电力系统谐波治理的基本方法分析
电力系统中的谐波问题与分析技术研究

电力系统中的谐波问题与分析技术研究引言:现代社会对电力的需求越来越大,电力系统的稳定运行对于社会经济的发展至关重要。
然而,电力系统在运行过程中会面临一些问题,如谐波问题。
谐波是电力系统中的一种普遍现象,它对系统的稳定性和设备的正常运行产生了不可忽视的影响。
因此,对电力系统中的谐波问题进行深入研究和分析,提出相应的解决方法和技术手段是非常必要的。
一、谐波问题的定义与影响1. 谐波的定义谐波是指电力系统中存在的频率是基波频率整数倍的谐振现象。
电力系统中产生谐波的主要原因包括非线性负载、发电机组的谐波励磁和谐波源的接入等。
谐波问题主要表现在电压和电流波形畸变、系统损耗增加以及设备寿命缩短等方面。
2. 谐波问题的影响谐波对电力系统的影响主要体现在以下几个方面:(1)设备损坏:谐波会导致电力设备的工作电流和温度升高,进而加速设备的老化和损坏;(2)电网损失:谐波会导致电网中的有功和无功损失增加,降低系统的效率;(3)通信干扰:谐波会对通信设备产生干扰,降低通信质量和可靠性。
二、谐波分析技术为了解决电力系统中的谐波问题,需要进行谐波分析,找出谐波源,并提出相应的处理措施。
目前,谐波分析技术主要包括频谱分析和时域分析两种方法。
1. 频谱分析频谱分析是通过观察电力系统中各频率成分的振幅和相位关系,以及谐波频率分布情况来分析谐波问题。
常用的频谱分析方法包括傅里叶变换和小波变换。
(1)傅里叶变换傅里叶变换能够将信号在频域中分解成各个频率成分,并得到各频率成分的幅度和相位信息。
通过对电压或电流波形进行傅里叶变换,可以得到具体的谐波频率及其振幅,从而判断谐波的产生原因。
(2)小波变换小波变换是一种时频分析方法,能够同时提供时间和频率信息。
它通过对信号进行连续的分解,得到各个频率成分在时域和频域上的分布情况,更能反映谐波在时间上的变化特性。
2. 时域分析时域分析是通过观察电力系统中各时刻的电压和电流波形来分析谐波问题。
常用的时域分析方法包括快速傅里叶变换和窗函数法。
电力电子中的谐波问题如何解决?

电力电子中的谐波问题如何解决?在当今的电力系统中,电力电子技术的广泛应用带来了诸多便利和效率提升,但同时也引发了一个不容忽视的问题——谐波。
谐波的存在不仅会影响电力设备的正常运行,还可能导致电能质量下降,增加能耗,甚至危及整个电力系统的安全稳定。
那么,如何有效地解决电力电子中的谐波问题呢?要解决谐波问题,首先我们得明白谐波是怎么产生的。
电力电子设备在工作时,由于其非线性的特性,会使得电流和电压的波形发生畸变,从而产生谐波。
比如常见的整流器、逆变器、变频器等,它们在将交流电转换为直流电或者改变交流电的频率和电压时,就容易引入谐波。
既然知道了谐波的来源,那我们就可以有针对性地采取措施来减少谐波的产生。
一种常见的方法是优化电力电子设备的设计。
通过改进电路结构、采用更先进的控制策略以及选择合适的电力电子器件,可以在源头上降低谐波的含量。
例如,在整流电路中,采用多脉冲整流技术,如 12 脉冲、18 脉冲甚至更高脉冲数的整流,可以显著减少谐波的产生。
另外,增加滤波装置也是解决谐波问题的重要手段。
滤波装置可以分为无源滤波器和有源滤波器两大类。
无源滤波器通常由电感、电容和电阻等元件组成,通过谐振原理对特定频率的谐波进行吸收和抑制。
这种滤波器结构简单、成本较低,但存在滤波效果受系统参数影响较大、可能与系统发生谐振等缺点。
相比之下,有源滤波器则具有更好的滤波性能和适应性。
它能够实时检测电网中的谐波电流,并产生与之大小相等、方向相反的补偿电流,从而有效地消除谐波。
有源滤波器虽然性能优越,但成本相对较高,在一些对电能质量要求极高的场合应用较为广泛。
除了在设备端采取措施,合理的系统规划和运行管理也有助于减轻谐波的影响。
