膨胀型阻燃剂的研究与应用

合集下载

阻燃剂研究综述

阻燃剂研究综述

阻燃剂研究综述1.阻燃剂的涵义阻燃剂又称难燃剂,耐火剂或防火剂,赋予易燃聚合物难燃性功能,用以提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。

主要适用于阻燃合成和天然高分子材料(包括塑料、橡胶、纤维、纸张、涂料等)。

采用阻燃材料有助于延迟或防止高分子材料的燃烧,使其点燃时间增长,点燃自熄或难以点燃。

有助于确保各种制品的安全及减少人们的生命和财产损失。

2.阻燃剂的重要历史性发展[1]1966年,Fenimore和Martin根据材料在不同氧浓度中的燃烧情况,反复测定了使材料持续燃烧所需的最低氧浓度,得到了很好的重复性,提出了“氧指数”的概念,从而使得阻燃材料的燃烧性能有了科学的定性手段,对现代阻燃科学技术产生了深远的影响,并得到了广泛的应用。

随着现代科技的进步,许多先进的分析测试仪器和处理方法如傅里叶变换红外光谱仪、热分析技术、X射线光电子能谱(XPS)、锥形量热仪( Cone Calorimeter)等被应用于阻燃研究,成为阻燃科学理论研究的有效手段。

3.阻燃剂的分类[1]按阻燃剂与被阻燃基材的关系,阻燃剂可分为添加型和反应型两大类,目前使用的阻燃剂85%为添加型,仅有15%为反应型。

前者多用于热塑性高聚物,后者多用于热固性高聚物。

按阻燃元素种类,阻燃剂可分为卤素(溴系及氯系)、有机磷系及卤-磷系、磷-氮系、氮系、硅系、锑系、铝-镁系、无机磷系、硼系、锡系等。

前五类属于有机类,后几类属于无机类。

近年来,出现一类新的“膨胀型阻燃剂”,它们是磷-氮化合物或者混合物。

人们对阻燃高聚物,较少采用单一的阻燃剂,往往是采用多种阻燃剂的复配系统,以发挥协同阻燃效应或同时提高材料的多种阻燃性能。

3.1溴系阻燃剂溴系阻燃剂之所以受到人们如此青睐,其主要原因是他的阻燃效率高,价格适中,这是其他阻燃剂难以匹敌的。

其次是溴系阻燃剂的品种多,适用范围广,而且溴的来源充足。

溴系阻燃剂的效率为:脂肪族>指环族>芳香族,但芳香族的热稳定性最高。

有机磷系阻燃剂

有机磷系阻燃剂

阻燃剂及有机磷系阻燃剂的综述1引言材料是实现工业、农业、国防和科学技术现代化的重要物质基础,它与信息、能源并列为现代文明的三大支柱,是现代社会赖以生存和发展的基本条件之一。

然而,自20世纪30年代,有机高分子材料进入国民经济的各个领域及人民生活的各个方面后,人类即开始面临新的火灾威胁,原因是这类材料大部分是易燃或可燃的。

这不但限制了它们的应用,还给人类社会带来频繁的火灾危害和严重的经济损失,表1.1列举了半个世纪以来世界各国部分特大火灾。

据统计,经济发达的国家和地区在1989-1993年间的年均火灾损失达国民生产总值的0.1-0.4%。

因此,阻燃已成为当前人类提高社会消防能力,确保人民生命和财产免遭火灾的重要措施,以阻燃为目的的高分子材料改性也愈加引人注目,从而大大促进了阻燃材料和技术的研究、生产。

制备应用低烟、低毒和环境污染低的阻燃剂是加工绿色阻燃材料的需求。

阻燃剂是用以提高材料抗燃性,即阻止材料被引燃及抑制火焰传播的助剂。

阻燃剂主要用于阻燃合成和天然高分子材料(包括塑料、橡胶、纤维、木材、纸张、涂料等)。

一个理想的阻燃剂最好能同时满足下述条件,但这实际上几乎是不可能的,所以选择实用的阻燃剂时大多是在满足基本要求的前提下,在其他要求间折中和求得的最佳的平衡:(1)阻燃效率高,获得单位阻燃效能所需的用量少。

(2)本身低毒或基本无毒(对大鼠口服的LD50)5000mg/kg),燃烧时生成的有毒和腐蚀性气体量及烟量尽可能少。

(3)与被阻燃基材的相容性好,不易迁移和渗出。

(4)具有足够高的热稳定性,在被阻燃基材加工温度下不分解,但分解温度也不宜过高,以在250~400度之间为宜。

(5)不致过多恶化被阻燃基材的加工性能和最后产品的物理-机械及电气性能。

可以认为,现有的阻燃剂和阻燃工艺无一不或多或少地对被阻燃高聚物的某一性能或某几种性能会产生不利的影响,而且阻燃剂用量越多,影响越大,所以性能优良的阻燃剂和合理的阻燃剂配方在于能在材料阻燃性和实用性间求得和谐的统一。

三源一体膨胀阻燃剂的合成及其在苯丙乳液中的应用

三源一体膨胀阻燃剂的合成及其在苯丙乳液中的应用
1 5 阻燃 苯 丙 样 品 制 备 .
脂肪 类磷 酸酯 具有 更 优 良的 阻燃 效 率 、 稳定 性 热
和耐 水解性 。这是 由于季 戊 四醇骨架 在 聚合物燃 烧 时 , 身会形 成焦 炭保 护层抑 制进 一步燃 烧 , 本 而
且 分 子 中 P、 C 3种 元 素 组 成 稳 定 的 六 元 杂 环 O、
s e t o c p . Ap l a i n o h s fa e a d n n p l s y e e a r l t ) e li n p cr s o y p i to f t i l me r t r a t i o y( t r n — c y a e c mu so s o d t a e h s r c i n o h l me r t r a ti h o tn s r s e t e h we h twh n t ema sf a to f e f t a e a d n n t e c a i g wa e p c i — v
第3 3卷 第 3期
2 0 1 2年 6月
青 岛 科 技 大 学 学 报( 自然科 学 版 )
J u n l fQig a ie st fS in ea d Te h oo y Nau a ce c dt n o r a n d o Unv riyo ce c n c n lg ( tr l in e E io ) o S i
LI Ya 。 W ANG n U n。 Yo g
( n d oU nv r iyo ce c n c n lg . le eo lme inc n Qig a iest fS in ea d Te h oo ya Colg fPoy rSce ea dEngn e ig ie rn b Colg fEn io me ta d S f t gi e ig,Qi g a 6 0 . l eo vr n n n ae yEn ne rn e n d o 2 6 42, ia Chn )

IFR201阻燃剂

IFR201阻燃剂

含N-P笼型大分子膨胀型阻燃剂IFR201-A一、产品简介IFR201-A型膨笼型大分子膨胀型型阻燃剂是四川卓安新材料科技有限公司通过常用化工原料合成的一种集酸源、碳源、气源于一体的高性能阻燃剂。

该阻燃剂经过特殊处理后微溶于水,在生产过程中无环境污染,自身无毒,质量稳定可靠。

该阻燃剂发泡均匀致密且碳层强度好,发泡能力是经典体系的1.2-1.5倍。

使用该阻燃剂可代替经典体系(即聚磷酸铵、三聚氰胺和季戊四醇三组分体系),在相同膨胀倍数下,添加量约为经典体系的75%左右即可,从而可大大降低阻燃剂添加量,降低防火涂料成本。

