 将其分为三种类型:(a) 相关模型;(b)部分相关模型;(c)非相关模型

相关模型:是指产物生成与细胞生长呈相关的过程。产物是细胞能量代谢的结果。此时产物通常是基质的分解代谢产物。例如:乙醇、葡萄糖酸等。

部分相关模型:反应产物生成与基质消耗仅有间接的关系。产物是能量代谢的间接结果。在细胞生长期内,基本无产物生成。属于这类的有柠檬酸和氨基酸的生产等。

非相关模型:产物的生成与细胞的生长无直接关系。在微生物生长阶段,无产物积累,当细胞停止生长,产物却大量生成。属于这类的有青霉素等二级代谢产物的生产。

20.分批式操作的特点及其优缺点

特点:①微生物所处的环境不断变化;②适合于少量多品种的

发酵生产;③发生杂菌污染时终止操作容易;④可比较容易通

过改变处理对策来改变运转条件变化或转产新产品;⑤对原料

组成要求较粗放等。

优点: ①设备制作费用低; ②同一设备可进行多种产品生产; ③发生杂菌污染或菌种变异概率低等

缺点:①反应器非生产周期长; ②频繁灭菌易使检测装置损伤; ③每次培养均要接种导21,2-??? ??=?

SS eq S C C s s P P dCs Der r A V

φ

致生产成本增加;④需要非稳定过程控制费用等

21.分批培养产生延迟期的原因

①菌体适应培养基营养的改变;②菌体适应培养基物理环境如温度、pH以及渗透压等的变化等;③培养基中存在抑制剂或接种时带入了一些有害的代谢产物抑制菌体生长;④接入的种子为孢子,孢子发芽需要一定时间;⑤接种静止期或种龄较大的种子。

22.分批培养进入静止期的原因

①培养基中必须的营养物质耗尽;②有害代谢产物的积累;③氧的供应不足;④生长因子不足;⑤生长的空间不够等。

23.补料分批式操作(流加操作)的优缺点

优点:①同一套设备可进行多种产品生产;②可任意控制反应器中的基质浓度;③可确保微生物所需的环境;④如果能够了解菌体在分批过程中的性质,可获得产物高收率

缺点:①存在非生产周期;②要较高的投入(需要控制和高价的检测装置);③人员操作加大了污染的危险;④由于频繁染菌,易使检测装置损伤。

24.连续式操作的优缺点

优点:①可维持稳定的操作条件,从而使产率和产品质量保持相应稳定;

②能够有效实现机械化和自动化,降低劳动强度,减少操作人员与病原微生物和毒性产物接触的机会;③减少设备清洗、准备和灭菌等非生产占用时间,提高设备的利用率,节省劳动力和工时;④可减少灭菌次数,延长测量仪器探头的寿命;⑤容易对过程进行优化,有效地提高发酵产率

缺点:①对设备、仪器及控制元器件的技术要求较高,从而增加投资成本;②开放的系统和长周期发酵,易造成杂菌污染;③长周期连续发酵易发生微生物变异,生长慢的高产菌株可逐渐被生长快的低产变异菌株取代,从而降低产率;④丝状菌体易附着在器壁上和在发酵液中结团,造成连续操作的困难。

25.临界稀释率

临界稀释率D Cri稀释率的改变并不是无止境的,而是有一个限度的;增大稀释率会造成菌体浓度下降,如果超过临界稀释率(D Cri),则会出现“洗光”(washout)现象

26.氧传递的停滞膜模型的基本论点是(6-53)

A. 在气液两相间存在界面,界面两旁具有两层稳定的薄膜,即气膜和液膜。这两层稳定的薄膜在任何流体力学条件下,均呈滞流状态

B. 在气液界面上,两相的浓度总是相互平衡(空气中氧的浓度与溶解在液体中的氧的浓度处于平衡状态),即界面上不存在氧传递阻力

C. 在两膜以外的气液两相的主流中,由于流体充分流动,氧的浓度基本上是均匀的,也就是无任何传质阻力,因此,氧由气相主体到液相主体所遇到阻力仅存在于两层滞流膜中27.影响氧传质速率的因素(6-59)

根据氧传递速率方程:OTR= kL a(C * ?C )

28.影响氧的溶解度因素(6-60)

增加罐压;增加空气中氧的含量,进行富氧通气操作。

29.影响气液比表面积(a)的因素(6-62)

气液比表面积的大小取决于截留在培养液的气体体积以及气泡的大小。

截留在液体中的气体越多,气泡的直径越小,那么气泡比表面积就越大。

30.影响氧传质系数kLa的因素(6-64)和(6-84)

搅拌:采用机械搅拌是普通提高溶氧系数的行之有效的方法。

空气线速度:空气的线速度增大,增加了溶氧,氧传递系数K L相应地也增大。过大的空气线速度会使搅拌桨叶不能打散空气,气流形成大气泡在轴的周围逸出,使搅拌效率和溶

氧速率都大大降低。

空气分布管:空气分布管的型式、喷口直径及管口与罐底距离的相对位置对氧溶解速率有较大的影响。

培养液的性质:微生物的生命活动,引起培养液的性质的改变,特别是粘表面张力、离子液度、密度、扩散系数等,从而影响到气泡的大小、气泡的稳定性,进而对氧传递系数K L带来很大的影响。

发酵液粘度:的改变还会影响到液体的湍流性以及界面或液膜阻力,从而影响到氧传递系数K L。当发酵液浓度增大时,粘度也增大,氧传递系数K L就降低。

发酵液中泡沫的大量形成会使菌体与泡沫形成稳定的乳浊液,影响到氧传递系数。

表面活性剂:培养液中消泡用的油脂等具有亲水端和疏水端的表面活性物质分布在气液界面,增大了传递的阻力,使氧传递系数K L等发生变化,

离子强度:一般在电解质溶液中生成的气泡比在水中小得多,因而有较大的比表面积。在同一气液接触的发酵罐中,在同样的条件下,电解质溶液的氧传递系数K L比水大,而且随电解质浓度的增加,K L也有较大的增加。