在电力系统的设计阶段,就应该充分考虑谐波的问题,合理分配负载,避免谐波源集中在某一区域。
同时,加强对电力设备的运行监测,及时发现和处理谐波超标问题,也是保障系统稳定运行的重要环节。
此外,提高电力用户的谐波意识也非常重要。
低压谐波治理方案

低压谐波治理方案引言低压谐波是指电力系统中频率为50Hz的基波之外的频率成分。
低压谐波的存在会给电力系统带来一系列问题,如电能表计量误差、设备损坏、电能质量下降等。
因此,为了保证电力系统的正常运行,需要采取一定的措施来治理低压谐波。
本文将介绍一种低压谐波治理方案,旨在帮助读者了解低压谐波的治理原理及实施方法。
低压谐波的原因低压谐波的产生主要有以下几个原因:1.非线性负载:非线性负载设备,如电子设备、变频器等会引入谐波电流,进而产生低压谐波。
2.谐振:电力系统中存在谐振回路,当谐振频率与低压电网的频率相差较小时,会引起谐振电流,进而产生低压谐波。
3.电网供电问题:电网供电不稳定、电压波动或谐波电流畸变时,会引入低压谐波。
低压谐波的影响低压谐波对电力系统造成的影响主要体现在以下几个方面:1.电能表计量误差:低压谐波会导致电能表计量误差增大,从而影响用户电能计量的准确性。
2.设备损坏:低压谐波会导致设备电压、电流畸变增大,使设备的热损耗增加,加剧设备的老化速度,甚至引发设备故障。
3.电能质量下降:低压谐波会导致电网电压畸变、电网电流畸变增大,从而影响电能质量,引起其他设备故障,降低电力系统的可靠性。
低压谐波治理方案为了治理低压谐波,可以采取以下方案:1. 滤波器滤波器是最常用的低压谐波治理设备之一,可以有效地滤除谐波电流。
滤波器根据需要选择合适的谐波阶次和容量,安装在低压谐波严重的用电设备前或电源入口处。
滤波器可以是主动式滤波器、被动式滤波器或混合式滤波器。
2. 变压器设计优化变压器是低压谐波的主要损害对象之一。
通过合理设计和选择变压器,可以减少低压谐波对变压器的损害。
在变压器设计中,考虑降低磁流密度、增加谐波电流容量和合理选择材料等因素,可以有效减少低压谐波的影响。
3. 电网电压及电流监测通过对电网电压及电流进行监测,可以及时发现低压谐波问题,并采取相应的措施进行治理。
监测可以采用电力监测仪等设备,实时监测电网的电压、电流波形及谐波含量,并进行数据分析,为低压谐波治理提供依据。
电力系统谐波问题分析及防治措施

电力系统谐波问题分析及防治措施摘要:电力谐波会增加电能损耗、降低设备寿命,威胁电力设备和用电设备安全可靠运行,并对周边的通讯等设施造成干扰。
分析电网谐波的产生和影响,并及时提出谐波的综合治理办法,对于防止谐波危害、提高电能质量是十分必要的。
本文概述了谐波及其产生、谐波的危害,以及谐波治理方法。
关键词:电力系统;谐波;来源;危害;治理方法谐波的定义与来源1、谐波的定义国际上对谐波公认的定义是:“谐波是一个周期电气量的正弦波分量,其频率为基波频率的整数倍”。
在电力系统中,谐波分为谐波电压和谐波电流,其对系统的影响通常用“谐波含有率”和“总谐波畸变率”两个参数来衡量。
具体定义如下:谐波含有率:第h次谐波分量方均根值与基波分量方均根值之比。
HRU(h次谐波电压含有率),HRI(h次谐波电流含有率);总谐波畸变率:除基波外的所有谐波分量在一个周期内的方均根值与基波分量方均根值之比。
U,I;THD(总谐波电压畸变率),THD(总谐波电流畸变率);谐波含有率仅反应单次谐波在总量中的比重,而总谐波畸变率则概括地反映了周期波形的非正弦畸变程度。
谐波按矢量相序又可分有正序谐波、负序谐波和零序谐波。
所谓正序是指,3个对称的非正弦周期相电流或电压在时间上依次滞后120°,而负序滞后240°,零序則是同相。
其特征如表1:表1 正序谐波=3h-2,负序谐波=3h-1,零序谐波=3h。