二、产品特点1)发泡均匀,碳层强度好;2)按需定制细度;3)球磨时间短;4)防火性能稳定;5)组分单一,集酸、碳、气源为一体;6)合成工艺简单,质量可靠;7)不受阻燃剂批次影响。

三、规格参数四、适用范围工厂地址 Add:四川省成都崇州市经济开发区1)油性(溶剂型)室外薄型钢结构防火涂料的膨胀发泡;2)油性(溶剂型)室外超薄型钢结构防火涂料的膨胀发泡;3)水性薄型钢结构防火涂料膨胀发泡;2)水性超薄型钢结构防火涂料膨胀发泡。

五、使用方法1)六、注意事项1)由于该阻燃剂目数较高,采用有PE内衬的编织袋包装;2)使用时要一定避免受潮,开袋未用完时需密封保存。

附1:卓安笼型大分子膨胀型阻燃剂与经典体系优劣对比卓安“含N-P笼型大分子系列防火涂料专用膨胀型阻燃剂”除了发泡均匀且炭层强度好之外,该阻燃剂还可根据实际需要加工成要求的细度,从而大大降低涂料的球磨时间。

在经典体系中,由于三种原料的颗粒细度不一,这将大大提高涂料的球磨时间,使涂料的生产成本大为提高(据调查,经典体系的球磨时间一般为80分钟,本产品的球磨时间约为30分钟);同时,经典体系生产的防火涂料的防火性能受三种原料质量的制约,从而导致涂料的防火性能不够稳定,而卓安N-P笼型大分子膨胀型阻燃剂组分单一,合成工艺简单可靠,且性能稳定,从而可以保证涂料防火性能不受阻燃剂批次的影响。

有机磷系阻燃剂的研究进展及应用_沈海军

有机磷系阻燃剂的研究进展及应用_沈海军

29.4。 BDSPBP 的化学结构式如下:
O O
HOCH2CH2OCH2CH2O P O
O
O O
P
OCH2CH2OCH2CH2OH
郑建宗[3]发明了一种粉末型双酚 A 双(二苯基磷酸酯)的制造方法。 粉末型 BDP 的制造方法具
有下列优点:① 久放不易结块;②不需使用液体加料的处理设备;③不需加装加热设备;④粉末型自
收 稿 日 期 :2009- 08- 17 作 者 简 介 : 沈 海 军 (1978-), 男 ,湖 北 荆 州 人 ,工 程 师 ,主 要 从 事 阻 燃 剂 的 研 究 工 作 。
4
2010 年第 1 期
沈海军等:有机磷系阻燃剂的研究进展及应用
发展动态
受到限制。 目前已开发出一些热稳定性强的磷酸酯齐聚物和分子量较高的含磷阻燃剂,它们与高聚 物相容性好,是阻燃剂生产行业热门的产品。 磷酸酯阻燃剂包括只含磷的磷酸酯阻燃剂、含氮磷酸 酯阻燃剂和含卤磷酸酯阻燃剂等几类。 2.1 只含磷的磷酸酯阻燃剂
能明显改善该合金的阻燃性能,却没有破坏该合金的力学等性能。
R1
R2
R1
O
OP O
R2
O
R1
R2
O
R2
OPO
n
O
R1
其 中 :R1,R2 =H,Me;n=1~5。
6
2010 年第 1 期
沈海军等:有机磷系阻燃剂的研究进展及应用
发展动态
3 膦酸酯阻燃剂
膦酸酯类阻燃剂是一类很有发展前途的阻燃剂。 由于 P—C 键的存在,使其化学稳定性增强,具 有耐水性、耐溶剂性。 目前膦酸酯阻燃剂的研究主要集中在含氮的膦酸酯和反应性膦酸酯阻燃剂两 个方面,膦酸酯通常更多地用作反应性阻燃剂。 市场上已成功开发了 N-羟甲基丙酰胺类甲基膦酸 酯 、 环 状 膦 酸 酯 、N,N- 对 苯 二 胺 基 (2- 羟 基 ) 二 苄 基 膦 酸 四 乙 酯 、 甲 基 膦 酸 二 甲 酯 (DMMP ) 等 。

阻燃剂基本知识及用途

阻燃剂基本知识及用途

阻燃剂基本知识及用途技术的目的是使非阻燃材料具备阻燃的性能,在一定条件下不容易燃烧或者能够自熄。

阻燃的途径不外乎以下几种:1、阻燃剂使可燃烧物炭化,从而达到阻燃效果。

这种阻燃效果主要是在固相中发挥作用,这种类别的阻燃材料主要是磷类阻燃剂(包括有机磷类和无机磷类)。

2、阻燃剂在燃烧条件下形成不挥发隔膜,隔绝空气达到阻燃目的。

这种阻燃效果主要是在液相中发挥作用。

这种类别的阻燃材料主要有硼酸盐、卤化物、氧化锑和磷类材料,或者这几种材料间的相互反映生成的物质。

3、阻燃剂分解产物将氢氧自由基连锁反应切断从而达到阻燃目的。

这种阻燃效果主要是在气相中发挥作用。

这种类别的材料主要是在气相中发挥作用。

这类阻燃材料主要是卤化物和氧化锑。

4、燃烧热的分散和可燃物质的稀释。

这类阻燃材料主要是硼酸锌、氢氧化铝、氢氧化镁等物质,主要是因分解大量吸热、所产生的不燃物质稀释可燃性气体而达到阻燃目的。

其他的还有氮系的阻燃剂,目前新型的磺酸盐系列(市场品为3M的FR-2025),硅系的偶联剂(GE 开发出高效产品,却因为其高昂的成本而应用不多)等。

按照标准的规定,一般采用酒精喷灯燃烧实验或者模拟巷道丙烷燃烧实验来检测产品的阻燃性能。

卤素阻燃剂基本知识根据许多科学研究显示,卤素系阻燃剂已经成为日常环境中到处扩散的污染物,且对于环境与人类的威胁日益升高。

而制造、循环回收、或抛弃家电及其它消费性产品的行为,则是造成这些污染物释放到环境的主要途径。

为保护环境,某些卤素系阻燃剂已经不能使用在电器产品和房屋建材的塑料材料部份(此泛指塑料的表面/外壳)。

塑料材料中禁用卤素系阻燃剂的原因是此种阻燃剂无法回收使用,而且在燃烧与加热过程中会释放有害物质,威胁到人类身体的健康、环境和下一代子孙。

如同其它有毒的重金属(如铅、镉、水银、六价铬等),欧盟(EuropeanUnion)在欧盟电子电机中危害物资禁用(RestrictionoftheUseofHazardousSubstancesinelectricalandelectronicequipment,RHS)指令中决定在2006年7月1日全面禁止PBB(PolybrominatedBiphenyls)及PBDE(PolybrominatedDiphenylEthers)等溴系阻燃剂的使用。

