第五章 受弯构件正截面的性能与计算

合集下载

T形截面受弯构件正截面承载力计算

T形截面受弯构件正截面承载力计算

1
fcb'f
h' f
M
1
fcb'f
h' f
h0
h' f
2
•说明仅仅翼缘高度内的混凝土受压尚 不足以与钢筋负担的拉力或弯矩设计值 M相平衡,中和轴将下移。
•即 x h'f
•属第二类T形截面
T形截面的基本计算公式及适用条件
• 第一类T形截面的基本计算公式及适用条件 • 1、计算公式
2、适用条件
x=h’f
由平衡条件得

f y As
1
fcb'f
h' f

M
1
f c b Leabharlann fh'fh0
h
' f
2
说明钢筋所承受的拉力小于或等于全部翼缘高度混凝土受压时所 承受的压力,不需要全部翼缘混凝土受压,足以与弯矩设计值 M相平衡 , 此时
x
h
' f
属于第一类T形截面
图 两类T形截面的界限
如果
f y As
主讲:
知识点:
• 1、T形截面的分类和判别 • 2、基本公式及适用条件
• 3、基本公式的应用
T形截面的分类和判别
• T形梁的判别
按照构件破坏时,中和轴位置的不同,T形截面可分为两类:
第一类T形截面:中和轴在
翼缘内,即 x h'f
第二类T形截面:中和轴在
梁肋内,即 x h'f
• 当中和轴恰好位于翼缘下边缘时,为两类T形梁的界限情况,此时
(方法一)直接计算法: 未知数个数 可直接解方程求解
若 x bh0 时,则满足条件;
如 x bh0 时,则为超筋梁,

混凝土结构设计原理 课件 第5章-受剪

混凝土结构设计原理 课件 第5章-受剪

f yv ft
rsvfyv/ft
fc 1 (0.2~0.25c f -0.7) 1.25 t
矩形、T形和工形截面的一般受弯构件
第五章 受弯构件斜截面受剪承载力
Vu ft bh0
fc ft
0.2~0.25c
Vu
0.94 0.70 0.68 0.44 0.24
f t bh 0

1 . 75
1
Asv1 S
V
bh 0
b
r sv Asv bs Nhomakorabea
nA sv 1 bs
(2)配箍率对承载力的影响
rsvfyv
当配箍在合适范围时,受剪承载力随配箍量的 增多、箍筋强度的提高而增长,且呈线性关系。
第五章 受弯构件斜截面受剪承载力
4、纵筋配筋率
纵筋配筋率越大, 剪压区面积越大,
V
f t bh 0
纵筋的销栓作用越大,
第五章 受弯构件斜截面受剪承载力
第五章 受弯构件斜截面承载力 5.1 概述
受弯构件有三类破坏形态:
正截面受弯破坏(M)
斜截面受剪破坏(M、V)
斜截面受弯破坏(M、V)
计算和构造保证
构造保证
第五章 受弯构件斜截面受剪承载力
▲本章要解决的主要问题
建工
0S R
道桥
V Vu
Vu ?
0S R
2、混凝土强度
(1)为什么影响承载力?
剪压破坏是由于剪压区混凝土达到复合应力状态 下的强度而破坏; 斜拉破坏是由于混凝土斜向拉坏而破坏; 斜压破坏是由于混凝土斜向短柱压坏而破坏。 (2)如何影响承载力? 砼强度越大,抗剪强度也越大。
第五章 受弯构件斜截面受剪承载力

混凝土受弯构件正截面承载力计算

混凝土受弯构件正截面承载力计算
h0—有效高度。 1.最大配筋率及界限相对受压区高度
r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y

x
h0

r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。

第五章受弯构件斜截面承载力的计算

第五章受弯构件斜截面承载力的计算

第五章受弯构件斜截面承载力的计算内容的分析和总结钢筋混凝土受弯构件有可能在弯矩W和剪力V共同作用的区段内,发生沿着与梁轴线成斜交的斜裂缝截面的受剪破坏或受弯破坏。