在平衡的三相系统中,由于对称关系,不会在供电电网中产生任何偶次谐波。
谐波的定义与来源具体来说谐波产生的原因有以下三个方面:(1) 发电源的质量不高而产生的谐波发电机的结构中,由于三相绕组在制作上无法做到绝对对称,铁心也很难做到绝对均匀一致,所以磁通密度沿空间的分布只能做到接近正弦分布,所以磁通中都有高次谐波,电势中也就有高次谐波,其中三次谐波占主要成分[2]。
(2) 输配电系统产生的谐波在输配电系统中则主要是变压器产生谐波,变压器饱和时的励磁电流只含有奇次谐波,以3次谐波最大,可达额定电流0.5%,对于三相变压器,3倍次谐波的磁通经由邮箱外壳构成闭合磁路,因而磁通中对应该次的谐波较小(单相铁芯的10%),绕组中有三角形接法时,零序性谐波电流在闭合的三角形接线中环流而不会注入电网。
电力谐波扰动的分析与控制

电力谐波扰动的分析与控制随着电力系统的不断发展,人们对于电力质量的要求也越来越高。
其中,电力谐波扰动是影响电力质量的一个重要因素。
电力谐波扰动是一种由于各种非线性负载所导致的电网频率以外的含有频率是基频整数倍的波形,其对于电网运行和电气设备的安全稳定运行都造成了很大的影响。
一、电力谐波扰动的来源和影响电力谐波扰动主要是由于电气设备或负载的非线性特性所引起的。
就目前的现实来看,随着新的负载类型和设备的不断涌现,电力谐波扰动也变得日益严重。
谐波所带来的影响主要有以下几个方面:(一)影响电气设备的正常运行。
谐波会影响电气设备的电路工作,使得设备的寿命降低,也加大了故障的概率。
(二)影响电力系统的安全性。
谐波会使得各种保护设备错误地动作,破坏电力系统的安全性。
(三)影响电力能效。
由于电力谐波扰动会引起电能损耗增加,使得电力系统的功率因数下降,所以电力系统的能效也会受到影响。
(四)影响用户的用电器具。
由于电气设备的非线性特性,谐波所造成的不利影响会传递到用户的用电器具上,影响用户的生活质量。
二、电力谐波扰动的分析方法为了保证电力系统的正常运行和设备的长期稳定运行,对于电力谐波扰动的分析与控制就显得尤为重要。
一般情况下,电力谐波扰动的分析是要借助虚拟仪器和计算模拟等数学手段进行的。
(一)谐波的度量方法。
目前,谐波的度量方法主要有快速傅里叶变换(FFT)和离散傅里叶变换(DFT)等方法。
这些方法通过将经过采样后的模拟信号转化为频域数据,来获得谐波信号的频谱特性。
(二)谐波特性分析。
谐波特性分析主要是指评估谐波对于电力系统的影响,这可以通过计算各种参数来完成。
常见的谐波特性参数包括谐波电流的总畸变率(THD)、各次谐波电流百分量、谐波电压畸变率等。
(三)谐波源的定位。
谐波源的定位是指找到谐波扰动所产生的源头,然后采用相应的控制措施予以消除。
常用的谐波源定位方法包括负载模型法、测量法、经验法、等效电路法等。
三、电力谐波扰动的治理措施针对电力谐波扰动产生的不利影响,行业内采取的一些治理措施如下:(一)选用符合标准的电气设备和负载。
浅谈电力系统谐波的治理方法

浅谈电⼒系统谐波的治理⽅法35科技资讯科技资讯S I N &T NOLO GY I NFORM TI ON 2008N O.12SC I ENC E &TEC HNO LO GY I N FO RM A TI ON ⼯程技术电能既是⼀种经济实⽤、清洁⽅便且容易传输、控制和转换的能源形式,⼜是⼀种由电⼒部门向电⼒⽤户提供,并由供、⽤电双⽅共同保证质量的特殊产品。
如今,电能作为⾛进市场的商品,与其他商品⼀样,也讲求质量[1]。
随着社会的发展和科技的进步尤其是电⼒电⼦装置的⼴泛应⽤,使得电⼒系统中的谐波污染随着⾮线性负载的数量和容量⽇益增加⽽⽇趋严重,引起电能质量下降⽽影响电⽓设备的正常⼯作。
近三四⼗年来,由谐波引起的各种故障和事故也不断发⽣。