有机膨胀型阻燃剂在桉树中纤板中的应用


Pr o p e r t i e s o f Eu c a l y p t u s Me di u m De ns i t y Fi b e r b o a r d Tr e a t e d
wi t h Or g a ni c Fi r e Re t a r d a nt
f i b e r b o a r d( M DF)i n d u s t r y i n S o u t h e r n Ch i n a . To e x p l o r e t h e n e w a p p l i c a t i o n o f Eu c a l y p t u s M DF,
第2 7卷 第 2期
Vo1 . 2 7 No . 2
木材 工 业
CHI NA W OOD I NDUSTRY
2 0 1 3年 3月
Ma r c h 2 01 3
应 用 技 术
有机膨 胀型阻燃剂在桉树 中纤板 中的应 用
葛浙 东,李 宁,罗建举
( 广 西大 学 林 学 院 ,广 西 南 宁 5 3 0 0 0 4 )
p r o p e r t i e s o f t h e MDF s a mp l e s me t t h e r e q u i r e me n t s o f t h e n a t i o n a l s t a n d a r d GB / T 1 1 7 1 8 — 2 0 0 9 ,
A b s t r a c t : E u c a l y p t u s p l a n t a t i o n s a r e t h e ma j o r r a w ma t e r i a l r e s o u r c e f o r t h e me d i u m d e n s i t y

阻燃剂

阻燃剂的研究现状及发展前景【摘要】本文通过对阻燃剂相关文章的查阅,介绍了阻燃剂的分类和几种阻燃剂的阻燃原理,介绍了近几年阻燃剂的发展现状,通过对几种常见阻燃剂的利与弊的分析,对阻燃剂的发展做出了预测和展望。

【关键词】阻燃剂阻燃原理发展前景前言:随着工业技术的发展,各种合成材料被广泛的应用于日常生活、生产和社会建设的各个行业与领域,在国民经济建设中发挥着巨大作用。

但是合成材料一般易燃,为了解决这一问题,阻燃剂应运而生。

一、阻燃剂的分类和原理阻燃剂又称堆燃剂、耐火剂或防火剂,是一类以物理方式或化学方式在固相、液相或气相中发挥作用(如吸热作用、覆盖作用、抑制链反应等)在燃烧过程的某个特定阶段如加热、分解、引燃或火焰的扩张阶段抑制甚至中断燃烧过程,从而赋予易燃聚合物难燃性、自熄性和消烟性的功能性助剂。

依应用方式分为添加型阻燃剂和反应型阻燃剂。

添加型阻燃剂直接与聚合物混配,加工方便,适应面广,是阻燃剂的主体;反应型阻燃剂常作为单体键合到集合物链中,对制品性能影响小且阻燃效果持久。

按有效元素分类,添加型阻燃剂主要包括磷系、卤系、膨胀型、硅氧烷类等。

放映型阻燃剂多我反应性官能团的有机卤和有机磷的单体。

此外,具有抑烟作用的钼化合物、锡化合物和铁化合物等亦属阻燃剂的范畴。

1 磷系阻燃剂:根据其使用的特性,磷系阻燃剂添加包含两种。

物理方法:在高分子材料混入或涂覆阻燃剂,以减少可燃材料的比例,这样可用阻燃剂将材料与氧化剂、热源隔开,以保护材料,以及覆盖在可燃材料表面;化学方法:用具有活性官能团的阻燃剂与可燃材料表面进行枝接反应,以获得阻燃效果。

目前,磷系阻燃剂的阻燃机理主要有以下几种。

1.1成碳机理磷系阻燃剂受热分解产生有吸水或脱水效果的强酸(如聚磷酸和焦磷酸等),主要作用是促进多羟基化合物脱水炭化,形成具有一定厚度的不易燃烧的碳层,将可燃材料与氧化剂、热源隔开,阻止物质和热量的传递,以阻断燃烧的进行。