菌体浓度:影响k L a的因素可分为三部分:

操作变量:包括温度、压力、通风量、转速(搅拌功率)等;

反应液的理化性质:包括反应液的粘度、表面张力、氧的溶解度、反应液的组成成分、反应液的流动状态、发酵类型等;

反应器的结构:指反应器的类型、反应器各部分尺寸的比例、空气分布器的形式等。31.化学法测定溶解氧(6-73)

碘量法(GB7489-87)

MnSO4+2NaOH=Mn(OH)2↓+Na2SO4

2Mn(OH)2+O2=2H2MnO3

H2MnO3十Mn(OH)2=MnMnO3↓+2H2O(棕色沉淀)

加入浓硫酸使棕色沉淀(MnMn03)与溶液中所加入的碘化钾发生反应,而析出碘,溶解氧越多,析出的碘也越多,溶液的颜色也就越深。

2KI+H2SO4=2HI+K2SO4

MnMnO3+2H2SO4+2HI=2MnSO4+I2+3H2O

I2+2Na2S2O3=2NaI+Na2S4O6

再以淀粉作指示剂,用硫代硫酸钠滴定释放出的碘,来计算溶解氧的含量

32.提高氧传递速率Na的途径

提高氧传递速率Na的两条途径:一是提高氧传质推动力(C*-C);二是提高k La值。33.停留时间 (7-40):τ是指反应物料进入反应器时算起,至离开反应器时为止所经历的时间。

34.选择性选择性(7-43):S p(selectivity)是在有副反应发生的复合反应中,能够转变为目的产物的底物变化总量中,实际上转变为目的产物的比率。

35.生物反应器的放大方法(7-79)

生物反应器的放大方法可分为:(1)数学模拟放大;(2)因次分析法放大;(3)经验法则放大(包括反复实验法、部分解析法放大等)。

36.Monod 方程建立的几点假设是什么? Monod 方程与米氏方程主要区别是什么?

最基本假设:微生物生长中,生长培养基中只有一种物质的浓度(其它组分过量)会影响其生长速率,这种物质被称为限制性(生长)基质。并且认为微生物为均衡生长且为简单的单一反应。

米氏是机理方程,而Monod方程是经验性方程。(仅供参考)

生物反应工程复习资料

生物反应工程原理复习资料 生物反应过程与化学反应过程的本质区别在于有生物催化剂参与反应。 生物反应工程是指将实验室的成果经放大而成为可提供工业化生产的工艺工程。 酶和酶的反应特征 酶是一种生物催化剂,具有蛋白质的一切属性;具有催化剂的所有特征;具有其特有的催化特征。 酶的来源:动物、植物和微生物 酶的分类:氧化还原酶、水解酶、裂合酶、转移酶、连接酶和异构酶 酶的性质:1)催化共性:①降低反应的活化能②加快反应速率③不能改变反应的平衡常数。 2)催化特性:①较高的催化效率 ②很强的专一性 ③温和的反应条件 易变性和失活 3)调节功能:浓度、激素、共价修饰、抑制剂、反馈调节等 固定化酶的性质 固定化酶:在一定空间呈封闭状态的酶,能够进行连续反应,反应后可以回收利用。 与游离酶的区别: 游离酶----一般一次性使用(近来借助于膜分离技术可实现反复使用) 固定化酶--能长期、连续使用(底物产物的扩散过程对反应速率有一定的影响;一般情况下稳定性有所提高;以离子键、物理吸附、疏水结合等法固定的酶在活性降低后,可添加新鲜酶溶液,使有活性的酶再次固定,“再生”活性) 固定化对酶性质的影响:底物专一性的改变 、稳定性增强 、最适pH 值和最适温度变化、动力学参数的变化 单底物均相酶反应动力学 米氏方程 快速平衡法假设:(1)CS>>CE ,中间复合物ES 的形成不会降低CS (2)不考虑 这个可逆反应(3) 为快速平衡, 为整个反应的限速阶段,因此ES 分解成产物不足以 破坏这个平衡 稳态法假设:(1)CS>>CE ,中间复合物ES 的形成不会降低CS (2)不考虑 这个可逆反应(3)中间复合物ES 一经分解,产生的游离酶立即与底物结合,使中间复合物ES 浓度保持衡定,即 P E ES S E k k k +→+?-2 1 1 P E ES +←ES S E ?+P E ES +→P E ES +←0=dt dC ES

基因工程知识点梳理

生物选修3知识点 专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过,赋予生物以,创造出。基因工程是在 上进行设计和施工的,又叫做。 (一)基因工程的基本工具 1.“分子手术刀”—— (1)来源:主要是从中分离纯化出来的。 (2)功能:能够识别的核苷酸序列,并且使每一条链中的两个核苷酸之间的断开,因此具有。(3)结果:经限制酶切割产生的DNA片段末端通常有两种形式: 和。 2.“分子缝合针”—— (1)两种DNA连接酶()的比较: ①相同点:都缝合键。 ②区别:来源于大肠杆菌,来源于T4噬菌体, 只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来; 而能缝合两种末端,但连接的之间的效率较低。 (2)与DNA聚合酶作用的异同: DNA聚合酶只能将加到已有的核苷酸片段的末端,形成磷酸二酯键。 DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 必须需要模板 3.“分子运输车”—— (1)载体具备的条件:①。 ②,供外源DNA片段插入。 ③,供重组DNA的鉴定和选择。 (2)最常用的载体是 ,它是一 种 。

(3)其它载体: (二)基因工程的基本操作程序 第一步: 1.目的基因是指:基因。 2.原核基因采取获得,真核基因是。人工合成目的基因的 常用方_ 和_。 3. 从基因文库中获取 基因文库(1)概念:将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,各个受体菌分别含有这种生物的不同的基因,称为基因文库。 (2)类型:基因组文库和部分基因文库(如cDNA文库) (1)原理: (2)过程:第一步:加热至90~95℃; 第二步:冷却到55~60℃,; 第三步:加热至70~75℃,。 第二步:(核心步骤)