其危害:1)谐波使电⼒系统中的元件产⽣了附加的谐波损耗,降低了发电、输电及⽤电设备的效率,⼤量的3次谐波流过中性线时会使线路过热甚⾄发⽣⽕灾。
2)谐波影响各种电⽓设备的正常⼯作。
对电机的影响除引起附加损耗外,还会产⽣机械振动、噪声和过电压,使变压器局部严重过热;使电容器、电缆等设备过热、绝缘⽼化、寿命缩短,以⾄损坏。
3)谐波会导致继电保护和⾃动装置的误动作,并会使电⽓测量仪表计量不准确。
4)谐波会对邻近的通信系统产⽣⼲扰,轻者产⽣噪声,降低通信质量;重者导致信息丢失,使通信系统⽆法正常⼯作[2]。
谐波对电⼒系统产⽣的危害引起⼈们的⾼度注意,综合治理谐波问题成为治理环境污染、维护绿⾊电⼒环璋的标志。
国内外许多专家对此进⾏了⼤量的研究,并总结了⼤量的实践经验,对电能质量的认识和改善起到了极⼤的推动作⽤。
现就电⼒系统谐波的实时检测和控制⽅法加以说明,望能引起供、⽤电户的注意。
1谐波的实时检测⽅法有源电⼒滤波器的⼯作性能,很⼤程度上取决于对谐波电流以及基波⽆功电流的⾼精度、实时的检测上。
混合型有源滤波器数字化控制系统信号流程图如图1所⽰,在从谐波检测到滤波控制的整个过程中,每个环节都会给系统引⼊延时,使得滤波补偿电流存在⼀定的相位滞后误差,造成谐波电流的不完全补偿,严重时还可能使电⽹谐波电流加⼤、谐波污染加重。
电力系统谐波检测与分析方法研究
电力系统谐波检测与分析方法研究引言:电力系统中的谐波问题一直是一个引发关注的重要议题。
谐波是电力系统中的一个普遍存在的问题,它来源于非线性负载和谐波产生设备。
随着电子设备的普及和复杂化,谐波问题对电力质量和设备的正常运行产生越来越大的影响。
因此,电力系统谐波检测与分析方法的研究具有重要的实际意义。
1. 谐波检测方法1.1 采集数据为了进行谐波分析,首先需要采集谐波数据。
目前,常用的方法有两种:直接测量和间接测量。
直接测量方法是通过安装具有谐波分析功能的仪器进行现场测量。
这种方法的优点是准确性高,能够直接采集原始波形数据,可以观察到谐波的详细特征。
然而,直接测量方法的缺点是成本高昂且不适用于长期在线检测。
间接测量方法是通过采集电力系统中的其他参数间接推断谐波情况。
例如,可以通过检测电流或电压波形的畸变程度来判断谐波的存在。
这种方法的优点是成本低廉且适用于在线检测,但无法获取准确的谐波波形数据。
1.2 谐波分析方法谐波分析是对采集到的谐波数据进行处理,并进一步分析谐波的来源和影响。
常用的谐波分析方法包括时域分析、频域分析和小波分析。
时域分析是通过观察波形时间序列中的谐波成分来判断谐波问题。
时域分析可以直观地展示谐波的幅值和相位关系,但无法提供频率和频谱信息。
频域分析通过将时域波形转换为频域信号,利用傅里叶变换等数学方法得到波形的频率和幅值信息。
频域分析能够精确获得谐波分量的频率和幅值,但无法提供时间域的波形信息。
小波分析结合了时域分析和频域分析的优势。
通过小波变换,可以同时获取时域和频域的信息,能够更全面地分析谐波问题。
2. 谐波分析结果与效果评估谐波分析的结果需要进行效果评估,以判断谐波对电力系统的影响程度和采取相应措施的紧迫性。
2.1 谐波影响评估谐波的影响主要体现在两个方面:对电力系统设备的损坏和对电力质量的影响。
对设备的损坏主要表现为增加了设备的能量损耗和导致设备寿命缩短。
例如,变压器中的谐波电流会产生导磁损耗和铜损耗,使变压器温升增加,进而影响设备的使用寿命。
电力系统中的谐波分析及消除方法
电力系统中的谐波分析及消除方法摘要:本文针对电力系统中普遍存在的谐波问题进行了分析研究,首先概述了谐波的危害,然后介绍了三种谐波检测的方法,最后从改造谐波源的角度提出了几种谐波抑制方法。
关键词:电力谐波检测治理0 引言目前,谐波与电磁干扰、功率因数降低被列为电力系统的三大公害,因而了解谐波产生的机理,研究和清除供配电系统中的高次谐波,对改于供电质量、确保电力系统安全、经济运行都有着十分重要的意义。