1.2连锁反应阻止机理(热机理)以阻燃剂的热分解产生的气体为催化剂,与可燃材料热解产生的可燃性气体,从而中断可燃性气体的连锁反应。

环状磷腈/聚磷酸铵/三聚氰胺膨胀阻燃环氧树脂研究

第24卷㊀第3期2016年6月㊀材㊀料㊀科㊀学㊀与㊀工㊀艺MATERIALSSCIENCE&TECHNOLOGY㊀Vol 24No 3Jun.2016㊀㊀㊀㊀㊀㊀doi:10.11951/j.issn.1005-0299.20160312环状磷腈/聚磷酸铵/三聚氰胺膨胀阻燃环氧树脂研究王会娅,卢林刚,陈英辉,郭㊀楠,杨守生(中国人民武装警察部队学院,河北廊坊,065000摘㊀要:本文以DOPO衍生物六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC)㊁聚磷酸铵(APP)以及三聚氰胺(MEL)形成复配膨胀体系(IFR)阻燃环氧树脂.采用极限氧指数(LOI)㊁水平㊁垂直燃烧(UL-94)方法研究了IFR体系对环氧树脂体系阻燃性能影响,通过锥形量热(CONE)研究了体系燃烧特性,通过扫描电子显微镜(SEM)对体系成炭情况进行观察.结果表明,IFR膨胀阻燃体系对环氧树脂具有良好的协同阻燃作用,其中8%DOPOMPC/8%APP/4%MEL(EP3)体系LOI值较纯EP(EP0)提高37.8%;各项燃烧参数也得到了改善,热释放速率峰值(pk-HRR)㊁有效燃烧热平均值(av-EHC)㊁比消光面积平均值(av-SEA)及一氧化碳释放速率平均值(av-CO)相对于10%DOPOMPC/10%APP/EP(EP1)分别降低了53.8%㊁84.4%㊁57.7%和75.8%;拉伸强度㊁弯曲强度和冲击强度较EP1分别提高了1.3倍㊁79.4%和2.5倍;宏观拍摄和扫描电镜结果表明EP3膨胀炭层连续㊁均匀㊁致密,阻燃效果良好.关键词:三聚氰胺;膨胀阻燃;环氧树脂;协同阻燃中图分类号:TQ323.8文献标志码:A文章编号:1005-0299(2016)03-0068-06Studyofsynergisticintumescentflame⁃retardantepoxyresinbasedonMELandDOPOderivativesWANGHuiya,LULingang,CHENYinghui,GUONan,YANGShousheng(ChinesePeopleᶄsArmedPoliceForceAcademy,Langfang065000,China)Abstract:Synergisticmelamine(MEL),hexalis⁃(4⁃DOPO⁃methanolphen⁃oxy)⁃cyclotriphosphazene(DOPOMPC)andpolyphosphate(APP)wereaddedtoEpoxyresin(EP)toformanintumescentflameretardantsystem(IFR).TheflameretardancyofepoxyresinthatwasaddedwithdifferentMELadditiveamountwasmeasuredbyUL⁃94vertical/horizontalburningtestandlimitedoxygenindex(LOI)test.ThermalstabilityandmechanicalpropertiesofepoxyresinwerealsoinvestigatedbyTGAandCONE.TheflameretardantmechanismofepoxyresinwasinvestigatedbySEM.ResultsshowedthatproperadditionofMELplayedaroleofsynergis.Thelimitedoxygenindexvaluecoulddecline37.8%forthesampleEP3(8%DOPOMPC/8%APP/4%MEL).Theconeexperimentalresultsshowedthatthepeakvalueheatreleaserate,averagevalueeffectiveheatofcombustion,theaveragevaluespecificextinctionareaandtheaveragevaluecarbonmonoxideoftheEP3wererespectivelyreduced53.8%㊁84.4%㊁57.7%and75.8%comparedtothoseofEP1(10%DOPOMPC/10%APP/EP).Andthetensilestrength,flexuralstrengthandimpactstrengthwereincreasedby1.3times,79.4%and2.5timescomparedtoEP1;TheobservationofthemacroandmicromorphologyshowedthatthecarbonlayerofEP3wasconsecutive,evenanddense.Keywords:melamine(MEL);intumescentflameretardan;epoxyresin;synergisticeffect收稿日期:2016-02-22.基金项目:国家自然科学基金项目(214722241);河北省自然科学基金资助项目(E2016507027).作者简介:王会娅(1974 ),女,副教授.通信作者:卢林刚,E⁃mail:llg@iccas.ac.cn.㊀㊀磷杂菲(DOPO)和磷腈模块均是有机磷系阻燃剂中后起之秀,它们的结构组成决定了其作为阻燃剂组成单元时阻燃高效性[1-8].新近合成的P-N膨胀型阻燃剂六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC)是集磷杂菲(DOPO)和磷腈模块于一体的星状分子,其与聚磷酸铵(APP)复配作用于易燃高分子材料环氧树脂时表现出良好的阻燃效果,但材料力学性能大幅度下降是该新型阻燃剂推向市场㊁应用于环氧树脂材料阻燃的重大阻力[9-12].本课题将三聚氰胺(MEL)[13-15]作为膨胀体系中的气源引入DOPOMPC/APP/EP复配成新的膨胀阻燃体系(IFR),以期提高环氧树脂阻燃性能,以及改善其力学性能.O O HPC HOO HOP CO H O P OC H O HH OC HOPOO HH COPOOPC H O O HOPNNPP NOOOOO图1㊀六(4-DOPO羟甲基苯氧基)环三磷腈(DO⁃POMPC)结构式1㊀实㊀验1.1㊀主要原料依据参考文献[7]合成六(4-DOPO羟甲基苯氧基)环三磷腈(DOPOMPC);聚磷酸铵II型(APP),平均聚合度>1500,工业级,青岛海化阻燃材料有限公司;间苯二胺(m-PDA),分析纯,天津大茂化学试剂厂;E-44环氧树脂,工业级,蓝星新材料无锡树脂厂;三聚氰胺(MEL),分析纯,天津赢达稀贵化学试剂厂;其他试剂均为分析纯.1.2㊀主要设备及仪器氧指数仪HC-2CZ,南京上元分析仪器厂;水平垂直燃烧仪UL94SCZ-3,南京上元分析仪器厂;锥形量热仪S001,英国FTT公司;万能电子试验机XWW-10A,河北承德金建检测仪器有限公司;简支梁冲击试验机XJJ-5,河北承德金建检测仪器有限公司;扫描电子显微镜KYKY2800,中科科仪厂.1.3㊀性能测试按照GB/T2406 93进行氧指数测定,每组试样数10,尺寸120.0mmˑ6.5mmˑ3.0mm;按ANSI/UL94 2010进行水平垂直燃烧测定,每组样条数5,尺寸130.0mmˑ12.5mmˑ3.0mm;按ASTME 1354标准进行锥形量热实验,热辐射功率35kW㊃m-2,每组试样数2,尺寸100mmˑ100mmˑ4mm;按照GB1040 92㊁GB/T9341 2000进行拉伸强度㊁弯曲强测定,加载强度均为2mm㊃min-1;按照GB/T1043 2008进行耐冲击强度测定,冲击速度2.9m㊃s-1;将燃烧后炭层粘到样品盘上,断口表面经喷金处理,通过SEM上进行形貌分析.1.4㊀阻燃环氧树脂制备参考表1配方,设定鼓风干燥箱温度为80ħ,对模具进行预热,降低环氧树脂粘度;按照配方称取固化剂间苯二胺,置于鼓风干燥箱使其熔化为液态.于80ħ下依次将已干燥的DO⁃POMPC,APP和MEL加至EP,搅拌使混合均匀;将固化剂间苯二胺与混合阻燃剂的EP倒入已预热模具中,固化4h后自然冷却.将混合物倒入双辊塑炼机进行混炼㊁塑化㊁拉片,将片材放入模具中,经平板硫化机加热㊁加压㊁冷却,最后裁剪得到所需标准试样.表1㊀纯EP及DOPOMPC/APP/MEL/EP复合材料的配方样品EPm-PDADOPOMPCAPPMELEP090.99.1000EP172.77.310100EP272.77.3992EP372.77.3884EP472.77.37.57.55EP572.77.36.76.76.7EP672.77.35510EP772.77.33.33.313.4EP872.77.32.52.5152㊀结果与讨论2.1㊀极限氧指数(LOI)㊁UL-94燃烧分析表2为纯EP(EP0)及复合材料LOI㊁UL-94燃烧性能测试数据.经DOPOMPC/APP阻燃的环氧树脂(EP1)体系LOI值从纯EP0时的25.4%增至36.3%,较EP0提高41.8%,实现材料难燃;保持阻燃剂总添加量20%(质量分数)不变,添加不同质量分数的MEL制得EP2 EP8阻燃体系,在UL94燃烧试验中,DOPOMPC/APP/MEL/EP体系两次施焰时间均很短,小于4s,且移开火焰后迅速自熄,基本不存在有焰燃烧,均达到V-0级;但体系LOI值随MEL量增加逐渐降低,这是因为MEL加入使阻燃剂受热分解产生气源量增加,导致燃烧初期所形成的炭层破裂;其中EP3(8%DOPOMPC/8%APP/4%MEL/EP)体系LOI值为35%,虽较EP1略有下降,但相比EP0仍提高37.8%;EP3燃烧后形成炭层硬度较大,整个样条均燃烧完毕无断裂,表明适量的MEL添加至DO⁃POMPC/APP体系,能够提高炭层质量.