因此,受弯构件除了要保证正截面受弯承载力以外,还应保证斜截面的受剪和受弯承载力。

在工程设计中,斜截面受剪承载一般是由计算和构造来满足,斜截面受弯承载力则主要通过对纵向钢筋的弯起、锚固、截断以及箍筋的间距等构造要求来满足的。

学习的目的和要求1.了解斜裂缝的出现及其类别。

2.明确剪跨比的概念。

3.观解斜截面受剪破坏的三种主要形态。

4.了解钢筋混凝土简支梁受剪破坏的机理。

5.了解影响斜截面受剪承载力的主要因素。

6.熟练掌握斜截面受剪承载力的计算方法及适用条件的验算。

7.掌握正截面受弯承载力图的绘削方法,熟悉纵向钢筋的弯起、锚固、截断及箍筋间距的主要构造要求,并能在设计中加以应用。

§5-1 受弯构件斜截面承载力的一般概念一、受弯构件斜截面破坏及腹筋布置1.梁受力特点CD段:纯弯段正截面受弯破坏,配纵向钢筋受剪破坏:配腹筋(箍筋和弯筋)AC段:弯剪段斜截面受弯破坏:构造处理图5-1 无腹筋梁斜裂缝出现前的应力状态2.腹筋的布置·将梁中箍筋斜放与斜裂缝正交时受力状态最佳。

但施工难实现;难以适应由于异号弯矩、剪力导致斜裂缝的改变方向。

·在支座附近弯矩较小之处可采用弯起部分纵筋以抵抗部分剪力。

3.关于腹筋布置的规定⑴梁高h<150mm 的梁可以不设置箍筋。

⑵h=150~300mm 时,可仅在梁端各1/4跨度范围内配置箍筋。

当构件中部1/2跨度范围内有集中荷载时,应沿全长布置箍筋。

⑶h>300mm 时,全跨布置箍筋。

二、钢筋混凝土梁开裂前的应力状态1.应力计算方法:接近弹性工作状态,可根据材力公式计算梁中应力。

钢筋按应变相等、合力大小及作用点不变的原则换算成等效混凝土面积αE A s ,把钢筋混凝土的截面变成混凝土单一材料的换算截面,其几何特征值A 0、I 0、S 0、y 0。

T形截面受弯构件正截面承载力计算

T形截面受弯构件正截面承载力计算

T形截面受弯构件正截面承载力计算首先,我们需要确定T形截面的几何形状参数。

T形截面由两个部分组成,一部分是腿部,另一部分是横梁。

我们需要测量腿部和横梁的宽度b和高度h,以及腿部和横梁的厚度t1和t2接下来,我们需要确定材料的特性参数。

材料的特性参数包括弹性模量E和抗弯强度fy。

弹性模量表示材料在受应力作用下产生的变形程度,抗弯强度表示材料在受弯应力作用下的最大承载能力。

然后,我们需要确定加载方式。

T形截面受弯构件可以分为两种加载方式:一种是在腿部施加荷载,另一种是在横梁施加荷载。

对于腿部受载的情况,我们可以先假设T形截面的两个腿部均受到均匀荷载q的影响。

然后利用梁的理论计算方法,根据T形截面的几何形状和材料特性,计算出腿部的正截面承载力。

根据梁的理论计算方法,腿部受均匀荷载q的最大弯矩应为最大正截面弯矩M。

根据梁的力学方程M=E·I/y,其中E为弹性模量,I为截面的惯性矩,y为截面上其中一点的距离截面重心的垂直距离。

梁的截面惯性矩I可以根据截面几何形状的性质计算得到。

腿部的正截面承载力可以根据下式计算:P = fy·A = fy·(h1·t1 + h2·t2)其中,fy为材料的抗弯强度,A为截面的面积,h1和h2为腿部的高度,t1和t2为腿部的厚度。

最后,我们还需要根据截面几何形状的性质计算出腿部的扭转常数J和抗扭矩Wt。

扭转常数J表示截面抵抗扭转变形的能力,抗扭矩Wt表示截面的最大承载能力。

通过计算这两个参数,我们可以得到T形截面的抗扭矩Wt。

综上所述,我们可以通过测量T形截面的几何形状参数,确定材料的特性参数,采用梁的理论计算方法,计算出T形截面受弯构件的正截面承载力。

这将有助于工程师评估T形截面受弯构件的结构安全性,并进行合理的设计和优化。

钢筋混凝土受弯构件正截面承载力计算

钢筋混凝土受弯构件正截面承载力计算
h0 —— 截 面 有 效 高 度 , h0=h–as 单 排 布 置 钢 筋 时 : as=35mm 双排布筋时:as=50~60mm 对于板 : as=20mm
由相对界限受压区高度b可推出最大配筋率 b及单筋矩形截面的最大受弯承载力Mumax。

As bh0

b
1
f
fc
y
4.3.5 适筋和少筋破坏的界限条件
min.h/h0 b min —— 最小配筋率, 根据钢筋混凝土梁的破坏弯
矩等于同样截面尺寸素砼梁的开裂弯矩 确定的。
确定的理论依据为:
Mu = Mcr
《规范》对min作出如下规定:
(1)受弯构件、偏心受拉、轴心受拉构件其 一侧纵向受拉钢筋的配筋百分率不 应小于0.2%和0.45ft/fy中的较大值 ;
梁的宽度和高度
宽度 :b = 120、150、(180)、200、(220)、 250、300、350、…(mm)
高度:h=250、300、350、400、……、750、800、 900、…(mm)。
二、 截面尺寸和配筋构造
2. 板
c15mm d
分布钢筋
h0
h
d 6 ~ 12mm
h0 h 20
(2)卧置于地基上的混凝土板,板的受拉钢 筋的最小配筋百分率可适当降低, 但不应小于0.15%。
4.4 单筋矩形截面的承载力计算
4.4.1 基本计算公式及适用条件
1fc
x
Mu
C=1fc bx
Ts = fyAs
1. 基本计算公式
N 0
M 0
1 fcbx fyAs (3 - 20)
架立
箍筋
弯矩引起的 垂直裂缝

第五章 受弯构件的斜截面受弯承载力


表 4-3 梁中箍筋最小直径(mm) 梁高 h(mm) h≤250 250<h≤800 h >800 箍筋直径 4 6 8
5.5 斜截面受剪承载力的计算方法
⑴ 支座边缘截面(1-1); ⑵ 腹板宽度改变处截面(2-2); ⑶ 箍筋直径或间距改变处截面(3-3); ⑷ 受拉区弯起钢筋弯起点处的截面(4-4)。
为防止弯筋间距太大,出现不与弯筋相交的斜裂缝,使弯筋不能发挥作用,《规 范》规定当按计算要求配置弯筋时,前一排弯起点至后一排弯终点的距离不应大于 表中V>0.7ftbh0栏的最大箍筋间距smax的规定。
纵筋的弯起
1材料抵抗弯矩图
由荷载对梁的各个正截面产生的弯矩设计值M所绘制的图形,称为
荷载效应图,即M图。钢筋和混凝土共同工作,按照既保证正截面抗弯 强度又保证斜截面抗弯强度要求实际配置的纵向钢筋所画出的反映梁 正截面的抵抗弯矩图,称为材料抵抗弯矩图Mu。
截面设计
仅配箍筋梁的设计计算
钢筋混凝土梁一般先进行正截面承载力设计,初步确定截面尺寸和纵向钢筋后, 再进行斜截面受剪承载力设计计算。 ◆ 具体计算步骤如下: ⑴验算截面限制条件,如不满足应:加大截面尺寸或者混凝土等级。 ⑵如V<Vc,如果满足,按构造配置箍筋。 ⑶如0.25fcbh0 >V> Vc ,? 1.75
hw 4 时 V 0.25c fcbh0 当 b hw 6 时 V 0.20c fcbh0 当 b hw 6 时,按直线内插法取用 当4 b
二、最小配箍率及配箍构造
◆ 当配箍率小于一定值时,斜裂缝出现后,箍筋因不能 承担斜裂缝截面混凝土退出工作释放出来的拉应力, 而很快达到屈服,其受剪承载力与无腹筋梁基本相同。 ◆ 当剪跨比较大时,可能产生斜拉破坏。 ◆ 为防止这种少筋破坏,《规范》规定当V>0.7ftbh0 时,配箍率应满足

5第五章受弯构件斜截面承载力计算


0.24 1.27 210
0.145%
故:SV SV,min
⑥求VCS(混凝土与箍筋承担的抗剪承载能力设计值 ) VCS=0.7ft bh0+1.25fyvASVh0 /S
=0.7×1.27×250×515+1.25×210×100.6 ×515/200
=182.8(KN )
⑦求ASb(取弯起角度为450)
nAsv1 V 0.7 ftbh0 0.8 f y Asb sin
s
1.25 f yvh0
nAsv1
V
1.75
1.0
ft bh0
0.8 f y Asb
s in
s
1.0 f yvh0
然后验算弯起点的位置是否满足斜截面承载力的 要求。
例1 如图所示一矩形截面简支梁,b×h=250×550mm2,混凝 土等级C25,纵向受力钢筋HRB400级,承受均布荷载设计值 q=80KN/m,按正截面受弯承载力计算配置的纵向受力钢筋为 4 25。试求箍筋用量。
(2) 剪压破坏
破坏前提:剪跨比适中(λ=1~3), 箍筋配置适量,配箍率ρsv适量;
(3) 斜拉破坏
破坏前提:剪跨比较大(λ>3), 箍筋配置过少,配箍率ρsv较小。
受剪破坏三种形态
(1)斜压破坏
破坏前提:
λ<1,ρsv较大
破坏特征: 首先在梁腹出现若干
条较陡的平行斜裂缝,随 着荷载的增加,斜裂缝将 梁腹分割成若干斜向的混 凝土短柱,最后由于混凝 土短柱达到极限抗压强度 而破坏。
钢筋情况: 箍筋应力达到屈服强度
甚至拉断 破坏性质:属于脆性破坏
防止斜拉破坏: 通过控制最小配箍率。
5.2 受弯构件斜截面受剪承载力计算
5.2.1 斜截面受剪承载力计算公式及适用条件

混凝土结构及砌体结构-第五章受弯构件斜截面承载力计算


Asv 1.75 V Vcs f t bh0 f yv h0 1.0 s
注意:
1.5 3
17
2.公式的适用范围 (1)、上限值--最小截面尺寸和最大配箍率:
hw 当 4 时,V 0.25 c f cbh0 b hw 当 6 时,V 0.2 c f c bh0 b hw 当4 6 时,按线性内插法取用 b
250 300 350 500
150 200
24
3.弯起钢筋的要求
1.画出弯矩图和正截面受弯承载力图; 2.根据各根钢筋面积大小按比例分配受弯承载力图,
弯起的钢筋画在外面; 3.找出要弯起钢筋的充分利用点和不需要点; 4.从充分利用点向外延伸0.5h0,作为弯起点,并 找出弯起钢筋与中和轴的交点。如该点在不需要点 的外面,可以,否则再向外延伸; 5.验算是否满足斜截面受剪承载力要求和其它构造 要求。
las≥15d(光面)
37
(2)中间支座直线锚固:
0.7la ≥l a
l ≥0.a7la
38
(3)中间支座的弯折锚固:
≥0.4la ≥0.4la
15d
39
(4)节点或支座范围外的搭接:
ll
40
5.4.5
箍筋的构造要求
单肢箍n=1
双肢箍n=2
四肢箍n=4
41
梁受扭或承受动荷载时,不得使用开口箍筋
45
46
19
-斜截面上弯起钢筋与构件纵向轴线的夹角。
2. 斜截面承载力计算步骤
⑴ 确定计算截面及其剪力设计值; ⑵ 验算截面尺寸是否足够; ⑶ 验算是否可以按构造配筋;
⑷ 当不能按构造配箍筋时,计算腹筋用量;
⑸ 验算箍筋间距、直径和最小配箍率是否 满足要求。

受弯构件正截面承载力计算原则

为防止少筋梁破坏,对矩形截面,截面所配钢筋面积应满足以下要求,即
工程结构
受弯构件正截面承载力计算原则
5) ξb的意义
适筋梁、超筋梁、界限配筋梁破坏时的正截面应变图
受弯构件正截面承载力计算原则 2.最大配筋率
受弯构件正截面承载力计算原则
1.4 适筋和少筋破坏的界限条件
最小配筋率ρmin是适筋梁和少筋梁的界限。 最小配筋率ρmin是根据梁破坏时所能承受的弯矩极限值Mu 等于同截面素混凝土梁所能承 受的弯矩Mcr (Mcr为按Ia 计算的开裂弯矩)确定的。而且在实际中又考虑了混凝土强度的离散性, 混凝土收缩和温度等不利影响,《混凝土规范》建议受弯构件按下式计算最小配筋率(附表10)
工程结构
受弯构件正截面承载力计算原则
1.1 基本假定
根据受弯构件正截面受弯性能的试验研究与分析,正截面受弯承载力应按下列四点基本 假定进行计算。
(1)截面应变保持平面,即平截面假定。构件正截面在梁弯曲变形后仍保持平面,即截面上 的应变沿截面高度为线性分布。
(2)不考虑混凝土的抗拉强度,即认为拉力全部由纵向受拉钢筋承担。这是因为大部分受 拉区混凝土开裂后退出工作,离中性轴较近的混凝土所承受的拉力很小,同时作用点又靠近中和 轴,产生的弯矩值很小。
设截面实际受压区高度为xc,等效矩形应力图的应力值为α1fc,等效后的换算受压区高度为 x,则有
受弯构件正截面承载力计算原则
1.3 适筋和超筋破坏的界限条件
1.相对界限受压区高度
1)相对受压区高度 2)界限破坏 3)相对界限受压区高度 4)ξb 的计算公式
受弯构件正截面承载力计算原则
相对界限受压区高度ξb
受弯构件正截面承载力计算原则受弯构件正截面承载力计算原则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档