1 电力系统谐波危害1.1 谐波会使公用电网中的电力设备产生附加的损耗,降低了发电、输电及用电设备的效率。
大量三次谐波流过中线会使线路过热,严重的甚至可能引发火灾。
1.2 谐波会影响电气设备的正常工作,使电机产生机械振动和噪声等故障,变压器局部严重过热,电容器、电缆等设备过热,绝缘部分老化、变质,设备寿命缩减,直至最终损坏。
1.3 谐波会引起电网谐振,可能将谐波电流放大几倍甚至数十倍,会对系统构成重大威胁,特别是对电容器和与之串联的电抗器,电网谐振常会使之烧毁。
1.4 谐波会导致继电保护和自动装置误动作,造成不必要的供电中断和损失。
1.5 谐波会使电气测量仪表计量不准确,产生计量误差,给供电部门或电力用户带来直接的经济损失。
1.6 谐波会对设备附近的通信系统产生干扰,轻则产生噪声,降低通信质量;重则导致信息丢失,使通信系统无法正常工作。
1.7 谐波会干扰计算机系统等电子设备的正常工作,造成数据丢失或死机。
1.8 谐波会影响无线电发射系统、雷达系统、核磁共振等设备的工作性能,造成噪声干扰和图像紊乱。
2 谐波检测方法2.1 模拟电路消除谐波的方法很多,即有主动型,又有被动型;既有无源的,也有有源的,还有混合型的,目前较为先进的是采用有源电力滤波器。
但由于其检测环节多采用模拟电路,因而造价较高,且由于模拟带通滤波器对频率和温度的变化非常敏感,故使其基波幅值误差很难控制在10%以内,严重影响了有源滤波器的控制性能。
谐波的危害与治理
谐波的危害与治理谐波是电气设备运行中不可避免出现的问题之一,其危害主要体现在设备损坏、能耗增加和工作效率下降等方面。
为了有效治理谐波,可以采取多种措施,包括谐波过滤器的应用、降低非线性负载、改进供电系统等方法。
本文将详细描述谐波的危害及治理方法。
谐波是电流或电压波形中频率是基波频率整数倍的成分。
当电力系统中存在谐波时,会带来以下危害:1. 电力设备的损坏:谐波会引起电力设备的过热、电容器的老化、电动机转矩波动、继电器误动等问题。
长此以往,会导致设备寿命的缩短,增加维护成本。
2. 能源浪费:谐波会导致电能的损失和能耗的增加。
电网中谐波电流的存在会导致额外的功率损耗,增加用户电费开支。
3. 工作效率下降:谐波会导致电力系统的电流和电压波形失真,使电力设备的工作效率下降。
例如,电机的转矩波动会降低效率,造成额外的能源浪费。
针对谐波问题,可以采取以下治理措施:1. 谐波过滤器的应用:谐波过滤器是一种能够降低电力系统谐波水平的设备,其原理是通过控制谐波电流的流向和大小来达到滤波效果。
可以根据实际需要选择合适的谐波过滤器类型,如有源谐波过滤器、无源谐波过滤器等,并在关键位置进行安装和配置。
2. 降低非线性负载:非线性负载是谐波产生的主要原因之一,如电力电子器件、变频器等。
通过控制这些非线性负载的使用,例如合理选择负载电压和电流的容量、增加电感元件等措施,可以减少非线性负载引起的谐波。
3. 改进供电系统:对供电系统进行改进也是治理谐波的重要方法。
例如,加装谐波补偿设备,通过补偿谐波电流来降低谐波水平;重新设计电力系统的接地系统,减小系统电容;提高系统电压等方法都可以有效地改进供电系统,从而减少谐波。
4. 加强维护管理:定期对电力设备进行巡检和维护,及时处理设备异常情况,可以减少谐波对设备的损坏。
此外,还可以加强对设备的监测和数据分析,及时发现谐波问题的存在,采取相应措施进行处理。
综上所述,谐波的危害主要包括电力设备损坏、能耗增加和工作效率下降等方面。
电力系统的谐波分析与治理