㊃96㊃第3期王会娅,等:环状磷腈/聚磷酸铵/三聚氰胺膨胀阻燃环氧树脂研究表2㊀DOPOMPC/APP/MEL/EP复合材料的氧指数和UL94测试结果样品LOI/%UL94HBUL94VEP025.4HB-3-16.1V-2EP136.3HBV-0EP234.6HBV-0EP335.0HBV-0EP430.0HBV-0EP529.6HBV-0EP628.2HBV-0EP728.2HBV-0EP828.0HBV-0Notes:LOI⁃Limitedoxygenindex;UL94HB⁃Horizontalflametest;UL94⁃flametest.2.2㊀燃烧特性分析2.2.1㊀易燃性和释热特性分析表3㊁图2分别为复合材料锥形量热试验相关数据及热释放速率与时间关系曲线.由表3数据可知,纯EP0的HRR曲线陡峭,170s时被引燃,很快达到峰值1243.27kW㊃m-2,平均热释放速率av-HRR达286.73kW㊃m-2,热释放总量THR达104.31MJ㊃m-2;经DOPOMPC/APP阻燃的EP1引燃时间增加至200s,HRR曲线明显平缓,pk-HRR值㊁av-HRR和THR值较EP0分别降至314.37kW㊃m-2㊁74.75kW㊃m-2㊁28.19MJ㊃m-2,降幅74.7%㊁73.9%㊁73.0%,表明DOPOMPC/APP的加入延缓了环氧树脂热降解,具有良好的阻燃作用;经DOPOMPC/APP/MEL膨胀阻燃剂的引入使EP2 EP8体系HRR进一步降低,HRR曲线较EP1更加平缓,燃烧时间延长,体系引燃时间较EP1均有不同程度提前,这是由于MEL受热先于阻燃剂以及APP发生分解;随MEL添加量增加pk-HRR㊁av-HRR及THR呈现先降后增的趋势,其中EP3降幅最大,其pk-HRR㊁av-HRR及THR较EP1分别降至145.22kW㊃m-2㊁68.25kW㊃m-2㊁27.05MJ㊃m-2,降幅53.8%㊁8.7%㊁4.1%;此外,由图2可见,经添加DOPOMPC/APP/MEL复合阻燃材料体系的HRR曲线呈M峰形,为高效膨胀阻燃的典型特征,有效抑制环氧树脂的热分解性能,抑制了火灾蔓延.表3㊀DOPOMPC/APP/MEL/EP复合材料的锥形量热试验数据样品TTI/spk-HRR/(kW㊃m-2)av-HRR/(KW㊃m-2)av-EHC/(MJ㊃kg-1)av-SEA/(m2㊃kg-1)av-CO/(kg㊃kg-1)THR/(MJ㊃m-2)EP01701243.27286.7328.991115.060.18104.31EP1200314.3774.7588.993583.380.2928.19EP2100189.1177.2213.561319.500.0817.33EP3160145.2268.2513.901515.080.0727.05EP4180147.9887.4215.691472.700.0742.90EP5130179.1779.3815.75125.140.0731.24EP6195142.6892.1817.282961.190.0566.94EP7145210.36119.0016.151711.860.0555.00EP8105289.22158.9317.19569.150.0463.61Notes:TTI⁃Timetoignition;pk⁃HRR⁃Peakheatreleaserate;av⁃HRR⁃Averageheatreleaserate;av⁃EHC⁃Averageeffectiveheatofcombustion;av⁃SEA⁃Averagespecificextinctionarea;av⁃CO⁃COaveragereleaserate;THR⁃Totalheatrelease.120010008006004002000100200300400t /sH R R /(k W m -2)E P 0E P 1E P 2E P 3E P 6图2㊀纯EP及部分阻燃复合材料的热释放速率曲线由表3数据可见,EP1的平均有效燃烧热(av-EHC)相较EP0从28.99MJ㊃kg-1升高至88.99MJ㊃kg-1,气相燃烧程度大幅增加;而经DOPOMPC/APP/MEL膨胀阻燃作用的EP2 EP8试样av-EHC较EP1明显降低,且相较EP0降幅显著,最低降至13.56MJ㊃kg-1;其中MEL添加量为4%(EP3)时,较EP1㊁EP0分别下降84.4%㊁52.1%.表明MEL可以通过促进体系成炭实现固相阻燃,抑制热分解速率,而且其分解产生的不燃气体不仅可以稀释可燃气体和氧气浓度,实现气相阻燃,从而降低材料的火灾危险性.2.2.2㊀生烟特性及烟毒性分析图3中(a)㊁(b)分别为复合材料比消光面积曲线和CO释放速率曲线.比消光面积(SEA)㊁CO释放量越大,材料烟毒危险性越大.由表3数据和图3曲线可见,EP1体系av-SEA㊁av-CO相较EP0分别增幅2.21倍㊁61.1%,DOPOMPC/APP使体系烟毒性显著增加;加入MEL后,EP2 EP8体系SEA㊁CO比EP1大幅度降低,特别是CO释放量在加入MEL后得到明显抑制,使体系在燃烧中㊃07㊃材㊀料㊀科㊀学㊀与㊀工㊀艺㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第24卷㊀期才有大量烟气产生;其中EP3的av-SEA㊁av-CO比EP1分别降低57.7%,75.9%,效果最好,实现了抑烟和减少CO释放的效果.450040003500300025002000150010005000050100150200250300350S E A /(m 2k g -1)t /s E P 0E P 1E P 31.51.00.550100150200250300350C O Y /(k g k g -1)t /sE P 0E P 1E P 3(a )(b )图3㊀(a)㊁(b)分别为EP0㊁EP1和EP3样品的比消光面积以及CO释放率曲线2.2.3㊀燃烧特性指数分析表4为复合材料四项燃烧性能指数.表4㊀阻燃体系的燃烧性能指数样品FGI/(kW㊃m-2㊃s-1)THRI6min/(MJ㊃m-2)TSPI6min/(m2㊃g㊃kg-1㊃s-1)ToxPI6min/(g㊃s-1)EP07.312.013.551.19EP11.571.433.741.06EP21.891.313.250.47EP30.911.393.380.47EP40.791.503.420.57EP51.381.462.320.52EP60.731.523.700.41EP71.451.633.610.47EP82.751.763.220.56Notes:FGI⁃Firegrowthindex;THR6min⁃Totalheatreleaseindex;TSPI6min⁃Totalsmokeproduceindex;ToxPI6min⁃Toxicgasproduceindex.由表4可见,DOPOMPC/APP阻燃的试样EP1较EP0除TSPI6min略有升高外,其余三项指数分别下降78.5%㊁28.9%㊁10.9%,表明DOPOMPC/APP虽降低了材料对热反应能力,但抑烟效果并不理想;而DO⁃POMPC/APP/MEL阻燃的的EP2 EP8体系四项指数均有不同程度降低,随MEL比例增加整体呈现先增后减的趋势,FGI最低降至0.73kW㊃m-2㊃s-1,TSPI6min最低降至2.32m2㊃g㊃kg-1㊃s-1;其中EP3综合效果最佳,四项燃烧性能指数较EP0分别降幅87.6%㊁30.8%㊁4.8%㊁60.5%,较EP1分别降幅42.0%㊁2.8%㊁9.6%㊁55.7%,可见相较DOPOMPC/APP/EP阻燃体系,MEL的加入使材料火势蔓延㊁火灾中放热量㊁烟气和有毒气体生成得到进一步遏制.因此适量MEL可与DOPOMPC/APP呈现出良好协同效果,形成优质膨胀炭层,隔热㊁隔氧,降低环氧树脂火灾危险性.2.3㊀力学性能分析表6为复合材料力学性能试验结果.由于DO⁃POMPC/APP阻燃体系与基体间极性相差较大,难以相容,EP1各项力学参数严重下降,拉伸强度㊁断裂伸长率㊁弯曲强度及弯曲模量㊁冲击强度较EP0分别降幅68.4%㊁85.1%㊁68.0%㊁16.7%㊁75.4%;MEL的加入使DOPOMPC/APP/MEL阻燃的EP2 EP8试样各项力学性能均有大幅度提高,且随MEL比例增加呈现先增大后减小的趋势;其中EP3的力学性能增幅最大,与EP1相比,拉伸强度㊁断裂伸长率㊁弯曲强度㊁弯曲模量和冲击强度分别提高了1.3倍㊁3.6倍㊁79.4%㊁56.6%和2.5倍,表明MEL的引入不仅改善了阻燃环氧树脂的弹性,而且提高了体系韧性.这可能是由于三聚氰胺与共混物的分子链产生了物理缠结,当外力作用时,基体通过产生银纹而吸收部分能量,起到了增韧效果.表6㊀纯EP及DOPOMPC/APP/MEL/EP阻燃体系力学性能测试数据样品拉伸强度/MPa断裂伸长率/%弯曲强度/MPa弯曲模量/MPa冲击强度/(kJ㊃m-2)EP0140.105.45286.2846.0926.40EP144.330.8191.5538.406.49EP288.673.00156.9844.0513.07EP3102.193.75164.2360.1522.63EP457.271.67146.2545.2020.73EP543.281.37125.1040.1617.79EP650.051.43127.8652.8120.76EP754.812.15127.2858.6014.69EP857.742.04120.4654.8211.542.4㊀炭层宏观及微观形貌分析2.4.1㊀膨胀炭层宏观形貌分析图4为EP0㊁EP1㊁EP3炭层宏观形貌.膨胀阻燃材料在燃烧过程中能否生成优质㊁高效炭层,是影响其阻燃效果的关键.由图4可见,EP0炭层略有膨胀,但多处破损,无法形成有效覆盖;相比之下,DOPOMPC/APP阻燃下EP1燃烧后形成的炭层致密坚硬,体积膨胀较大,可有效隔热隔氧[6];㊃17㊃第3期王会娅,等:环状磷腈/聚磷酸铵/三聚氰胺膨胀阻燃环氧树脂研究加入DOPOMPC/APP/MEL体系的EP3炭层呈圆锥状,均匀覆盖于材料表面,体积㊁致密度较EP1进一步提高,MEL作为气源分解释放大量气体促进炭层迅速膨胀,蓬松多孔的结构使基体与炭层表面存在一定温度梯度,基体表面温度较火焰温度低得多,减缓了环氧树脂进一步降解并释放可燃性气体的可能性,同时隔绝了外界氧的进入,从而在相当长的时间发挥了良好的阻燃效应.(a)E P0(b)E P1(c)E P3图4㊀EP0、EP1和EP3的炭层宏观形貌2.4.2㊀膨胀炭层微观形貌分析图5 图7为EP0㊁EP1和EP3炭层微观形貌.由图可见,EP0炭层表面凹凸多孔,放大500倍的图片中炭层薄弱难以有效隔热隔氧;EP1炭层较EP0致密厚实,呈片层状且相互粘连,这是因为APP作为酸源分解㊁脱水形成偏磷酸或聚偏磷酸,其中一部分附着于材料表面使粘度增加,进而形成致密有效的炭层[6];EP3炭层致密㊁连续,有许多凹陷区域,这是因为MEL㊁DOPOMPC与APP组成的三元膨胀体系在受热时分解生成大量NH3㊁水蒸气及其他气体没有突破炭层阻隔,留在基体内部使得炭层内表面出现凹陷区域;与EP1炭层相比,EP3炭层表面结构更为均匀,呈现为一个整体,表明MEL与DOPOMPC/APP之间协同作用明显,能够充分发挥炭层隔热㊁隔氧㊁抑烟作用,从而提高环氧树脂的阻燃性能.(a)E P0(低倍)(b)E P0(高倍)图5㊀EP0燃烧后的SEM图片(b)E P1(高倍)(a)E P1(低倍)图6㊀EP1燃烧后的SEM图片㊃27㊃材㊀料㊀科㊀学㊀与㊀工㊀艺㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第24卷㊀(a)E P3(低倍)(b)E P3(高倍)图7㊀EP3燃烧后的SEM图片3㊀结㊀论1)制备了DOPOMPC/APP/MEL/EP阻燃复合材料,固定阻燃体系总添加量25%和DO⁃POMPC/APP为1/1,改变MEL组分,添加2%的MEL(EP3)阻燃体系的氧指数达到35.0%.2)锥形量热测试实验表明,DOPOMPC/APP/MEL/EP(PE3)火灾危险性最低,其pk-HRR㊁av-HRR㊁av-EHC㊁av-CO较纯PE0分别降低88.3%㊁76.2%㊁52.1%㊁和61.1%,呈现出良好的抑热抑毒效果.扫描电镜分析表明DOPOMPC/APP/MEL/EP燃烧形成的炭层致密,阻隔效应强.3)力学性能测试表明,DOPOMPC/APP/MEL/EP阻燃复合材料物理机械性能得到有效改善.参考文献:[1]㊀陈胜,李光斗,桂明胜等.含磷腈衍生物阻燃粘胶纤维的结构与性能[J].合成纤维工业,2006,29(2):33-36.CHENsheng,YEGuangdou,GUIMingsheng,etal.Struetureandpropertiesofflame⁃retardantviscoserayoncontainingphosphazenederivatives[J].ChinaSyntheticFiberindustry,2006,29(2):33-36.[2]㊀杨连成,陶再洲,钟晓萍等.反应型DOPO基阻燃剂在环氧树脂中的应用[J].热固性树脂,2008,23(6):38-44.YANGLiancheng,TAOZaizhou,ZHONGXiaoping,etal.Applicationsofreactive⁃typeDOPObasedflameretardantinepoxyresins[J].Thermosettingresin,2008,23(6):38-44.[3]㊀MAHaiyun,FANGZhengping.Synthesisandcarboniza⁃tionchemistryofaphosphorous⁃nitumescentflameretard⁃ant[J].ThermochimicaActa,2012,(543):130-136.[4]㊀XUJZ,HEZM,WUWH.etal.Studyofthermalpropertiesofflameretardantepoxyresintreatedwithhexakis[p⁃(hydroxymethyl)phenoxy]cyclotriphosp⁃hazene[J].Therm.Anal.Calorim.2013,114(3):1341-1350.[5]㊀WANGX,HUY,SONGL.etal.Preparation,flameretardancyandthermaldegradationofepoxythermosetsmodifiedwithphosphorous/nitrogen⁃containingglycidylderivative[J].PolymersforAdvancedTechnologies,2012,23(2):190-197.[6]㊀CHENYANGYW,LEEHF,YUANCY.Aname_retardantphosphateandcyclotriphosphazenecontainingepoxyresin:synthesisandproperties[J].JPolymSciA:PolymChem,2000,(38):972-981[7]㊀KLINKOWSKIChristoph,ZANGLin,DORINGMan⁃fred.DOPO⁃basedflameretardants:synthesisandflameretardantefficiencyinpolymers[J].MaterialsChina,2013,32(3):145-158[8]㊀王宝仁,杨连成.DOPO衍生物在阻燃环氧树脂中的应用研究进展[J].化工新型材料,2010,38(3):51-54.WANGBaorenYANGLiancheng.Theprogressintheappli⁃cationsofDOPOdirevativesinflameretarantepoxyreins[J].NewChemicalMatierials,2010,38(3):51-54.[9]㊀卢林刚,陈英辉,王舒衡等.新型磷氮膨胀性阻燃剂/OMMT协同阻燃环氧树脂的制备及阻燃性能[J].材料研究学报,2014,28(6):455.LULingang,CHENYinghui,WANGShuheng,etal.Preparationandflameretardancyofintumescentflame⁃retardantepoxyresin[J].ChineseJournalofMaterialsResearch.2014,28(6):455.[10]卢林刚,王晓,杨守生等.单组分磷-氮膨胀阻燃剂的合成及成炭性能[J].高分子材料科学与工程,2012,28(7),10-13.LULingang,WANGXiao,YANGShousheng,etal.SynthesisandcharringofarborescentmonomolecularP-Nintumescentflameretardant[J].PolymerMaterialsScienceandEngineering,2012,28(7),10-13.[11]杨守生,王学宝,陈英辉等.膨胀阻燃剂/CaCO3协效阻燃环氧树脂[J].灭火剂与阻燃材料,2013,32(2),194-196.YANGShousheng,WANGXuebao,CHENYinghuietal.Intumescentflameretardants/CaCO3synergisticflameretardantepoxyresin[J].FireExtinguishingAgentandFlameRetardantMaterial,2013,32(2),194-196.[12]杨守生.星状单分子磷氮膨胀型阻燃剂在防火涂料中的应用研究[J].涂料工业,2014,44(11),46-51.YANGShousheng.Applicationofstar⁃shapedunimolecu⁃larintumescentflameretardantinfireproofcoatings[J].PaintandCoatingIndustry,2014,44(11),46-51.[13]JAHROMIS,GABRIELSEW,BRAMA.Effectofmelaminepolyphosphateonthermaldegradationofpolyamides:acombinedX⁃raydiffractionandsolid⁃stateNMRstudy.Polymer,2003,44(l):25-37.[14]LIUMeifang,LIUYuan,WANGQi.,Flameretardedpolypropylenewithmelaminephosphateandpentaeryth⁃ritol/polyurethanecompositecharringagent.Macromo⁃lecularMaterialsandEngineering,2007,292,206-213.[15]SUZUKIK,SHISHIDOK,SHINDOM.Melaminepolymetaphosphateand.proeessforitsproduction.USPatent,6008349.1999.(编辑㊀张积宾)㊃37㊃第3期王会娅,等:环状磷腈/聚磷酸铵/三聚氰胺膨胀阻燃环氧树脂研究。

新型膨胀型阻燃剂的合成

新型膨胀型阻燃剂的合成
本文介绍了一种新型膨胀型阻燃剂的合成。

该材料由多种有机物、矿物质物质以及化学试剂经合成而成,其中,有机物主要由烷基氯化铵、丁二醇组成,而矿物质物质主要是硅酸盐类物质,此外,聚苯乙烯也被用作阻燃剂,最后,利用有机变性剂集中新型膨胀型阻燃剂。

该合成过程遵循环境友好原则,材料的物化性能满足用户的使用要求,具有良好的热稳定性和高级阻燃性能,可用于制造阻火和绝缘电缆,也可用于涂料、塑料、助焊剂、橡胶制品等多个领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

膨胀型阻燃剂的研究与应用许晶晶,肖卫东,郝惠军,曹杰(湖北大学化学与材料科学学院,湖北武汉430062)摘要综述了两类膨胀型阻燃剂(P-N膨胀型阻燃剂和膨胀型石墨)在聚烯烃、聚氨酯、环氧树脂和丙烯酸酯中的研究与应用情况。

关键词:膨胀型石墨;P-N膨胀型阻燃剂;自膨胀型阻燃剂Study and Application of Intumescent Flame-retardantXU Jing-jing,XIAO We-i dong,HAO Hu-i jun,CAO Jie(F aculty of Chemistry and M aterial Sci.,Hubei U niversity,Wuhan430062,China)Abstract:The studies and applications of tw o kinds of intumescent flame-retardant(P-N intumescent flame retardant and expandable g raphite)in polyolefin,polyurethane,epoxy resins and polyacrylate are summarized.Keywords:Ex pandable Graphite;P-N Intumescent Flame Retardant;Sel-f intumescent Flame Retardant膨胀型阻燃剂成为近几年阻燃领域最为活跃的研究热点之一,这类阻燃剂有良好的阻燃性能,且低烟、低毒,被视为替代传统阻燃剂(特别是卤-锑体系)、实现阻燃剂无卤化的一个有效途径,符合环保的需要。

膨胀型阻燃剂包括P-N膨胀型阻燃体系和膨胀型石墨阻燃剂(EG)。

本文综述了P-N型膨胀阻燃体系和膨胀型石墨阻燃剂(EG)在聚烯烃、聚氨酯、环氧树脂和丙烯酸酯中的研究与应用情况。

1P-N型膨胀阻燃体系的应用P-N型膨胀阻燃体系研究地较早,通常又分为混合型和自膨胀型两种。

混合型膨胀型阻燃剂即酸源、碳源、气源三组分分别由三种物质承担。

自膨胀型膨胀阻燃剂,集酸源、气源、碳源多种功能为一体,是膨胀型阻燃剂中唯一防火成分,热稳定性更好、水溶性更低,是人们所期望的防火剂,因此自膨胀单体的研究也是膨胀型阻燃剂发展方向之一。

111用于聚烯烃的阻燃烯烃的阻燃过去常采用含卤阻燃剂,但是含卤阻燃剂在燃烧时产生大量烟雾及含卤的有毒有害气体造成二次危害,危及人们的生命财产安全,故现在其阻燃朝着无卤方向发展。

以聚磷酸铵(APP)为基础的P-N膨胀型阻燃体系是当前无卤阻燃聚烯烃研究的热点与方向。

Shih hsuan Chiu和Wun Ku Wang[1]研究了APP、季戊四醇(PER)、三聚氰胺组成的混合型膨胀体系填充的电线电缆用聚丙烯(PP)的阻燃动力学,通过分析不同APP、PER、三聚氰胺的配比对材料的点燃时间(TTI)、失重质量分数(BP)、失重速率(ML R)、散热速率(H RR)、氧指数(L OI)、CO的浓度等性质的影响,发现当APP、PER、三聚氰胺的份数分别为23、14、13时,与未阻燃的PP相比,TTI由24增至36,BP由100%减少为9412%,ML R由0106g# s-1减少为01024g#s-1,HR R由119kw#m-2减少为6718kw#m-2,其L OI值由纯PP的1718%增为3514%,燃烧产生的CO的平均值由4116@10-5减少为2104@10-5,表明它是提高PP耐燃性能的行之有效的无卤低烟阻燃剂。

冯建新[2]等研究还发现红磷的加入对PP/APP/ PER/三聚氰胺体系耐燃性能有很大的提高,当PP/ APP/PER/三聚氰胺/红磷为100/30/10/1/5时,材料的L OI高达4012%,比没加红磷时的L OI值增加了8%,这是由于红磷的加入,增加了膨胀型阻燃体系的酸源,促使PP加速脱水炭化所致。

#210#塑料工业CHI NA P LAST ICS IN DU ST RY第33卷增刊2005年5月作者简介:许晶晶,女,1978年生,硕士在读,主要从事塑料阻燃剂方面的研究。

xjj780626@1631com马志领等[3]研究了自膨胀阻燃剂(磷酸-季戊四醇-三聚氰酰胺聚合物)的合成条件及膨胀效果,测定了其阻燃的聚丙烯的氧指数、水平燃烧性能,实验结果说明膨胀型阻燃剂的膨胀效果与组分有关,五氧化二磷B季戊四醇B三聚氰胺为(115~210)B1B(213~217)的磷酸-季戊四醇-三聚氰酰胺聚合物应用于PP时,阻燃效果最好。

欧育湘[4]研制合成了2,4,8,10-四氧-3,9二磷螺环[5,5]十一烷-3,9二氧-3,9-二三聚氰胺盐(CN-329),将其用于PP的阻燃,发现:CN-329可适用于PP,它在PP加工温度下稳定,不迁移,所得阻燃PP 密度低(1103g/cm3),且具有良好电气性能。

用阻燃剂CN-329阻燃的PP,当添加量为1912%时,阻燃等级可达U L94V-1级,氧指数可达2910%,并有效地克服了PP的滴落现象。

以30%的CN-329阻燃PP,材料的氧指数达34%,阻燃等级达UL94V-0级,而生烟性与未阻燃PP不相上下。

金胜明[5]以季戊四醇、氧氯化磷和三聚氰胺为原料,成功地合成了季戊四醇双磷酸二氢酯三聚氰胺盐(2,2-羟甲基-1,3-丙二基双磷酸二氰酯三聚氰胺盐),并测定了该化合物对聚丙烯的阻燃性能。

研究发现:当聚丙烯/阻燃剂的质量分别为30/9时,L OI 值达3415%,在燃烧时无烟、无熔滴,说明该阻燃剂具有良好的阻燃抑烟效果。

这主要是因为该阻燃剂的含氮量增加,在燃烧时的N2的生成量增加,形成一个良好的氧气阻隔层。

另外,协效剂的加入可以有效地提高阻燃性能。

最近几年关于加入各种协效剂用于增加膨胀阻燃剂的阻燃效果的研究开展的较多,常见的协效剂有滑石, M n和Zn的混合物,硼酸锌,Fe2O3,MoO3,各种沸石和分子筛,BSil(硼硅氧烷弹性体)、SiW12(硅钨酸)等。

P Anna等[6]研究了Bsil对APP+PER的膨胀阻燃剂用于PP的阻燃时的协效作用,通过L OI值和锥形量热计实验测定了协效剂Bsil最佳浓度。

研究发现当Bsil含量为为1%~115%、其中硼酸盐在弹性体中的最佳含量为80%时,可有效地提高PP熔体的粘性和形成的膨胀炭层在高温下的可塑性,材料的L OI 值最高可达40%,有良好的耐燃性。

Q iang Wu,Baojun Qu1[7]研究了硅钨酸(SiW12)对氮磷膨胀阻燃剂NP28用于PP的阻燃时的协效作用,通过L OI值、UL-94、TGA、FTIR、LRS(激光拉曼图谱)、SEM(扫描电镜)等测试得到协效剂SiW12的最佳含量。

研究发现:FT IR谱图证明SiW12的加入,有效地促进了分解产生的炭层中P)O)P,P)O) C,和PO3的形成。

LRS和SEM证实含SiW12的PP/NP28可以形成更加致密的膨胀炭层。

TGA曲线显示SiW12的加入,使PP/NP28体系的热稳定性增加,在500e以上时PP/NP28/SiW12体系比PP/ NP28有更高的稳定性,并且成炭残渣前者(11%)比后者(4%)高。

LOI值测试发现当加入的SiW12的含量为115%时,NP28阻燃的PP耐燃性最好,L OI值高达3415%,比不含SiW12(3015%)增加了4。

韦平,王建祺[8]研究了分子筛(Zeolite4A、13X、Mordenite、ZSM25)在聚磷酸铵/季戊四醇(APP/ PER)膨胀阻燃剂中的热降解行为。

TG研究表明, APP/PER体系加入分子筛后,体系的热失重速率峰值降低,热失重速率峰发生了位移。

将APP/PER-Zeo lite作用于PP形成的膨胀阻燃体系,PP参与了成炭, 500e后残炭量显著增加,高于550e时残炭稳定。

实验证实了在高温下,分子筛可作为膨胀阻燃体系的催化剂,能促进体系交联和成炭,可使体系的阻燃行为得到改善,其中4A分子筛对PP的协同作用最大, L OI值达37%,比纯PP提高了9个单位。

112用于聚氨酯的阻燃聚氨酯-磷酸盐的结合形成了一种膨胀阻燃体系,其中磷酸盐为碳源和气源,聚氨酯本身可以充当碳源的成分。

但是由于磷酸盐的水溶性,限制了其应用,磷酸盐的微胶囊化可以解决这一问题。

Stephane Giraud等[9]研究了聚氨酯包覆的磷酸二铵(DAHP)用于织物的聚氨酯涂料的阻燃,用TGA 实验比较了微胶囊化DAHP、聚氨酯/微胶囊化DAH P涂料和涂有这种涂料的织物的热分解,发现添加聚氨酯/微胶囊化DAH P的热稳定性增加,特别是在聚氨酯与微胶囊化DAH P的比例在60/40时。

用锥形量热计测定了聚氨酯/微胶囊化DAHP涂覆的织物的燃烧行为,发现用聚氨酯膜包覆的磷酸二胺有很好的阻燃性。

这种涂料的突出的优势在于用聚氨酯作包覆材料,使得阻燃剂可以与涂料的基料很好地相容,是一种持久的、有效的膨胀阻燃涂料。

另外,以聚氨酯为基料,加入P-N膨胀型阻燃剂和其它助剂制得各种膨胀型防火涂料也是近几年研究的热点。

东华大学的Jincheng Wang等[10]研制出一种新型膨胀阻燃剂(IFR),用红外、MAS-NMR13C谱仪和元素分析表征了其性质。

并将其加入聚氨酯清漆中,用热分析、L OI值、锥形量热计和SEM分别研第33卷增刊许晶晶等:膨胀型阻燃剂的研究与应用#211#究了IFR/PU系涂料的热稳定性、阻燃性及燃烧过程中膨胀炭层的结构。

另外,还研究了IFR/PU系涂料溶液的流变学和IFR/PU系涂料干涂层的硬度、粘附力、柔韧性等力学性能。

发现膨胀阻燃剂的降解产物聚磷酸化合物可以与PU反应形成更多的相对更稳定的高温含碳物质,这种物质在600~700e分解形成高于700e温度下稳定的含碳残渣,从而增进了PU 的热稳定性、成炭能力和阻燃性。

流变学的研究发现膨胀阻燃剂加入涂料溶液中,增加了溶液的假塑性和触变性。

对干涂层的力学性能的研究发现IFR的加入后,涂层的硬度增加了,粘附力和柔韧性减少了。

曹克广[11]对透明防火涂料进行了初步的研究与探讨,主要探讨了膨胀型防火涂料的组成配方与燃烧性能的关系,从实验结果看聚氨酯、双季戊四醇、聚磷酸铵、氯化石蜡、三聚氰胺、二氧化钛等为主要原料合成的防火涂料性能较好,涂层厚度012~013mm,木板炭化时间最长可达到25~30min,防火性能达到或接近国家一级防火涂料标准。

李世荣[12]研究了装饰用聚氨酯、酚醛、醇酸型透明膨胀防火涂料的配方及性能,探讨了发泡剂、脱水成炭催化剂、成炭剂三者的配比及用量对防火涂料性能的影响。

实验发现选用聚氨酯清漆作为漆基料时,选用m(脱水成炭催化剂)B m(成炭剂)B m(发泡剂)=6B1B3、氯化石蜡作为成炭剂、m(填料)B m (漆料)=7B3的防火涂料的防火性能最佳。

相关文档
最新文档