生物选修3专题1 基因工程知识点复习学案

专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过________________________,赋予生物以 _____________________,创造出______________________________________。基因工程是在____________上进行设计和施工的,又叫做__________________。 1. (1 (2 (3 2. (1)两种DNA ②区别:E· (2)与DNA 酸二酯键。 3. (1 (2 _____________________的双链___________DNA (3)其它载体: _________________________________ (二)基因工程的基本操作程序 第一步:__________________________ 1.目的基因是指: ______________________________________________________ 。 2.目的基因可采取_______________-获得,也可以用_____________________。人工合成目的基因的常用方 法有________________和_________________。 3.PCR技术扩增目的基因 (1)原理:_____________________ 将目的基因导入植物细胞:采用最多的方法是________________,其次还有基因枪法和花粉管通道法等。将目的基因导入动物细胞:最常用的方法是 _______________。此方法的受体细胞多是 ____________。将目的基因导入微生物细胞:★原核生物作为受体细胞的原因是繁殖快、多为单细胞、遗传物质相对较少, 最常用的原核细胞是 ____________,其转化方法是:先用 ________处理细

生物反应工程期末总结

绪论 1.生物技术产品的生产过程主要由哪四个部分组成? (1)原材料的预处理; (2)生物催化剂的制备; (3)生化反应器及其反应条件的选择和监控; (4)产物的分离纯化。 2.什么是生化反应工程,生化反应工程的研究的主要内容是什么? 定义:以生化反应动力学为基础,运用传递过程原理及工程学原理与方法,进行生化反应过程的工程技术分析、开发以及生化反应器的设计、放大、操作控制等综合边缘学科。 主要内容:生物反应动力学和生物反应器的设计,优化和放大 3. 生物反应过程的主要特点是什么? 1.采用生物催化剂,反应过程在常温常压下进行,可用DNA重组及原生质体融合技术制备和改造 2.采用可再生资源 3.设备简单,能耗低 4.专一性强,转化率高,制备酶成本高,发酵过程成本低,应用广,但反应机理复杂,较难控制,反应液杂质较多,给提取纯化带来困难。 4. 研究方法 经验模型法、半经验模型法、数学模型法;多尺度关联分析模型法(因次分析法)和计算流体力学研究法。 第1章 1. 酶作为生物催化剂具有那些催化剂的共性和其独特的催化特性?谈谈酶反应专一性的机制。 催化共性:降低反应的活化能,加快生化反应的速率;反应前后状态不变. 催化特性:高效的催化活性;高度的专一性; 酶反应需要辅因子的参与;酶的催化活性可被调控;酶易变性与失活。 机制:锁钥学说;诱导契合学说 2. 什么叫抑制剂? 某些物质,它们并不引起酶蛋白变性,但能与酶分子上的某些必需基团(主要是指活性中心上的一些基团)发生化学反应,因而引起酶活力下降,甚至丧失,致使酶反应速率降低,能引起这种抑制作用的物质称为抑制剂。 3. 简单酶催化反应动力学(重点之重点) 4.酶动力学参数的求取方法(L-B法、E-H法、H-W法和积分法) L-B法: E-H法: H-W法: 积分法: S S ) (1) S c mI s m s s I I m i K C K ↓ ?++

基因工程知识点总结归纳更新版

基因工程 绪论 1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。作动词:基因的分离和重组的过程。 2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。供体、受体和载体是基因工程的三大要素。 3、基因工程诞生的基础 三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。 三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现 3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶 1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。 2、限制酶的命名:属名(斜体)+种名+株系+序数 3、II型限制性内切酶识别特定序列并在特定位点切割 4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。 5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。 6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。 7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。 8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单

高中生物选修三基因工程知识点

高中生物选修三基因工程知识点 基因工程:是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果: 经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E·coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E·coliDNA连接酶来源于大肠杆菌,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:

(2)目的:获取大量的目的基因 (3)原理:DNA双链复制 (4)过程: 第一步:加热至90~95℃DNA解链为单链; 第二步:冷却到55~60℃,引物与两条单链DNA结合; 第三步:加热至70~75℃,热稳定DNA聚合酶从引物起始进行互补链的合成。 (5)特点:指数(2^n)形式扩增 第二步:基因表达载体的构建(核心) 1.目的:使目的基因在受体细胞中稳定存在,并且可以遗传至下一代,使目的基因能够表达和发挥作用。 2.组成:目的基因+启动子+终止子+标记基因 (1)启动子:是一段有特殊结构的DNA片段,位于基因的首端,是RNA 聚合酶识别和结合的部位,能驱动基因转录出mRNA,最终获得所需的蛋白质。 (2)终止子:也是一段有特殊结构的DNA片段,位于基因的尾端。(3)标记基因的作用:是为了鉴定受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。常用的标记基因是抗生素基因。 第三步:将目的基因导入受体细胞 1.转化的概念:是目的基因进入受体细胞内,并且在受体细胞内维持稳定和表达的过程。 2.常用的转化方法:

高中生物基因工程核心知识点

基因工程核心知识点 一、基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E?coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E?coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形 成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 *比较有关的DNA酶 (1)DNA水解酶:能够将DNA水解成四种脱氧核苷酸,彻底水解成膦酸、脱氧核糖和含氮碱基 (2)DNA解旋酶:能够将DNA或DNA的某一段解成两条长链,作用的部位是碱基和碱基之间的氢键。注意:使DNA解成两条长链的方法除用解旋酶以外,在适当的高温(如94℃)、重金属盐的作用下,也可使DNA解旋。(3)DNA聚合酶:能将单个的核苷酸通过磷酸二酯键连接成DNA长链。 (4)DNA连接酶:是通过磷酸二酯键连接双链DNA的缺口。注意比较DNA聚合酶和DNA 连接酶的异同点。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体:噬菌体的衍生物、动植物病毒 【解题技巧】 (1)限制酶是一类酶,而不是一种酶。 (2)限制酶的成分为蛋白质,其作用的发挥需要适宜的理化条件,高温、强酸或强碱均易使之变性失活。 (3)在切割目的基因和载体时要求用同一种限制酶,目的是产生相同的黏性末端。(4)获取一个目的基因需限制酶剪切两次,共产生4个黏性末端或平末端。 (5)不同DNA分子用同一种限制酶切割产生的黏性末端都相同,同一个DNA分子用不同的限制酶切割,产生的黏性末端一般不相同。 (6)限制酶切割位点应位于标记基因之外,不能破坏标记基因,以便于进行检测。 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因主要是指编码蛋白质的结构基因,目前被广泛提取使用的目的基因有:苏云金杆菌抗虫基因、植物抗病基因(抗病毒、抗细菌)、人胰岛素基因等。 2.获得目的基因的方法

生物反应工程考试试卷标准答案

生物反应工程考试试卷标准答案 一、名词解释(10分) 流加式操作:先将一定量基质加入反应器内,在适宜条件下将微生物菌种接入反应器中,反应开始,反应过程中将特定的限制性基质按照一定要求加入反应器内,以控制限制性基质浓度保持一定,当反应终止时取出反应物料的操作方式。 能量生长偶联型:当有大量合成菌体材料存在时,微生物生长取决于ATP 的供能,这种生长就是能量生长偶联型。 返混:不同停留时间的物料的混合,称为返混。 搅拌器轴功率:搅拌器输入搅拌液体的功率是指搅拌器以既定的转速回转时,用以克服介质的阻力所需用的功率,简称轴功率。它不包括机械传动的摩擦所消耗的功率,因此它不是电动机的轴功率。 酶的固定化技术:是指将水溶性酶分子通过一定的方式如静电吸附、共价键等与载体结合,制成固相酶的技术。 二、请列出下列物理量的数学表达式 (10分) 停留时间:f V = τ 呼吸商:22/O CO Q Q RQ = 稀释率:V F D = Da 准数: m m N r Da = 转化率:0 0S S S t -= χ 三、判断题(10分) 1、单罐连续培养稳态下,D=μ。( √ ) 2、流加培养达到拟稳态时,D=μ。( √ ) 3、单罐连续培养,在洗出稀释率下,稳态时罐内底物浓度为零。( ) 4、Da 准数是决定固定化酶外扩散效率的唯一参数,Da 准数越大,外扩散效率越高。( ) 5.酶经固定化后,稳定性增加,活性增大。( )

四、图形题(15分) 图1为酶促反应1/r ~1/S 曲线,指出曲线Ⅰ、Ⅱ中哪条代表竞争性抑制,哪条代表无抑制情况。图2为流体的流变学曲线,试说出每条曲线所代表的流体类型。 图1 图2 图3为连续培养的数学模型,请在图中标出临界稀释率D crit 和最大生产强度下的稀释率D m 。图4为微生物生长模型,请图示说明如何判断限制性基质? 图3 4 S crit 如图所示。 若S

基因工程知识点

基因工程各章知识点 第一章绪论 1.基因工程的首例操作实验 三大理论基础:DNA是遗传物质、DNA的双螺旋结构和半保留复制、遗传密码的破译和遗传物质传递方式的确定 三大技术基础:限制性核酸内切酶的发现与DNA的切割、DNA连接酶的发现与DNA片段的连接、基因工程载体的研究与应用 基因工程的诞生: 72年,P.Berg首次实现体外DNA重组:体外用EcoRI分别切割SV40和λDNA,并用T4 DNA连接酶连接成为重组的杂种DNA分子 73年,S.Cohen 体外重组DNA并转化:具Kanr的E.Coli质粒R6-5和具Tetr的E.Coli质粒pSC101切割并连接转化的大肠杆菌具有双重抗性 S.Cohen 和H.Boyer首次实现真核基因在原核中表达:将非洲爪蟾的DNA与E.Coli质粒(pSC101)体外切割并连接,转化大肠杆菌 2.基因工程的基本概念 基因工程是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种新物体(受体)内,使之稳定遗传并表达出新产物或具有新性状的DNA体外操作技术,也称为分子克隆或重组DNA 技术。 供体、载体、受体是基因工程的三大基本元件。 3.基因工程的基本操作过程 a分离目的DNA片段:酶切、PCR扩增、化学合成等。 b重组:体外连接的DNA和载体DNA,形成重组DNA分子。 c转化:将重组DNA分子导入受体细胞并与之一起增殖。 d筛选:鉴定出获得了重组DNA分子的受体细胞。 e对获得外源基因的细胞或生物体通过培养,获得所需的遗传性状或表达出所需要的产物。 第二章载体 1.理解用PBR322和PUC18作载体的克隆外源基因的原理。答案不确定 PBR322作载体的克隆外源基因的原理:PBR322质粒具有12 种限制性内切酶的单一识别位点:Tet r 基因内有7个酶切位点:Bam HⅠ,SalⅠ:Amp r基因内有3 个酶切位点:PstⅠ。Eco RⅠ和HindⅢ不在抗生素基因内,不导致插入失活。 如果在pBR322质粒的Tet r基因内位点插入外源DNA片断,将切断了tet r基因编码序列的连续性,使tet r 失去活性,产生出Amp r Tet s表型的重组pBR322质粒,转化入Amp s Tet s的大肠杆菌细胞。先涂布在含氨苄青霉素的选择培养基上,筛选出具Amp r菌落,再将它们影印于含四环素的选择性培养基上。插入外源片断的重组质粒不能在这种培养基上生长,这样就找出了含重组质粒的大肠杆菌。如果在pBR322质粒的Amp r基因内位点插入外源DNA片断,则反之。 PUC18作载体的克隆外源基因的原理:

高中生物选修三基因工程主要知识点

高中生物选修三基因工程主要知识点(1.1、1.2) 一、基因工程:按照人们的意愿,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。 一、基因工程的三大工具:限制性核酸内切酶—“分子手术刀”;DNA连接酶—“分子缝合针”;基因进入受体细胞的载体—“分子运输车”。 二、限制性核酸内切酶的特点:能够识别双链DNA分子的某种特定核苷酸序列,并且是每一条链中特定部位的两个核苷酸之间的磷酸二酯键。 三、限制酶识别序列的特点:反向对称,重复排列。 四、限制酶在原核生物中的作用:切割外源DNA,保护细菌细胞。 五、为什么限制酶不剪切原核生物自身的DNA分子?原核生物本身不含相应特异性序列;对DNA分子进行甲基化修饰。 六、两种常见的DNA连接酶:E〃coli DNA连接酶:源自大肠杆菌,只连接黏性末端;T4DNA连接酶:提取自T4噬菌体,两种末端均可连接,连接平末端效率低。 七、DNA连接酶和DNA聚合酶的相同点:都是蛋白质;都能生成3'磷酸二酯键。不同:前者在两个片段之间形成3'磷酸二酯键,后者只能将单个核苷酸连接到已有片段上;前者不需要模版,后者需要。 八、载体需要满足的条件:有一到多个限制酶切点;对受体细胞无害;导入基因能在受体细胞内复制和表达;有某些标记基因;分子大小合适。 九、质粒:一种裸露的、结构简单、独立于细菌拟核DNA之外,并具有自我复制能力的很小的双链环状DNA分子。 十、标记基因的作用:鉴别受体细胞中是否含有目的基因,从而将含有目的基因的细胞筛选出来。 十一、三类载体:质粒;λ噬菌体的衍生物;动植物病毒。 十二、获取目的基因的方法:说法一:从自然界已有的物种中分体(鸟枪法、反转录法)、用人工的方法合成;说法二:从基因文库中获取(鸟枪法、反转录法)、利用PCR技术合成、用化学方法人工合成。 十三、基因库:一个物种中全部个体的全部基因的总和;基因文库:将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中储存,个个受体菌分别含有这种生物的不同的基因;基因组文库:含有某种生物全部基因的基因文库;部分基因文库:只含有一种生物部分基因的基因文库;cDNA文库:用某种生物发育的某个时期的mRNA反转录产生的多种互补DNA片段,与载体连接后储存在一个受体菌群中。 十四、 文库类型cDNA文库基因组文库 文库大小小大 启动子无有 内含子无有 基因多少某种生物的部分基因某种生物的全部基因 物种间基因交流可以部分基因可以 十五、人工合成目的基因的两个条件:基因比较小;核苷酸序列已知。 十六、目的基因:主要是指编码蛋白质的基因,也可以使一些具有调控作用的因

最新生物反应工程期末总结

L-B 法: E-H法:H-W r p 1 r p 1 K m r max r max 1 C s C s C s r K m K r max r s C s 绪论 1.生物技术产品的生产过程主要由哪四个部分组成? (1)原材料的预处理; (2)生物催化剂的制备; (3)生化反应器及其反应条件的选择和监控; (4)产物的分离纯化。 2.什么是生化反应工程 , 生化反应工程的研究的主要内容是什么 ? 定义:以生化反应动力学为基础,运用传递过程原理及工程学原理与方法,进行生化反应过程的工程技术分析、开发以及生化反应器的设计、放大、操作控制等综合边缘学科。主要内容:生物反应动力学和生物反应器的设计,优化和放大 3.生物反应过程的主要特点是什么? 1.采用生物催化剂,反应过程在常温常压下进行,可用DNA重组及原生质体融合技术制 备和改造 2.采用可再生资源 3.设备简单,能耗低 4.专一性强,转化率高,制备酶成本高,发酵过程成本低,应用广,但反应机理复杂,较难控制,反应液杂质较多,给提取纯化带来困难。 4.研究方法经验模型法、半经验模型法、数学模型法;多尺度关联分析模型法(因次分析法)和计算流体力学研究法。 第1章 1.酶作为生物催化剂具有那些催化剂的共性和其独特的催化特性?谈谈酶反应专一性的机制。 催化共性: 降低反应的活化能,加快生化反应的速率;反应前后状态不变. 催化特性:高效的催化活性; 高度的专一性; 酶反应需要辅因子的参与; 酶的催化活性可被调控; 酶易变性与失活。 机制:锁钥学说;诱导契合学说 2.什么叫抑制剂? 某些物质,它们并不引起酶蛋白变性,但能与酶分子上的某些必需基团(主要是指活性中心上的一些基团)发生化学反应,因而引起酶活力下降,甚至丧失,致使酶反应速率降低,能引起这种抑制作用的物质称为抑制剂。 3.简单酶催化反应动力学(重点之重点) 4.酶动力学参数的求取方法(L-B 法、 E-H法、 H-W法和积分法)

生物技术制药复习资料

《生物技术制药》复习资料(Biotech nological Pharmaceutics ) 第一章绪论 一、概述 1.概念:生物药物(生物制药)是泛指包括生物制品在内的生物体的初级和次级代谢产物或生物体的某一组成部分,甚至整个生物体用作诊断和治疗疾病的医药品。|采用现代生物技术人为地创造一些条件,借助某些微生物、植物或动物来生产所需的医药品,叫做生物技术制药。 2.技术范畴:基因工程、细胞工程、酶工程、发酵工程、生化工程以及后来衍生出来的第二代、第三代的蛋白质工程、抗体工程、糖链工程和海洋生物技术等。 3.相关学科:有生物学(含微生物学、分子生物学、遗传学等)、化学、工程学(化学工程、电子工程等)、医学、药学、农学等。但从基础学科来讲,生物学、化学和工程学是其主要的学科。 4.应用范围:(1)医药;(2)农业;(3)食品;(4)工业;(5)环境净化;(6)能源。 二、生物技术的发展简史 1.传统生物技术阶段 主要产品:乳酸、酒精、丙酮、丁酸、柠檬酸、淀粉酶。 生产的特点:过程简单,大多属兼气发酵或表面培养,生产设备要求不高,产品化学结构简单,属初级代谢产物。 2.近代生物技术阶段 主要产品:抗生素、维生素、甾体、氨基酸;食品工业的工业酶制剂、食用氨基酸、酵母、啤酒;化工业的酒精、丙酮、丁醇、沼气;农林业的农药;环境保护业的生物治理污染。生物技术的特点:(1)产品类型多,初级(氨基酸、酶、有机酸)、次级(抗生素)、生物转化(甾体);(2)生物技术要求高, 纯种、无菌、通气,产品质量要求也高;(3)生产设备规模大;(4)技术发展速度快。 3.现代生物技术 主要产品:胰岛素、干扰素、生长激素等。 生物技术的内容包括:(1)重组DNA技术及其它转基因技术(基因工程);(2)细胞和原生质体融合技术(细胞工程);(3)酶或细胞的固定化技术(酶工程);(4)植物脱毒和快速繁殖技术;(5)动物细胞大量培养技术;(6)动物胚胎工程技术;(7)现代发酵技术;(8)现代生物反应工程和分离工程技术;(9)蛋白质工程技术;(10)海洋生物技术。 三、医药生物技术的新进展 1.基础研究不断深入

高考生物基因工程专项知识点

-高考生物基因工程专项知识点 基因工程技术为基因的结构和功能的研究提供了有力 的手段,下文是为考生准备的生物基因工程专项知识点的内容。 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯 键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E?coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E?coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而

T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是??质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。 (3)其它载体:噬菌体的衍生物、动植物病毒 (二)基因工程的基本操作程序 第一步:目的基因的获取 1.目的基因是指:编码蛋白质的结构基因。 2.原核基因采取直接分离获得,真核基因是人工合成。人工合成目的基因的常用方法有反转录法_和化学合成法_。 3.PCR技术扩增目的基因 (1)原理:DNA双链复制 (2)过程:第一步:加热至90~95℃DNA解链;第二步:冷却到55~60℃,引物结合到互补DNA链;第三步:加热至70~

生物反应工程复习 ()

生物反应工程原理复习资料 生物反应过程与化学反应过程的本质区别在于有生物催化剂参与反应。 生物反应工程是指将实验室的成果经放大而成为可提供工业化生产的工艺工程。 酶和酶的反应特征 酶是一种生物催化剂,具有蛋白质的一切属性;具有催化剂的所有特征;具有其特有的催化特征。 酶的来源:动物、植物和微生物 酶的分类:氧化还原酶、水解酶、裂合酶、转移酶、连接酶和异构酶 酶的性质:1)催化共性:①降低反应的活化能②加快反应速率③不能改变反应的平衡常 数。 2)催化特性:①较高的催化效率 ②很强的专一性 ③温和的反应条件 易变性 和失活 3)调节功能:浓度、激素、共价修饰、抑制剂、反馈调节等 固定化酶的性质 固定化酶:在一定空间呈封闭状态的酶,能够进行连续反应,反应后可以回收利用。 与游离酶的区别: 游离酶----一般一次性使用(近来借助于膜分离技术可实现反复使用) 固定化酶--能长期、连续使用(底物产物的扩散过程对反应速率有一定的影响;一般情况下稳定性有所提高;以离子键、物理吸附、疏水结合等法固定的酶在活性降低后,可添加新鲜酶溶液,使有活性的酶再次固定,“再生”活性) 固定化对酶性质的影响:底物专一性的改变 、稳定性增强 、最适pH 值和最适温度变化、动力学参数的变化 单底物均相酶反应动力学 米氏方程 快速平衡法假设:(1)CS>>CE ,中间复合物ES 的形成不会降低CS (2)不考虑 这个可逆反应(3) 为快速平衡, 为整个反应的限速阶段,因此ES 分解成产物不足以破坏这个平衡 稳态法假设:(1)CS>>CE ,中间复合物ES 的 形成不会降低CS (2)不考虑 双倒数法(Linewear Burk ): 对米氏方程两侧取倒数 得 以 作图 得一直线,直线斜率为 ,截距为 根据直线斜率和截距可计算出Km 和rmax 抑制剂对酶反应的影响: 失活作用(不可逆抑制) 抑制作用(可逆抑制 ):竞争抑制 、反竞争抑制 、非竞争抑制 、 混合型抑制 竞争抑制反应机理: 非竞争抑制反应机理: 可逆抑制各自的特点:P37 多底物均相酶反应动力学 (这里讨论:双底物双产物情况 ) 强制有序机制 S m C r K r r 111max max +=S C r 1~1Q P B A +→+P E ES +←ES S E ?+P E ES +→0=dt dC ES

基因工程知识点全

第一章基因工程概述 1.什么是基因工程,基因工程的基本流程? 基因工程(Genetic engineering)原称遗传工程。从狭义上讲,基因工程是指将一种或多 种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内, 使之按照人们的意愿遗传并表达出新的性状。因此,供体、受体和载体称为基因工程的三大 要素。 1.分离目的基因 2.限制酶切目的基因与载体 3.目的基因和载体DNA在体外连接 4.将重组DNA分子转入合适的宿主细胞,进行扩增培养 5.选择、筛选含目的基因的克隆 6.培养、观察目的基因的表达 第二章基因工程的载体和工具酶 1. 基因工程载体必须满足哪些基本条件? ?具有对受体细胞的可转移性或亲和性。 ?具有与特定受体细胞相适应的复制位点或整合位点。 ?具有多种单一的核酸内切酶识别切割位点。 ?具有合适的筛选标记。 ?分子量小,拷贝数多。 ?具有安全性。 2. 质粒载体有什么特征,有哪些主要类型? 1、自主复制性 2、可扩增性 3、可转移性 4、不相容性 主要类型有 1.克隆质粒 2.测序质粒 3.整合质粒 4.穿梭质粒 5.探针质粒 6.表达质粒3. 质粒的构建 (1)删除不必要的 DNA 区域,尽量缩小质粒的分子量,以提高外源 DNA 片段的装载量。一般来说,大于20Kb 的质粒很难导入受体细胞,而且极不稳定。 (2)灭活某些质粒的编码基因,如促进质粒在细菌种间转移的 mob 基因,杜绝重组质粒扩散污染环境,保证 DNA 重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因, 提高质粒的拷贝数 (3)加入易于识别的选择标记基因,最好是双重或多重标记,便于检测含有重组质粒的受 体细胞。 (4)在选择性标记基因内引入具有多种限制性内切酶识别及切割位点的 DNA序列,即多克隆接头(Polylinker),便于多种外源基因的重组,同时删除重复的酶切位点,使其单一 化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入。 (5)根据外源基因克隆的不同要求,分别加装特殊的基因表达调控元件。 4. 什么是人工染色体载体? 将细菌接合因子、酵母或人类染色体上的复制区、分配区、稳定区与质粒组装在一起, 即可构成染色体载体 5. 什么是穿梭载体? 人工构建的、具有两种不同复制起点和选择标记、可以在两种不同的寄主细胞中存活和复制的载体。 6.入-噬菌体载体及构建 -DNA为线状双链DNA分子,长度为48.5kb,在分子两端各有12个碱基的单链互补粘性末端。 ?1缩短长度提高外源 DNA 片段的有效装载量删除重复的酶切位点 ?引入单一的多酶切位点接头序列,增加外源DNA片段克隆的可操作性 ?灭活某些与裂解周期有关基因。 ?使λ-DNA载体只能在特殊的实验条件下感染裂解宿主细菌,以避免可能出现的污染

高三生物知识点归纳:基因工程及其应用

高三生物知识点归纳:基因工程及其应用 1.概念:按照人们的意愿,把一种生物的某种基因提取出来,加以修饰改造,然后放到另一种生物的细胞里,定向地改造生物的遗传性状。 高考生物知识点归纳 2.原理基因重组 3.工具: A.基因的”剪刀”:限制性内切酶 ①分布:主要在微生物中。 ②作用特点:特异性,即识别特定核苷酸序列,切割特定切点。 ③结果:产生黏性未端(碱基互补配对)。 B.基因的”针线”:DNA连接酶 ①连接的部位:磷酸二酯键,不是氢键。 ②结果:两个相同的黏性未端的连接。 C.基因的”运载工具”:运载体 ①作用:将外源基因送入受体细胞。 ②具备的条件:a、能在宿主细胞内复制并稳定地保存。b、具有多个限制酶切点。 c、有某些标记基因。 ③种类:质粒、噬菌体和动植物病毒。 ④质粒的特点:质粒是基因工程中最常用的运载体。 4.基因操作的基本步骤: ①提取目的基因:人们所需要的特定基因,如人的胰岛素基因、抗虫基因、抗病基因、干扰素基因等 ②目的基因与运载体结合(以质粒为运载体):用同一种限制酶分别切割目的基

因和质粒DNA(运载体),使其产生相同的黏性末端,将切割下的目的基因与切割后的质粒混合,并加入适量的DNA连接酶,使之形成重组DNA分子(重组质粒) ③将目的基因导入受体细胞常用的受体细胞:大肠杆菌、枯草杆菌、土壤农杆菌、酵母菌、动植物细胞 ④目的基因检测与表达 检测方法如:质粒中有抗菌素抗性基因的大肠杆菌细胞放入到相应的抗菌素中,如果正常生长,说明细胞中含有重组质粒。 表达:受体细胞表现出特定性状,说明目的基因完成了表达过程。如:抗虫棉基因导入棉细胞后,棉铃虫食用棉的叶片时被杀死;胰岛素基因导入大肠杆菌后能合成出胰岛素等。

生物反应工程(A考)

1. 在一间歇操作的搅拌反应器中进行脲酶催化尿素分解为氨和二氧化碳的反应,要求底物的转化率为0.8。底物的初始浓度为0.1mol/L,反应器中酶浓度为 =0.0266mol/L,最大反应速0.001g/L。在等温反应条件下的动力学常数为,K m 率为1.33mol/(L·s),相应此最大反应速率的酶浓度约为5g/L。求完成反应所需的时间。如果要求其生产过程的底物处理量为1000mol/h,每个操作周期所需的辅助时间为10min,试计算反应器的有效体积。 2.某一均相酶催化反应,其动力学方程为: 若进样流量为25L/min,反应底物s在反应器出口转化率 为95%,底物初始浓度为2mol/L时。 =?(2)若采用一个CPFR反试求:(1)若采用一个CSTR反应器时,反应器体积V R 应器时,反应器体积V =? R

3.某一均相酶反应在CPFR 中进行,其动力学方程为: 若进料流量为25L/min ;反应底物S 在反应器出口已转化了95%,底物初始浓度为2mol/L 时,所需反应器有效体积为多大?如改用CSTR ,所有条件同上,计算所需反应器有效体积为多大? 题解: S S S C 2C 2.0r +=) (则:L 986V min)/L (46.39)]C C (C C ln K [r 1r dC V V R S 0S S 0S m max C C S S 0R S 0S ==-+=-=? ) (则:L 5.4987V min)/L (5.199)]C C (C C C K [r 1r C C V V R S 0S S S 0S m max S S 0S 0R ==-+-=-= 4. 以相同的酶和载体做成三种体积相等而形状不同的固定化酶颗粒,一种为球形;另一种为高与直径相等的圆柱体;还有一种为高与直径相等而壁厚为直径1/3的圆环体。 催化剂颗粒体积均为0.1cm3,颗粒表观密度为1.2g/cm3,所进行的酶催化反应可作为一级不可逆反应处理。 在反应条件下,反应速率常数为50cm3/(s ·g 颗粒),催化剂微孔内的有效扩散系数为0.01cm2/s 。在该反应体系中,单位体积液相中含有的固定化酶量为20g/L 。已知液相中底物浓度为0.1mol/L ,并且可不考虑外扩散阻力和分配效应等因素的影响。 2 231063261263dCO O cH N O H bC aNH O O H C ++→++

基因工程知识点全

基因工程知识点全 第一章基因工程概述 1.什么是基因工程,基因工程的基本流程? 基因工程(Genetic engineering)原称遗传工程。从狭义上讲,基因工程是指将一种或多种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人 们的意愿遗传并表达出新的性状。因此,供体、受体和载体称为基因工程的三大要素。 1.分离目的基因 2.限制酶切目的基因与载体 3.目的基因和载体DNA在体外连接 4.将重组DNA分子转入合适的宿主细胞,进行扩增培养 5.选择、筛选含目的基因的克隆 6.培养、观察目的基因的表达 第二章基因工程的载体和工具酶 1.基因工程载体必须满足哪些基本条件? 具有对受体细胞的可转移性或亲和性。 具有与特定受体细胞相适应的复制位点或整合位点。 具有多种单一的核酸内切酶识别切割位点。 具有合适的筛选标记。 分子量小,拷贝数多。 具有安全性。

2.质粒载体有什么特征,有哪些主要类型? 1、自主复制性 2、可扩增性 3、可转移性 4、不相容性 主要类型有 1.克隆质粒 2.测序质粒 3.整合质粒 4.穿梭质粒 5.探针质粒 6.表达质粒 3.质粒的构建 (1)删除不必要的DNA区域,尽量缩小质粒的分子量,以提高外源DNA片段的装载量。一般来说,大于20Kb的质粒很难导入受体细胞,而且极不稳定。 (2)灭活某些质粒的编码基因,如促进质粒在细菌种间转移的 mob基因,杜绝重组质粒扩散污染环境,保证DNA重组实验的安全,同时灭活那些对质粒复制产生负调控效应的基因,提高质粒的拷贝数 (3)加入易于识别的选择标记基因,最好是双重或多重标记, 便于检测含有重组质粒的受体细胞。 (4)在选择性标记基因内引入具有多种限制性内切酶识别及切 割位点的DNA序列,即多克隆接头(Polylinker),便于多种外源基因的重组,同时删除重复的酶切位点,使其单一化,以便环状质粒分子经酶处理后,只在一处断裂,保证外源基因的准确插入。 (5)根据外源基因克隆的不同要求,分别加装特殊的基因表达

基因工程知识点超全

基因工程 一、基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在 二、基因工程的基本工具 1、限制性核酸内切酶-----“分子手术刀” 2、DNA连接酶-----“分子缝合针” 3、基因进入受体细胞的载体-----“分子运输车” 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)存在:主要存在于原核生物中。 (2)特性:特异性,一种限制酶只能 识别一种特定的核苷酸序列,并且能在 特定的切点上切割DNA分子。 (3)切割部位:磷酸二酯键 (4)作用:能够识别双链DNA分子的 某种特定核苷酸序列,并且使每一条链 中特定部位的两个核苷酸之间的磷酸 二酯键断开。

(5)识别序列的特点: (6)切割后末端的种类:DNA 分子经限制酶切割产生的DNA 片段末端通常有两种形式——黏性末端和平末端。当限制酶在它识别序列的中轴线两侧将DNA 的两条链分别切开时,产生的是黏性末端,而当限制酶在它识别序列的中轴线处切开时,产生的则是平末端。

2.“分子缝合针”——DNA连接酶 (1)作用:将限制酶切割下来的DNA片段拼接成DNA分子。 (2)类型 相同点:都连接磷酸二酯键 3.“分子运输车”——载体 (1)载体具备的条件: ①能在受体细胞中复制并稳定保存。 ②具有一个至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌拟核之外,并具有自我复制能力的双链环状DNA分子。 (3)其他载体:λ噬菌体的衍生物、动植物病毒。 (4)载体的作用: ①作为运载工具,将目的基因送入受体细胞。 ②在受体细胞内对目的基因进行大量复制。 【解题技巧】 (1)限制酶是一类酶,而不是一种酶。 (2)限制酶的成分为蛋白质,其作用的发挥需要适宜的理化条件,高温、强酸或强碱均易使之变性失活。 (3)在切割目的基因和载体时要求用同一种限制酶,目的是产生相同的黏性末端。 (4)获取一个目的基因需限制酶剪切两次,共产生4个黏性末端或平末端。 (5)不同DNA分子用同一种限制酶切割产生的黏性末端都相同,同一个DNA分子用不同的限制酶切割,产生的黏性末端一般不相同。 (6)限制酶切割位点应位于标记基因之外,不能破坏标记基因,以便于进行检测。 (7)基因工程中的载体与细胞膜上物质运输的载体不同。基因工程中的载体是DNA分子,能将目的

高中生物基因工程核心知识点

高中生物基因工程核心知识点 专题1 基因工程 基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,通过体外DNA重组和转基因技术,赋予生物以新的遗传特性,创造出更符合人们需要的新的生物类型和生物产品。基因工程是在DNA分子水平上进行设计和施工的,又叫做DNA重组技术。 (一)基因工程的基本工具 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)来源:主要是从原核生物中分离纯化出来的。 (2)功能:能够识别双链DNA分子的某种特定的核苷酸序列,并且使每一条链中特定部位的两个核苷酸之间的磷酸二酯键断开,因此具有专一性。 (3)结果:经限制酶切割产生的DNA片段末端通常有两种形式:黏性末端和平末端。 2.“分子缝合针”——DNA连接酶 (1)两种DNA连接酶(E?coliDNA连接酶和T4-DNA连接酶)的比较: ①相同点:都缝合磷酸二酯键。 ②区别:E?coliDNA连接酶来源于T4噬菌体,只能将双链DNA片段互补的黏性末端之间的磷酸二酯键连接起来;而T4DNA连接酶能缝合两种末端,但连接平末端的之间的效率较低。 (2)与DNA聚合酶作用的异同:DNA聚合酶只能将单个核苷酸加到已有的核苷酸片段的末端,形成磷酸二酯键。DNA连接酶是连接两个DNA片段的末端,形成磷酸二酯键。 3.“分子运输车”——载体 (1)载体具备的条件:①能在受体细胞中复制并稳定保存。 ②具有一至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌染色体之外,并具有自我复制能力的双链环状DNA分子。

相关文档
最新文档