电力系统的谐波分析与治理发布时间:2023-03-07T01:26:49.225Z 来源:《中国电业与能源》2022年第20期作者:朱茂章[导读] 伴随科技和设备制造的进步,朱茂章国家电投集团福建电力有限公司,摘要:伴随科技和设备制造的进步,国家对电能质量考核标准在不断提高,作为电力企业对提高电能质量也在不断努力以满足用户不断提高的需求,对系统谐波重视不亚于频率和电压,加大对谐波抑制和治理,实现绿色电能。
关键词:谐波来源、谐波危害、谐波抑制引言交流电作为电能输送的一种方式,电力设计中力求降低电流、电压波形畸变,使其波形接近正弦波,让谐波限制在可以接受的水平,但近来随着非线性电力电子设备大量使用,使得谐波污染问题变得日益严重,有时甚至损坏设备,这引起电力企业和用户的高度重视,电力企业通过研究谐波产生机理,加大科技研发投入和使用先进的低谐波或不产生谐波设备,以及对已经形成的谐波通过各种方式进行抑制,使系统各项电气参数符合规范要求,同时电力监管部门也加大对电力系统谐波的考核促进电力企业和用户加大对谐波治理,满足安全生产要求。
本文主要阐述谐波来源、谐波危害、谐波治理。
通过研究分析谐波产生来源、形成过程和机理,采取各种主动和被动的治理方式,提高电能质量。
1.谐波的来源谐波产生主要是电力系统中存在各种非线性元件。
当正弦交流电给非线性负载供电时产生非正弦电流,非正弦电流通过其他阻抗产生非正弦压降,整个系统中的电气参数波形就会产生变异。
电力系统中谐波来源主要有三种:一是发电机电能质量不高,不能提供严格的正弦电源。
二是变压器铁芯饱和,电流出现非正弦波。
三是非线性用电设备产生谐波,通常这些设备又不能被禁止使用,没有更先进的或少谐波产生设备代替,特别是大型电力电子变流设备产生大量高频谐波,影响电力系统电能质量和安全稳定运行。
2.谐波的危害电力系统中的谐波会对电气设备等产生严重危害。
第一,使变压器基波容量下降,降低变压器效率,而且使绝缘材料劣化,运行中的声音与没有谐波产生时明显不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
S .. . .. . . . 资 料. . 电力系统谐波治理的基本方法分析 来源:电源在线 发布时间:2007-12-24 0:00:00 随着科学技术的发展,随着工业生产水平和人民生活水平的提高,非线性用电设备在电
网中大量投运,造成了电网的谐波分量占的比重越来越大。它不仅增加了电网的供电损耗,而且干扰电网的保护装置与自动化装置的正常运行,造成了这些装置的误动与拒动,直接威胁电网的安全运行。举个常见的例子来说,电子节能灯在使用量所占比重较小的电网中运行,的确比常用的白炽灯好,不仅亮度高又省电,而且使用寿命也长。但是相反,在大量投运节能灯后,就会发现节能灯的损坏率大大提高。这是由于节能灯是非线性负荷,它产生较大的谐波污染了这一片电网,造成三相负荷基本平衡情况下,中心线电流居高不下,线电压与相电压之比比:1要小得多,造成了该片电网供电质量下降,用电设备发热增加,电网线损增加,使得该区的配变发热严重,严重影响其使用寿命。因此我们对非线性用电设备产生的谐波必须进行治理,使谐波分量不超过国家标准。 一、电力系统中谐波的来源 电力系统中的谐波来自电气设备,也就是说来自发电设备和用电设备。由于发电机的转子产生的磁场不可能是完善的正弦波,因此发电机发出的电压波形不可能是一点不失真的正弦波。目前我国应用的发电机有两大类:隐极机和凸极机。隐极机多用于汽轮发电机,凸极机多用于水轮发电机。 对于谐波分量而言,隐极机优于凸极机,但随着科技进步,可控硅、IGBT等电子励磁装置的投入,使发电机的谐波分量有所上升。当发电机的端电压高于额定电压的10%以上时,由于电机的磁饱和,会使电压的三次谐波明显增加。同样在变压器的电源侧电压超过额定电压10%以上时,也会使二次侧电压的三次谐波明显增加。由于电网电压偏移在±7%以下,所以发电、变电设备产生的谐波分量都比较小,比国家的考核标准低的多,因此发电、变电设备不是影响电网电压波形方面质量的主要矛盾。 S .. . .. . . . 资 料. . 为此,影响电网电压波形质量的主要矛盾是非线性用电设备,也就是说非线性用电设备是主要的谐波源,非线性用电设备主要有以下四大类: ? 电弧加热设备:如电弧炉、电焊机等。 ? 交流整流的直流用电设备:如电力机车、电解、电镀等。 ? 交流整流再逆变用电设备:如变频调速、变频空调等。 ? 开关电源设备:如中频炉、彩色电视机、电脑、电子整流器等。 这些用电设备都是非线性用电设备,但它们产生的谐波各不相同,具体举例分析如下: 电弧加热设备是由于电弧在70伏以上才会起弧,才会有弧电流,并且灭弧电压略低于起弧电压,造成弧电流与弧电压的非线性。 此外,弧电流的波形还有一定的非对称性。正是由于弧电流是非正弦波,造成电弧加热设备对电网的谐波污染比较大,而且多为18次以下的低次谐波污染。其实电焊机在上世纪四、五十年代已广泛应用。由于当时电弧加热设备量少,电焊机应用的同时率就更小了,对整个电网的影响比较小,但在当时已发现在烧电焊时,局部低压电网的电压和电流变化很大,有较大的谐波影响。 交流整流直流用电设备的谐波产生的原因是由于整流设备有一个阀电压,在小于阀电压时,电流为零(如图图所示)。这类用电设备为了提供平稳的直流电源,在整流设备中加入了储能元件(滤波电容和滤波电感),从而使阀电压提高,加激了谐波的产生量。为了控制直流用电设备的电压和电流,在整流设备中应用了可控硅,这使得该类设备的谐波污染更严重,而且谐波的次数比较低。 交流整流再逆变用电设备,在交流变直流过程中产生的谐波与上述的交流整流直流用电设备一样,它在直流逆变成交流时又有逆变波形反射到交流电流,这类设备产生的谐波分量不仅有低次谐波,也有高次谐波。 S .. . .. . . . 资 料. . 虽然这类设备单台容量比上述两类设备容量要小,但它的分布面广,数量多,是目前推广使用的技术手段,因此它的谐波污染应引起足够关注。 开关电源设备目前应用很广,它的工作原理是先把交流整流成直流,通过开关管控制变压器初级电流的开通和关闭,从而在变压器二次侧感应出电流,供给用电设备。此外,开关电源的频率比较高一般在40kHz左右,不仅在整流时产生谐波,而且在开关管开闭时,反射40kHz左右的波至电源。这类用电设备同样是单台容量不大,但它是应用面最广、量最大的非线性用电设备,它还有一定量的三次谐波,造成配变的中心线电流居高不下,而且三次谐波还会通过配变污染到 10kV电网。 二、谐波治理的基本方法 目前谐波治理的基本方法有以下三种,在治理过程中又可以采用变电所集中治理和非线性用电设备处分散治理两种方法。按谁污染谁治理的原则,应该在非线性用电设备处分散治理。但对于电脑,彩电,节能灯等民用设备,则只能进行集中治理。 1、减少非线性用电设备与电源间的电气距离。也就是减少系统阻抗,换句话说就是提高供电电压等级。例如,在丽水电业局的遂昌钢厂就取得了不错效果,该钢厂原是用35kV供电,由两个110kV变电所各架设一回35kV专线供电,而它的主要用电设备是电弧炉,虽然进行了五次、七次谐波治理,但在110kV的 35kV母线上测得谐波分量仍接近或稍超国家标准。但在丽水局在遂昌新建了一个220kV变电所而且离该钢厂仅4km左右,用5回35kV专线供电,使 35kV母线的谐波分量控制在国家标准以内,此外该厂还使用了较大容量的同步发电机,使这些非线性负荷的电气距离大大下降,使该厂生产的谐波对电网的危害性下降,这种方法投资是最大的,往往需要和电网发展规划相协调。 2、谐波的隔离。非线性用电设备产生的谐波,它不仅直接影响到本级电网,而且经过变压器后,还会影响到上几级电网。如何把这些非线性用电设备产生的谐波不影响或少影响S .. . .. . . . 资 料. . 其他几级电网,这也是谐波治理的一个基本方法。这一方法在电网中广泛采用,发电机发出的电能经过Y/△、Y0/△、Y0/Y等接线组别的变压器,把发电机产生的三次、九次等零序分量的谐波与上级电网隔离开来,因此在 110kV以上高压电网上,三、九次谐波分量很小,几乎是零。而10kV由于大多数配变为Y/Y0接线,35kV也有少量Y/Y0接线的直配变,因此在 10kV和35kV系统中三、九次谐波分量会比高压电网大。为了减少低压对10kV电网的影响,我局现在10kV配电系统中推广使用了D,yn11接线组别的配电变压器,有效的减少了三、九次谐波的影响。 3、安装滤波器。目前对变电所侧和用户侧谐波治理的方法,多采用安装滤波器来减少谐波分量。滤波器分为有源滤波器和无源滤波器两大类。 有源滤波器的基本工作原理是把电源侧的电流波型与正弦波相比较,差额部分由有源滤波器进行补偿,这是谐波治理的发展方向。目前由于功率电子元件容量做不大、电压做不高,而且成本很高,因此在现阶段不可能大量推广应用。随着科学技术的发展,功率电子元件的成本下降,这一技术一定会在谐波治理上占主导地位的。 无源滤波器是通过L、C串联或并联,使其在某次谐波产生谐振,当发生串联谐振时,使滤波器两端该次谐波的电压很小,几乎接近零,这类滤波器往往接在变压器的二次侧出口处,从而使变压器的一次侧该次谐波的分量也很小,达到对该次谐波治理的目的。串联无源滤波器多用于对五、七、十一次谐波治理中,而且往往同时采用两组以上滤波器,谐振在五、七次,同时起补偿电容器组的作用。目前,在电力行业中,它多用于35kV和110kV变电所的10kV母线上,两组滤波器中的电容器容量大于变电所无功补偿容量,串联电感后,谐振在五、七次谐波频率中,使无源滤波器一物二用,具体计算公式如下: 当无源滤波器中,L、C串联谐振在n次谐波频率时, 。 电容器和电感在工频时的参数: S .. . .. . . . 资 料. . Xc=n2XL得,当n=5时,Xc=52XL=25XL Uc=1.04U,Qc=1.04QLC 当n=7时,Xc=72XL=49XL,Uc=1.02U,Qc=1.02QLC 一般在电容器无串联电感时,电网额定电压为10kV,变压所母线电压在10.5kV以上,电容器额定电压多选用11kV/ 。因此,用整治五次谐波的滤波器电容额定电压就常选取11.5kV/ 或12kV/ ,用来整治七次谐波的滤波器电容额定电压就常选取11kV/ 。 但是由于计算精度和电容器、电感器的制造精度等原因,若按计算结果数据来配备,在标准化审查时就通不过,为了保证串联滤波器能在五、七次谐波频率时谐振,我们要求电感有一定的调节范围,从而确保滤波器能正常工作。具体调试方法如下图,调节电感,在谐波分析仪中该次谐波值最小时,则认为滤波器已调试成功。 三、谐波治理方法的总结和发展 在电力系统中,供电电压波型是中心对称的,因此基本上不含有偶次谐波,主要存在在奇次谐波,而三、九次谐波可以通过Y0/Δ、Y0/Y、Y/Δ接线组别进行隔离。而11、13次以上谐波由于其频率比较高,而且输电线路有一定电感量,对地又有一定电容量,相间及线间也有一定电容量。因此,高次谐波在线路传输过程中衰减比较快,同时高次谐波在电网中所占的比重也不大,故在电力行业中不作为主要整治对象。 在10kV配电系统中,配变多采用Y/Y0接线,Y0(400V)侧由于有非线性用电设备,会产生三、五、七……次谐波,五、七次谐波可以用串联LC滤波器进行治理,而对三次谐波往往采用并联谐振使三次谐波在主变一次侧和二次侧之间进线隔离,其原理如下: 当L、C并联谐振在三次谐波频率时,三次谐波电流流不过主变二次侧线圈,从而使主变一次侧感应不出三次谐波的电压分量,同时使中性线三次谐波电流大大下降。 a、综上所述,对于电力行业的谐波治理方法有以下四种基本方法: