(完整版)16变化的电磁场习题思考题

合集下载

电磁场与电磁波第四版课后思考题答案第四版全谢处方饶克谨高等教育出版社

电磁场与电磁波第四版课后思考题答案第四版全谢处方饶克谨高等教育出版社

电磁场与电磁波第四版课后思考题答案第四版全谢处方饶克谨高等教育出版社2.1点电荷的严格定义是什么?点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。

当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。

就可将带电体所带电荷看成集中在带电体的中心上。

即将带电体抽离为一个几何点模型,称为点电荷。

2.2研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的?常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。

2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?点电荷的电场强度与距离r的平方成反比;电偶极子的电场强度与距离r的立方成反比。

E/和E0所表征的静电场特性2.4简述/表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。

E0表明静电场是无旋场。

E2.5表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。

高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以与闭合面外的电荷无1关,即ES在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分ddVS0V布的电场强度。

2.6简述BB0表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线,J表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源B00和BJ0所表征的静电场特性。

2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。

安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和倍,即B0I如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。

dl2.8简述电场与电介质相互作用后发生的现象。

变化的磁场习题.

变化的磁场习题.

不变. 当 B 的电动势为零时, 线圈 A 和 B 之间的互感系数
[ ] (A) 一定为零
(B) 一定不为零
(C) 可以不为零
(D) 可能随时间变化
24.
用线圈的自感系数 L 来表示载流线圈磁场能量的公式
Wm=
1 2
LI2
[ ] (A) 只适用于无限长密绕螺线管
(B) 只适用于单匝圆线圈
(C) 只适用于一个匝数很多且密绕的螺绕环
(B) 单位长度的线圈匝数越多, L 越大 (C) 螺线管的半径越大, L 越大 (D) 充有铁磁质的 L 在比真空的大
19. 两个直径和长度均相同的长直螺线管 A、B 都只含有一层绕组, 其中 A 是由较细
的导线密绕而成, B 是由较粗的导线密绕而成..若绕组层的厚度可以
略去不计, 则自感较大的是
(D) 适用于自感系数一定的任意线圈
25. 两个有互感耦合的线圈 L 1 和 L 2 串联后等效于一个自感线圈, 该自感线圈的等效 自感为
[
] (A) L 1+L 2+2 M
(B) L 1+L 2-2 M
(C) L 1+L 2
(D) 不知联接方式, 不能确定
T8-1-25 图
26. 两个相同的线圈,每个线圈的自感均为 L.若将它们串联起来 并靠得很近,使每个线圈产生的磁通量全部通过另一个自感线圈, 且方 向相同.则系统的总自感系数为
(B) 磁铁所受的阻力越来越大
2
(C) 磁铁下落的加速度越来越大 (D) 磁铁下落的速度最后趋向一恒定值
15. 为了提高变压器的效率, 减少涡流损耗, 应采取的措施是
[ ] (A) 线圈低电阻
(B) 迭片铁芯
(C) 软磁铁芯
(D) 硬磁铁芯

《电磁场与电磁波》-习题及详细题解

《电磁场与电磁波》-习题及详细题解

$! $" $# !)( ")#) ! ( # $% !''$!$&&$"$(($#
, ' #4
)"标量场 & !!# ""# "#!",计算其梯度。 Nhomakorabea
解::106( &) 7! &
7!(#!"#") $!"(#""#!) $" $"求曲面 #!!# ""# 在点((,(,#) 处的法线方向。
···
689"!("#"
$! $" $#





)"! · ·!
· ·"
· ·#
!$#( #!$()
!"" !# ""# 4
&"(() 求标量函数 "!!# "#的梯度。 (#) "在一个指定方向的方向导数,此方向由单位矢量
槡 槡 槡 % $!" & $"" ' $#定出,求其在(#,%,() 点的方向导数值。 '4 '4 '4
预备知识:矢量分析习题及题解
!"给定三个矢量 !、"和 #如下:
!!$!"#$"$%$# "!$&$""$# #!'$!$#$#
求:(() $$。 (#) !$" 。 (%) !·"。 (&) )$%。 (') !在 "上的分量。 (。) !)#。

《电磁场理论与电磁波》课后思考题

《电磁场理论与电磁波》课后思考题

《电磁场理论与电磁波》课后思考题第一章 P301.1 如果u r u r u r u v g gA B =A C ,是否意味着ur u v B =C ?为什么? 答:否。

1.2 如果⨯⨯u r u r u r u v A B =A C ,是否意味着ur u v B =C ?为什么?答:否。

1.3 两个矢量的点积能是负的吗?如果是,必须是什么情况?答:能。

当两个矢量的夹角θ满足(,]2πθπ∈时。

1.4 什么是单位矢量?什么是常矢量?单位矢量是否是常矢量?答:单位矢量:模为1的矢量;常矢量:大小和方向均不变的矢量(零矢量可以看做是特殊的常矢量); 单位矢量不一定是常矢量。

例如,直角坐标系中,坐标单位矢量,,x y z e e e r r r都是常矢量;圆柱坐标系中,坐标单位矢量,ρφe e r r 不是常矢量,z e r是常矢量;球坐标系中,坐标单位矢量,,r θφe e e r r r都不是常矢量。

1.5 在圆柱坐标系中,矢量ρφz a b c =++u r r r r A e e e ,其中a 、b 、c 为常数,则u rA 能是常矢量吗?为什么?答:否。

因为坐标单位矢量,ρφe e r r的方向随空间坐标变化,不是常矢量。

1.6 在球坐标系中,矢量cos sin r θa θa θ=-u r r r A e e ,其中a 为常数,则u rA 能是常矢量吗?为什么?答:是。

对cos sin r θa θa θ=-u r r rA e e 转换为直角坐标系的表示形式,化简可得22(cos sin )z z a θθe ae ==+=u r r r L A 。

1.7 什么是矢量场的通量?通量的值为正、负或0分别表示什么意义?答:通量的概念:d d d n SSψψF S F e S ==⋅=⋅⎰⎰⎰r r r r(曲面S 不是闭合)d d n SSF S F e S =⋅=⋅⎰⎰rr r r蜒ψ(曲面S 是闭合)1.8 什么是散度定理?它的意义是什么?答:散度定理:d d SVF S F V ⋅=∇⋅⎰⎰r r rÑ意义:面积表示的通量=体积表示的通量1.9 什么是矢量场的环流?环流的值为正、负或0分别表示什么意义?答:环流的概念:Γ(,,)d CF x y z l =⋅⎰r rÑ环流的值为正、负或0分别表示闭合曲线C 内有正旋涡源、负旋涡源和无旋涡源。

电磁场与电磁波思考题

电磁场与电磁波思考题

思考与练习一1.证明矢量3ˆ2ˆˆz y x e e e−+=A 和z y x e e e ˆˆˆ++=B 相互垂直。

2. 已知矢量 1.55.8z y e ˆe ˆ+=A 和4936z y e ˆ.e ˆ+−=B ,求两矢量的夹角。

3. 如果0=++z z y y x x B A B A B A ,证明矢量A 和B 处处垂直。

4. 导出正交曲线坐标系中相邻两点弧长的一般表达式。

5.根据算符∇的与矢量性,推导下列公式:()()()()B A B A A B A B B A ∇⋅+×∇×+∇⋅+×∇×=⋅∇)(()()A A A A A 2∇⋅−∇=×∇×21 []H E E H H E ×∇⋅−×∇⋅=×⋅∇6.设u 是空间坐标z ,y ,x 的函数,证明:u du df u f ∇=∇)(, ()du d u u A A ⋅∇=⋅∇, ()du d u u A A ×∇=×∇,()[]0=×∇⋅∇z ,y ,x A 。

7.设222)()()(z z y y x x R ′−+′−+′−=′−=r r 为源点x ′到场点x 的距离,R 的方向规定为从源点指向场点。

证明下列结果,R R R R =∇′−=∇, 311R R R R−=∇′−=∇,03=×∇R R ,033=⋅∇′−=⋅∇RR R R )0(≠R (最后一式在0=R 点不成立)。

8. 求[])sin(0r k E ⋅⋅∇及[])sin(0r k E ⋅×∇,其中0E a ,为常矢量。

9. 应用高斯定理证明 ∫∫×=×∇v sd dV f s f ,应用斯克斯(Stokes )定理证明∫∫=∇×s Ldl dS ϕϕ。

10.证明Gauss 积分公式[]∫∫∫∫∫∇+∇⋅∇=⋅∇s Vdv d ψφψφψφ2s 。

电磁场与电磁波理论思考题

电磁场与电磁波理论思考题

《电磁场与电磁波理论》思考题第1章思考题1.1什么是标量?什么是矢量?什么是矢量的分量?1.2什么是单位矢量?什么是矢量的单位矢量?1.3什么是位置矢量或矢径?直角坐标系中场点和源点之间的距离矢量是如何表示的?1.4什么是右手法则或右手螺旋法则?1.5若两个矢量相互垂直,则它们的标量积应等于什么?矢量积又如何?1.6若两个矢量相互平行,则它们的矢量积应等于什么?标量积又如何?1.7若两个非零矢量的标量积等于零,则两个矢量应垂直还是平行?1.8若两个非零矢量的矢量积等于零,则两个矢量应垂直还是平行?1.9直角坐标系中矢量的标量积和矢量积如何计算?1.10什么是场?什么是标量场?什么是矢量场?1.11什么是静态场或恒定场?什么是时变场?1.12什么是等值面?它的特点有那些?1.13什么是矢量线?它的特点有那些?1.14哈密顿算子为什么称为矢量微分算子?1.15标量函数的梯度的定义是什么?物理意义是什么?1.16什么是通量?什么是环量?1.17矢量函数的散度的定义是什么?物理意义是什么?1.18矢量函数的旋度的定义是什么?物理意义是什么?1.19什么是拉普拉斯算子?标量和矢量的拉普拉斯运算分别是如何定义的?1.20直角坐标系中梯度、散度、旋度和拉普拉斯算子在的表示式是怎样的?1.21三个重要的矢量恒等式是怎样的?1.22什么是无源场?什么是无旋场?1.23为什么任何一个梯度场必为无旋场?为什么任何一个无旋场必为有位场?1.24为什么任何一个旋度场必为无源场?为什么任何一个无源场必为旋度场?1.25高斯散度定理和斯托克斯定理的表示式和意义是什么?1.26什么是矢量的唯一性定理?1.27在无限大空间中是否存在既无源又无旋的场?为什么?1.28直角坐标系中的长度元、面积元和体积元是如何表示的?1.29圆柱坐标系中的长度元、面积元和体积元是如何表示的?1.30球面坐标系中的长度元、面积元和体积元是如何表示的?2.1什么是体电荷、面电荷、线电荷和点电荷?他们分别是如何定义的?2.2什么是试验电荷?什么是电场强度?2.3什么是电介质、磁介质和导体或导电媒质?2.4什么是电偶极子?电偶极矩矢量是如何定义的?2.5什么是电极化强度?电介质的极化现象是怎样的?2.6什么是电位移或电通量密度?2.7什么是相对介电常数和(绝对)介电常数?什么是自由空间?2.8什么是线性各向同性的电介质?2.9什么是恒定电流?什么是时变电流?什么是传导电流?什么是运流电流?2.10什么是体电流、面电流和线电流?他们分别是如何定义的?2.11什么是微分形式欧姆定律?2.12什么是洛伦兹力?什么是磁感应强度?2.13什么是磁偶极子?磁偶极矩矢量是如何定义的?2.14什么是磁化强度? 磁介质的磁化现象是怎样的?2.15什么是顺磁质?什么是抗磁质?什么是铁磁性物质?2.16什么是相对磁导率和(绝对)磁导率?2.17什么是磁场强度?2.18什么是线性各向同性的磁介质?2.19电磁学的三大基本实验定律是哪三个?2.20什么是库仑定律?什么是静电场的环量定律?什么是高斯定律?2.21由静电场的环量定律可以什么结论?2.22穿过任一高斯面的电场强度通量与该闭合曲面所包围的哪些电荷有关?2.23穿过任一高斯面的电位移通量与该闭合曲面所包围的哪些电荷有关?2.24高斯面上的场矢量与高斯面外的电荷是否有关?为什么?2.25什么是安培定律?什么是比奥—萨伐尔定律?2.26什么是磁通连续性定律?什么是安培环路定律?2.27磁场强度沿任一闭合回路的环量与哪些电流有关?2.28磁感应强度沿任一闭合回路的环量与哪些电流有关?2.29闭合回路上的磁场强度与闭合回路以外的电流是否有关?为什么?2.30什么是感应电流?什么是感应电场?什么是感应电动势?2.31什么是法拉第电磁感应定律?2.32什么是电荷守恒定律?电荷守恒定律的数学表达式是怎样的?2.33麦克斯韦的漩涡电场假设的基本思想是什么?2.34什么是位移电流?什么是位移电流密度?2.35什么是全电流?什么是全电流密度?什么是全电流连续性定律?2.36为什么说五个基本方程不是独立的?2.37什么是电磁场的边界条件?他们是如何得到的?2.38为什么边界条件的讨论分解成法向分量和切向分量来进行?2.39在不同媒质分界面上,永远是连续的是电磁场的哪些分量?2.40电磁场的哪些分量当不存在传导面电流和自由面电荷时是连续的?2.41什么是理想介质?什么是理想导体?2.42边界条件有哪三种常用形式?他们有什么特点?2.43在理想导体表面上不存在电磁场的什么分量?2.44垂直于理想导体表面的是电力线还是磁力线?平行于理想导体表面的是电力线还是磁力线?2.45理想导体表面的面电流密度等于磁场的什么分量?理想导体表面面电荷密度等于电场的什么分量?3.1什么是静电场?如何由是麦克斯韦方程组得到静电场的基本方程?3.2静电场是无源场还是无旋场?3.3静电场边界条件有哪两种常用形式?他们有什么特点?3.4在静电场中的不同电介质分界面上,电场强度和电位移的什么分量总是连续的?3.5什么是静电场折射定律?3.6静电场的什么分量在导体表面总是为零?导体表面面电荷密度等于电场的什么分量?3.7在静电场中,电场强度沿一个开放路径的线积分与积分路径是否有关?为什么?3.8静电场中任一点的电位是如何定义的?什么是零电位参考点?3.9静电场中任一点的电位是否是唯一的?电场强度是否是唯一的?3.10什么是等位面?电场强度矢量与等位面有什么关系?为什么?3.11什么是电位的泊松方程和拉普拉斯方程?什么是电场强度的泊松方程和拉普拉斯方程?3.12电位的边界条件是如何得到的?为什么电位在界面上总是连续?3.13为什么说导体必为等位体,导体与电介质的交界面必为等位面?3.14静电场的能量和能量密度是如何计算的?3.15导体的电容与哪些因素有关?与导体的电位和所带的电量是否有关?3.16什么是电容器?电容器的电容是如何定义的?3.17电容器的电容与其电场储能有什么关系?3.18什么是静电场分布型问题?什么是静电场的边值型问题?3.19静电场的边值问题可以分为哪三类?3.20什么是静电场唯一性定理?它是如何证明的?3.21静电场边值问题主要解法有哪些?3.22什么是直接积分法?什么情况下可以采用直接积分法?直接积分法的基本步骤是什么?3.23直角坐标系中一维电位分布的拉普拉斯方程的通解是怎样的?电荷均匀分布和线性分布区域电位的通解各是怎样的?3.24圆柱坐标系中无源区域、电荷均匀分布和线性分布区域三个一维电位分布满足的二阶微分方程各是怎样的?电位的通解各是怎样的?3.25球面坐标系中无源区域、电荷均匀分布和线性分布区域三个一维电位分布满足的二阶微分方程各是怎样的?电位的通解各是怎样的?3.26什么是分离变量法?什么是分离常数?什么是分离方程?3.27直角坐标系中的分离常数有哪几个?直角坐标系中的分离方程是怎样的?3.28直角坐标系中的分离方程的通解与分离常数有什么关系?3.29直角坐标系中分离变量法的的两种常见的二维问题是指什么情况?3.30什么是直角坐标系中分离变量法的基本问题?3.31如何根据基本问题的边界条件选取通解的具体形式?3.32如何利用三角函数的正交性或者傅立叶级数的公式来确定基本问题的最终解?3.33什么是镜像法?什么是镜像电荷?如何确定镜像电荷?3.34点电荷关于无限大导体平面的镜像电荷是如何确定的?此时导体表面的感应电荷有什么特点?3.35无限大导体平面上方与其平行的无限长直的均匀线电荷的镜像是怎样的?(画图) 3.36两个无限大相交理想导体平面之间的夹角满足什么条件才能采用镜像法?镜像电荷的数目与夹角有什么关系?(画图)3.37两个平行的无限大导体平面之间的点电荷的镜像电荷有多少?(画图)3.38接地导体球外的点电荷的镜像电荷是如何确定的?导体表面的感应电荷有什么特点?(画图)3.39接地导体球内的点电荷的镜像电荷是如何确定的?导体表面的感应电荷有什么特点?(画图)3.40如果导体球或球壳没有接地,如何借助于镜像法来求各处的场分布?3.41什么是静电场的数值解法?什么是“场域型”数值方法?什么是“边界型”数值方法?3.42什么是有限差分法?有限差分法的基本步骤是什么?3.43二维泊松方程对应的差分方程是怎样的?3.44二维静电场边值问题的有限差分法的基本步骤是怎样的?3.45什么是差分方程的超松弛迭代法求解?它的基本步骤是怎样的?3.46什么是矩量法?矩量法的三个基本步骤是什么?3.47静电场边值问题的矩量法的基本步骤是怎样的?第4章思考题4.1什么是恒定电流或直流?什么是时变电流或交流?4.2什么是恒定电场?如何由是麦克斯韦方程组得到恒定电场的基本方程?4.3恒定电场是无源场还是无旋场?4.4在电导率不同的导体的分界面上,电场强度和电流密度的什么分量是连续的?4.5在不同导体的分界面上电场强度和电流密度的什么分量是不连续的?4.6恒定电场中电位与静电场的电位有什么异同点?4.7为什么在线性和各向同性的均匀媒质中恒定电场中电位总是满足的拉普拉斯方程? 4.8线性和各向同性的均匀媒质中是否存在体电荷?4.9导电媒质分界面上的面电荷的密度是如何确定的?4.10什么情况下,导电媒质分界面上的不存在面电荷?4.11什么是电流的热效应?恒定电场的功率损耗是如何计算的?4.12什么是焦耳定律的微分形式和积分形式?4.13什么是漏电流?什么是漏电导?4.14什么是静电比拟法?它有什么用处?4.15什么情况下可以将静电场与恒定电场相比拟?4.16电容器的漏电导与电容的对应关系是怎样的?4.17什么是恒定磁场?如何由是麦克斯韦方程组得到恒定磁场的基本方程?4.18恒定磁场是无源场还是无旋场?4.19在磁导率不同的磁介质的分界面上,磁场强度和磁感应强度什么分量是连续的?4.20在不同磁介质的分界面上磁场强度和磁感应强度的什么分量是不连续的?4.21什么是恒定磁场折射定律?4.22什么是恒定磁场镜像法?4.23恒定磁场的矢量磁位是如何定义的?4.24什么是库仑条件或库仑规范?为什么恒定磁场的矢量磁位要满足库仑条件或库仑规范?4.25什么是恒定磁场矢量磁位的泊松方程和拉普拉斯方程?4.26由比奥—萨伐尔定律得到的恒定磁场矢量磁位的积分表示式是否满足恒定磁场的微分方程?4.27恒定磁场的标量磁位是如何定义的?它有什么要求?4.28为什么恒定磁场的标量磁位只是满足拉普拉斯方程?4.29恒定磁场的标量磁位的边界条件是如何得到的?4.30恒定磁场的能量和能量密度是如何计算的?4.31什么是导体载流回路的电感?它与哪些因素有关?4.32什么是自感?什么是互感?什么是内自感?什么是外自感?4.33导体回路的电感与导体回路的电流是否有关?4.34导体载流回路的电感与磁场储能有什么关系?第5章思考题5.1什么是时谐电磁场?什么是时谐电磁场的复振幅和复振幅矢量?5.2如何由时变电磁场的基本方程得到时谐电磁场的基本方程(基本方程的复数形式)?5.3如何由时变电磁场的结构方程得到时谐电磁场的结构方程(结构方程的复数形式)?5.4如何由时变电磁场的边界条件得到时谐电磁场的边界条件(边界条件的复数形式)?5.5时谐电磁场边界条件有哪三种常用形式?他们有什么特点?5.6在不同媒质分界面上,永远是连续的是时谐电磁场的哪个分量?5.7在理想导体表面上不存在时谐电磁场的什么分量?5.8垂直于理想导体表面的是时谐电磁场的电力线还是磁力线?平行于理想导体表面的是时谐电磁场的电力线还是磁力线?5.9理想导体表面的面电流密度等于时谐电磁场的什么分量?理想导体表面面电荷密度等于时谐电磁场的什么分量?5.10什么是导电媒质的复介电常数?什么是导电媒质的损耗角正切?5.11时变电磁场的矢量磁位和标量电位是如何定义?5.12什么是洛伦兹条件或洛伦兹规范?洛伦兹条件与电流连续性方程是否是一致的?5.13什么情况下矢量磁位和标量电位满足齐次达兰贝尔方程?5.14什么情况下电场强度和磁场强度满足齐次达兰贝尔方程?5.15什么是滞后位?什么是超前位?为什么在无限大自由空间中只有滞后位?5.16矢量磁位和标量电位的滞后位是怎样的?5.17时谐电磁场的矢量磁位和标量电位是如何定义?5.18如何得到时谐电磁场的矢量磁位和标量电位的洛伦兹条件或洛伦兹规范?5.19如何得到时谐电磁场的矢量磁位和标量电位的亥姆霍兹方程(复波动方程)?5.20如何得到时谐电磁场的矢量磁位和标量电位的滞后位和超前位?5.21瞬时坡印廷矢量是如何定义的?它的物理意义是什么?它有什么特性?5.22什么是瞬时坡印廷定理的微分形式和积分形式?瞬时坡印廷定理的物理意义是什么?5.23什么是平均坡印廷矢量?5.24复坡印廷矢量是如何定义的?它的物理意义是什么?5.25天线的作用是什么?天线有哪些类型?5.26什么是电基本振子?什么是磁基本振子?5.27什么是线天线?什么是对称天线?什么是半波天线?5.28什么是近区场?什么是远区场?5.29电基本振子的近区场有什么特性?5.30电基本振子的远区场有什么特性?5.31磁基本振子的近区场有什么特性?5.32磁基本振子的远区场有什么特性?5.33基本振子和磁基本振子的电场有什么异同点?它们谁的辐射能力大?5.34基本振子和磁基本振子的对偶性是怎样的?5.35什么是水平极化天线?什么是垂直极化天线?5.36天线的方向性因子、方向函数和方向图指的是什么?5.37什么是天线的E面方向图?什么是天线的H面方向图?5.38什么是无方向天线?什么是全向天线?什么是定向天线?5.39基本振子、磁基本振子和半波天线的方向图有什么特点?5.40什么是天线辐射功率?天线的半功率波瓣宽度和零功率波瓣宽度是如何定义的?5.41基本振子和磁基本振子的半功率波瓣宽度和零功率波瓣宽度的大小是怎样的?5.42什么是天线阵?它的作用是什么?决定天线阵的辐射特性的主要参数有哪些?5.43天线阵方向图相乘原理是指什么?5.44什么是均匀直线式天线阵?什么是均匀直线式边射阵?什么是均匀直线式端射阵?。

电磁场课后习题共95页文档


电磁场课后习题
41、实际上,我们想要的不是针对犯 罪的法 律,而 是针对 疯狂的 法律。 ——马 克·吐温 42、法律的力量应当跟随着公民,就 像影子 跟随着 身体一 样。— —贝卡 利亚 43、法律和制度必须跟上人类思想进 步。— —杰弗 逊 44、人类受制于法律,法律受制于情 理。— —托·富 勒
45、法律的制定是为了保证每一个人 自由发 挥自己 的才能 ,而不 是为了 束缚他 的才能 。—— 罗掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克

变化的电磁场答案解读

第8章变化的电磁场一、选择题1. B2. D3. C4. D5. A6. C7. C8. B9. D10. B11. A12. C13. D14. D15. B16. C17. B18. A19. A20. B21. B22. D23. C24. D25. D26. C27. D28. C29. B30. B31. B32. C33. A34. B35. C36. D37. B38. B39. D40. A41. B42. D43. D44. D45. B46. C47. D48. A1. 5.0×10-4Wb 2.41I 3. 0.05T 4. 05. (V)1038.54-⨯6. (V)09.07. Φ=t ar I ωμcos 2π20, 小圆环中的感应电流i =t Rar I ωωμsin 2π28.K R 2π41, 从c 流至b 9. (H)1014.14-⨯,(H)1065.54-⨯10. b a b a Iv -+⋅ln π20μ11. θsin vBL ,O →C12. 013. 12εε> 14. 减小15. )m (A 102.114-⋅⨯,(T)105.12-⨯,)m (A 0.903-⋅ 16. )m (A 98.03-⋅ 17.41L 18. 1:2, 1:219. π42I20. 200)π2(21aI μμ21. 4, 0 22. ○2, ○3, ○123. RC tRCE r --e π002ε, 相反24. A 25. )e 1(2.0t CU --=, t d i I -==e 2.01. 解:l B v l E U U U d a d a k d a add )(d ⋅⨯-=⋅=-=⎰⎰ l B v l B v l B v d cc bb ad )(d )(d )(⋅⨯-⋅⨯-⋅⨯-=⎰⎰⎰v B lv B l v B l v B l =++-=2. 解:对直线段BC 部分,由动生电动势公式l B v d )(⋅⨯=⎰CBBC ε导体棒运动速度垂直向里,B v ⨯方向由B 直线C , 与l d 同方向,以AB 边为径向坐标r 的圆点,则有B na r nB l l B r l vB aC B C B BC 20πd π2d d ====⎰⎰⎰ωε 指向为C B →对直线段CA 部分,由动生电动势公式l B v d )(⋅⨯=⎰ACCA ε导体棒运动速度垂直向里,B v ⨯方向水平向右, 与l d 方向成夹角ϕ,所以⎰⎰⎰-==⋅⨯=ACA CA CCA l vB l vB d cos d cos d )(θϕεl B vBna rnB r a20πd π2-=-=⎰直线段AB 部分,0,0==AB v ε整个导体框的电动势为0=++=CA BC AB εεεε4. 解:金属环内磁通量t a B rt r B r r B Φaaωωsin 3π2d sin π2d π230020===⎰⎰感生电动势为t a B t Φi ωωεcos 3π2d d 30-=-= 0>i ε时沿顺时针指向.A8-3-1图A8-3-4图A8-3-2图B5. 解:(1) 建立如图坐标系,设直导线通电流I ,则通过矩形线框的磁通量为:⎰⎰⎰--=⋅=b c x a xI x a x I S B Φ0000d π2d π2d μμ 3ln π2ln π2d π2000Iac b Ia x a x I b c μμμ===⎰ 互感系数3ln π20a I ΦM μ== (2) 直导线通电流t I I ωsin 0=,则线框内产生的互感电动势为:t aI t IMi ωωμεcos π23ln d d 00-=-= i ε>0,为顺时针方向.6. 解:长直带电线运动相当于)(t v I λ=的长直电流,在正方形线圈内磁通量为:2ln π2d )π(2d 000Iax a x a IS B Φaμμ⎰⎰=+=⋅=所以:tt v a t I a t Φi d )(d π2d d 2ln π2d d 00λμμε=⋅== tt v RaRt i id )(d 2ln π2|)(|0λμε==7. 解:建立如图坐标系,AB 边的方程为:r ab x a b y -= 式中r 是t 时刻B 点与长直导线的距离.三角形内磁通量为:⎰⎰++-==ra r ra r x r a bx a bx I x By Φd )(π2d 0μ)ln (π20rr a r a b b I +-=μ 感应电动势为tr a r a r r a a bI t Φi d d )(ln π2d d 0⋅+-+=-=με 当r=d 时v ad ad d a abIi )(lnπ20+-+=με 方向为顺时针(ACBA ).8. 解:先求直导线与螺绕环间的互感系数.设直导线通电流I ,则通过螺绕环截面的磁通量为:A8-3-5图A8-3-6图A8-3-7图⎰==211200lnπ2d π2R R R R Ibr b r IΦμμ互感系数为:120lnπ2R R Nb I N ΦM μ==. 当螺绕环内通电流t I i ωcos 0=时,直导线中产生的感生电动势为:t R R NbI t i M i ωωμεsin )(ln π2d d 1200=-=当4π/=t ω时,代入数据得:(V)1046.1223ln π2π1005106100010π4227---⨯=⨯⨯⨯⨯⨯⨯⨯⨯=i ε0>i ε,指向向下.9. 解:作半径为r 的同轴圆为安培环路,由有介质安培环路定理⎰∑=⋅LI l Hd 得:)(π221R r R IrH <<=rI H π2=rIH B π2μμ==磁能密度:22)π2(212rI B w m μμμ==体积元:r rl V d π2d =磁场能量:r rl rI V w W R R m m d π2)π2(21d 212⎰⎰⋅==μμ122lnπ4R R lI μ=10. 解:(1) 设在P 点有一正电荷随铜盘转动,受到一个方向向下、指向水银的磁场力.所以这回路中感应电流为逆时针方向.因此,通过电压计的电流向上流,即从D 流向O .(2) 2021d d R B r B r l B v v R ωωε==⋅⨯=⎰⎰指向:由盘心指向边缘 (2) (A) 因为tΦ∆∆∝ε,若每个磁极的磁通量加倍,则总通量加倍,所以ε也加倍. (B) 电枢转速加倍,其它不变,同样也使ε加倍. (4) 当发电机没有负载时,线路中没有电流.要使它转动,外力只要克服机械摩擦力就可以了.但当发电机接上负载时,回路中有了电流,所以会受到磁场力的作用,根据楞次定律,磁场力阻止盘子转动.当负载电阻很小时,感应电流就很大,磁场力也很大,所以转动也困难.I。

16、17章电磁感应 例题习题

第十六章 电磁感应例题例16-1如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到?(A ) 载流螺线管向线圈靠近. (B) 载流螺线管离开线圈.(C) 载流螺线管中电流增大. (D) 载流螺线管中插入铁芯. [ B ]例16-2如图所示,一电荷线密度为λ的长直带电线(与一正方形线圈共面并与其一对边平行)以变速率v =v (t )沿着其长度方向运动,正方形线圈中的总电阻为R ,求t 小(不计线圈自身的自感).解:长直带电线运动相当于电流λ⋅=)(t Iv . 正方形线圈内的磁通量可如下求出 x a x a I d 2d 0+⋅π=μΦ 2ln 2d 2000⋅π=+π=⎰Ia x a x Ia a μμΦ2ln t d I d 2a t d d 0i πμ=-=εΦ2ln td )t (d a 20v λπμ= 2ln td )t (d a R 2R)t (i 0i v λπμ=ε=例16-3电荷Q 均匀分布在半径为a 、长为L ( L >>a )的绝缘薄壁长圆筒表面上,圆筒以角速度ω 绕中心轴线旋转.一半径为2a 、电阻为R 的单匝圆形线圈套在圆筒上(如图所示).若圆筒转速按照)/1(00t t -=ωω的规律(ω 0和t 0是已知常数)随时间线形地减小,求圆形线圈中感应电流的大小和流向.解:筒以ω旋转时,相当于表面单位长度上有环形电流π⋅2ωL Q ,它和通电流螺线管的nI 等效. 按长螺线管产生磁场的公式,筒内均匀磁场磁感强度为:LQ B π=20ωμ (方向沿筒的轴向)筒外磁场为零.穿过线圈的磁通量为: La Q B a 2202ωμΦ=π=在单匝线圈中产生感生电动势为 =Φ-=εt d d )d d (220t L Qa ωμ-00202Lt Qa ωμ= 感应电流i 为020RLt 2Qa R i ωμ=ε=i 的流向与圆筒转向一致.a例16-4如图所示,一段长度为l 的直导线MN ,水平放置在载电流为I 的竖直长导线旁与竖直导线共面,并从静止由图示位置自由下落,则t 秒末导线两端的电势差=-N M U U ; 点电势高.al a t Ig+π-ln 20μ N例16-5一内外半径分别为R 1, R 2的均匀带电平面圆环,电荷面密度为σ,其中心有一半径为r 的导体小环(R 1 >>r ),二者同心共面如图.设带电圆环以变角速度ω =ω(t )绕垂直于环面的中心轴旋转,导体小环中的感应电流i 等于多少?方向如何(已知小环的电阻为R ')?解:带电平面圆环的旋转相当于圆环中通有电流I .在R 1与R 2之间取半径为R 、宽度为d R 的环带,环带内有电流 R t R I d )(d ωσ=d I 在圆心O 点处产生的磁场 R t R I B d )(21/.d 21d 00σωμμ==在中心产生的磁感应强度的大小为 ))((21120R R t B -=σωμ选逆时针方向为小环回路的正方向,则小环中 2120))((21r R R t π-≈σωμΦt t R R r t i d )(d )(2d d 1220ωσμΦε-π-=-= tt R R R r R i i d )(d 2)(π1220ωσμε⋅'--='=方向:当d ω (t ) /d t >0时,i 与选定的正方向相反;否则 i 与选定的正方向相同.例16-6求长度为L 的金属杆在均匀磁场B中绕平行于磁场方向的定轴OO '转动时的动生电动势.已知杆相对于均匀磁场B的方位角为θ,杆的角速度为ω,转向如图所示.解:在距O 点为l 处的d l 线元中的动生电动势为 d ε lBd )(⋅⨯=vθωsin l =v∴⎰⎰⋅απ=⨯=εLv vd cos )21sin(B d )B (L⎰⎰θω=θω=ΛθL2d sin B sin d sin lB θω22sin 21BL =ε 的方向沿着杆指向上端.M NalR 1R 2 rσω (tOωBθL例16-7在感应电场中电磁感应定律可写成tl E LK d d d Φ-=⎰⋅,式中K E 为感应电场的电场强度.此式表明:(A) 闭合曲线L 上K E处处相等. (B) 感应电场是保守力场.(C) 感应电场的电场线不是闭合曲线.(D) 不能像对静电场那样引入电势的概念. [ D ]例16-8在圆柱形空间内有一磁感强度为B 的均匀磁场,如图所示.B的大小以速率d B /d t 变化.在磁场中有A 、B 两点,其间可放直导线AB 和弯曲的导线ACB ,则(A) 电动势只在直导线AB 中产生.(B) 电动势只在弯曲导线ACB 中产生.(C) 电动势在直导线和弯曲的中都产生,且两者大小相等.(D) 直导线AB 中的电动势小于弯曲的导线ACB 中的电动势. [ D ] 例16-9两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率d I /d t =α >0.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如图所示.求线圈中的感应电动势ε,并说明线圈中的感应电动势的方向.解:(1) 无限长载流直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B π=μ以顺时针为线圈回路的正方向,与线圈相距较远和较近的导线在线圈中产生的磁通量为:23ln 2d 203201π=π⋅=⎰Idr r I d dd μμΦ 2ln 2d 20202π-=π⋅-=⎰Id r r I d ddμμΦ总磁通量 34ln 2021π-=+=IdμΦΦΦ感应电动势为: 34ln 2d d )34(ln 2d d 00αμμεπ=π=-=d t I d t Φ 由ε >0,所以ε 的绕向为顺时针方向,线圈中的感应电流亦是顺时针方向. 例16-10在一个塑料圆筒上紧密地绕有两个完全相同的线圈aa ′和bb ′,当线圈aa ′和bb ′绕制如图(1)时其互感系数为M 1,如图(2)绕制时其互感系数为M 2,M 1与M 2的关系是 (A) M 1 = M 2 ≠0. (B) M 1 = M 2 = 0.(C) M 1 ≠M 2,M 2 = 0. (D) M 1 ≠M 2,M 2 ≠0. [ D ]2、对于单匝线圈取自感系数的定义式为L =Φ /I .当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L图(2)I(A) 变大,与电流成反比关系. (B) 变小. (C) 不变. (D) 变大,但与电流不成反比关系. [ C ] 习题16-1将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时(A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小.(C) 铜环中感应电动势小,木环中感应电动势大. (D)两环中感应电动势相等. [ D ]16-2半径为R 的长直螺线管单位长度上密绕有n 匝线圈.在管外有一包围着螺线管、面积为S 的圆线圈,其平面垂直于螺线管轴线.螺线管中电流i 随时间作周期为T 的变化,如图所示.求圆线圈中的感生电动势ε.画出ε─t 曲线,注明时间坐标. 解:螺线管中的磁感强度 ni B 0μ=,通过圆线圈的磁通量 i R n 20π=μΦ.取圆线圈中感生电动势的正向与螺线管中电流正向相同,有 td R n t d 20i πμ-=-=ε.在0 < t < T / 4内,T I T I t im m 44/d d == , 20i R n πμ-=εTI m 4=T I nR m /420μπ-= 在T / 4 < t < 3T / 4内, TI T I t im m 42/2d d -=-=, =εi T /I nR 4m 20μπ. 在3T / 4 < t < T 内, TI T I t im m 44/d d ==, =εi T I nR m /420μπ-. ε ─t 曲线如图.16-3在一通有电流I 的无限长直导线所在平面内,有一半径为r 、电阻为R 的导线小环,环中心距直导线为a ,如图所示,且a >> r .当直导线的电流被切断后,沿着导线环流过的电荷约为 (A))11(220ra a R Ir +-πμ (B) a r a R Ir +ln 20πμI -(C)aRIr 220μ (D)rRIa 220μ [ C ]16-4如图所示,有一根长直导线,载有直流电流I与它平行并与它共面的矩形线圈,以匀速度v开导线.设t =0时,线圈位于图示位置,求:(1) 在任意时刻t 矩形线圈的磁通量Φ. (2) 在图示位置时矩形线圈中的电动势ε.解:建立坐标系,x 处磁感应强度x2IB 0πμ=;方向向里 在x 处取微元,高l 宽dx ,微元中的磁通量:dx x2IBydx S d B d 0 πμ==⋅=Φ磁通量:⎰⎰⋅πμ==S0x d r 2I S d B )t ( Φ⎰++πμ=tb t a 0x x d 2I v v t a tb ln 2I 0v v ++μ=π 感应电动势ab2)a b (I t d d 00t π-μ=-=ε=v Φ方向:顺时针16-5在一长直密绕的螺线管中间放一正方形小线圈,若螺线管长1 m ,绕了1000匝,通以电流 I =10cos100πt (SI ),正方形小线圈每边长5 cm ,共 100匝,电阻为1 Ω,求线圈中感应电流的最大值(正方形线圈的法线方向与螺线管的轴线方向一致,μ0 =4π×10-7 T ·m/A .)解: n =1000 (匝/m) nI B 0μ= nI a B a 022μΦ=⋅= tI n Na t Nd d d d 02με-=Φ-==π2×10-1 sin 100 πt (SI) ==R I m m /επ2×10-1 A = 0.987 A16-6如图所示,在一长直导线L 中通有电流I ,ABCD 为一矩形线圈,它与L 皆在纸面内,且AB 边与L 平行. 矩形线圈在纸面内向右移动时,线圈中感应电动势方向为 ;矩形线圈绕AD 边旋转,当BC 边已离开纸面正向外运动时,线圈中感应动势的方向为 .ADCBA 绕向 ADCBA 绕向 16-7金属杆AB 以匀速v =2 m/s 平行于长直载流导线运动,导线与CBAB 共面且相互垂直,如图.已知导线载有电流I = 40 A ,则此金属杆中的感应电动势εi = ; 端电势较高.(ln2 = 0.69)1.11×10-5 V A 端16-8两相互平行无限长的直导线载有大小相等方向相反的电流,长度为b的金属杆CD 与两导线共面且垂直,相对位置如图.CD 杆以速度v平行直线电流运动,求CD 杆中的感应电动势,并判断C 、D 两端哪端电势较高? 解:建立坐标(如图)则:21B B B +=x I B π=201μ, )(202a x IB -π=μxI a x I B π--π=2)(200μμ, B 方向⊙ d εx xa x I x B d )11(2d 0--π==v v μ ⎰⎰--πμ=ε=ε+x d )x 1a x 1(2I d ba 202av b a b a I ++π=2)(2ln 20v μ 感应电动势方向为C →D ,D 端电势较高.16-9两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如右图),则:(A) 线圈中无感应电流. (B) 线圈中感应电流为顺时针方向. (C) 线圈中感应电流为逆时针方向. (D) 线圈中感应电流方向不确定. [ B ]16-10用线圈的自感系数L 来表示载流线圈磁场能量的公式221LI W m =(A) 只适用于无限长密绕螺线管 (B) 只适用于单匝圆线圈(C) 只适用于一个匝数很多,且密绕的螺绕环 (D) 适用于自感系数L一定的任意线圈[ D ]16-11两根平行长直导线,横截面的半径都是a ,中心线相距d ,属于同一回路.设两导线内部的磁通都略去不计,证明:这样一对导线单位长的自感系数为 aa d L -π=ln 0μ 证明:取长直导线之一的轴线上一点作坐标原点,设电流为I ,则在两长直导线的平面上两线之间的区域中B 的分布为 rIB π=20μ)(20r d I-π+μ穿过单位长的一对导线所围面积(如图中阴影所示)的磁通为a a bII CDv2a x +d x 2a +b I I C D v x O xI I2a drIIOr==⎰⋅SS B d Φr rd r Iad ad )11(20⎰--+πμa a d I -π=ln0μ aad IL -π==lnμΦ16-12一自感线圈中,电流强度在 0.002 s 内均匀地由10 A 增加到12 A ,此过程中线圈内自感电动势为400V ,则线圈的自感系数为 ;线圈末态储存的能量为 .0.400 H 28.8J 16-13两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使(A) 两线圈平面都平行于两圆心连线.(B) 两线圈平面都垂直于两圆心连线. (C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线.(D) 两线圈中电流方向相反. [ C ]16-14空中两根很长的相距为2a 的平行直导线与电源组成闭合回路如图.已知导线中的电流为I ,则在两导线正中间某点P 处的磁能密度为 (A) 200)2(1a I πμμ. (B) 200)2(21a I πμμ. (C) 200)(21aI πμμ. (D) 0 . [ C ]第十七章 电磁波17-1电磁波的E 矢量与H矢量的方向互相 ;相位 .垂直 相同。

电磁场理论与电磁波课后思考题

《电磁场理论与电磁波》课后思考题第一章 P301.1 如果u r u r u r u v g gA B =A C ,是否意味着ur u v B =C ?为什么? 答:否。

1.2 如果⨯⨯u r u r u r u v A B =A C ,是否意味着ur u v B =C ?为什么?答:否。

1.3 两个矢量的点积能是负的吗?如果是,必须是什么情况?答:能。

当两个矢量的夹角θ满足(,]2πθπ∈时。

1.4 什么是单位矢量?什么是常矢量?单位矢量是否是常矢量?答:单位矢量:模为1的矢量;常矢量:大小和方向均不变的矢量(零矢量可以看做是特殊的常矢量);单位矢量不一定是常矢量。

例如,直角坐标系中,坐标单位矢量,,x y z e e e r r r都是常矢量;圆柱坐标系中,坐标单位矢量,ρφe e r r 不是常矢量,z e r是常矢量;球坐标系中,坐标单位矢量,,r θφe e e r r r都不是常矢量。

1.5 在圆柱坐标系中,矢量ρφz a b c =++u r r r r A e e e ,其中a 、b 、c 为常数,则u rA 能是常矢量吗?为什么?答:否。

因为坐标单位矢量,ρφe e r r的方向随空间坐标变化,不是常矢量。

1.6 在球坐标系中,矢量cos sin r θa θa θ=-u r r r A e e ,其中a 为常数,则u rA 能是常矢量吗?为什么?答:是。

对cos sin r θa θa θ=-u r r rA e e 转换为直角坐标系的表示形式,化简可得22(cos sin )z z a θθe ae ==+=u r r r L A 。

1.7 什么是矢量场的通量?通量的值为正、负或0分别表示什么意义?答:通量的概念:d d d n S S ψψF S F e S ==⋅=⋅⎰⎰⎰r r r r(曲面S 不是闭合)d d n SSF S F e S =⋅=⋅⎰⎰r r r r蜒ψ(曲面S 是闭合)通过闭合曲面有净的矢量线穿出S 内有正通量源<ψ有净的矢量线进入,S 内有负通量源进入与穿出闭合曲面的矢量线相等,S内没有通量源1.8 什么是散度定理?它的意义是什么?答:散度定理:d d SVF S F V ⋅=∇⋅⎰⎰r r rÑ意义:面积表示的通量=体积表示的通量1.9 什么是矢量场的环流?环流的值为正、负或0分别表示什么意义?答:环流的概念:Γ(,,)d CF x y z l =⋅⎰r rÑ环流的值为正、负或0分别表示闭合曲线C 内有正旋涡源、负旋涡源和无旋涡源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题1616—1.如图所示,金属圆环半径为R ,位于磁感应强度为B 的均匀磁场中,圆环平面与磁场方向垂直。

当圆环以恒定速度v 在环所在平面内运动时,求环中的感应电动势及环上位于与运动方向垂直的直径两端a 、b 间的电势差。

解:(1)由法拉第电磁感应定律i d dtεΦ=-,考虑到圆环内的磁通量不变,所以,环中的感应电动势0i ε=;(2)利用:()aab b v B dl ε=⨯⋅⎰,有:22ab Bv R Bv R ε=⋅=。

【注:相同电动势的两个电源并联,并联后等效电源电动势不变】16-2.如图所示,长直导线中通有电流A I 0.5=,在与其相距cm 5.0=d处放有一矩形线圈,共1000匝,设线圈长cm 0.4=l ,宽cm 0.2=a 。

不计线圈自感,若线圈以速度cm/s 0.3=v 沿垂直于长导线的方向向右运动,求线圈在图示位置时的感应电动势。

解法一:利用法拉第电磁感应定律解决.首先用0l B dl I μ⋅=∑⎰求出电场分布,易得:02IB rμπ=,则矩形线圈内的磁通量为:00ln22x axI I l x al dr r xμμππ++Φ=⋅=⎰, 由i d N d t εΦ=-,有:011()2i N I l d xx a x dtμεπ=--⋅+ ∴当x d =时,有:041.92102()i N I l a v V d a μεπ-==⨯+.解法二:利用动生电动势公式解决。

由0l B dl I μ⋅=∑⎰求出电场分布,易得:02IB rμπ=,考虑线圈框架的两个平行长直导线部分产生动生电动势, 近端部分:11NB l v ε=, 远端部分:22NB lv ε=,则:12εεε=-=00411() 1.921022()N I N I a l v l v V d d a d d a μμππ--==⨯++。

16-3.电流为I 的无限长直导线旁有一弧形导线,圆心角为 120, 几何尺寸及位置如图所示。

求当圆弧形导线以速度v 平行于长直导线方向运动时,弧形导线中的动生电动势。

解法一:(用等效法)连接AO 、OB ,圆弧形导线与AO 、OBAOB形成闭合回路,闭合回路的电动势为0,所以圆弧形导线电动势与 AOB 直导线的电动势相等。

200()ln 222RAO RIv I vv B dl d x x μμεππ=⨯⋅=-=-⎰⎰, 500225()ln 224R OB RIv Iv v B dl d x x μμεππ=⨯⋅=-=-⎰⎰, ∴05ln 22AB AO OB Iv μεεεπ=+=-. 解法二:(直接讨论圆弧切割磁感应线)从圆心处引一条半径线,与水平负向夹角为θ,那么,00022(2cos )2(2cos )I I IB x R R R μμμππθπθ===--,再由()v B dl ε=⨯⋅⎰有: sin d B Rd v εθθ=⋅⋅,∴2030sin 2(2cos )IRv d R πμεθθπθ=-⋅-⎰05ln 22Iv μπ=-。

16—4.电阻为R 的闭合线圈折成半径分别为a 和a 2的两个圆,如图所示,将其置于与两圆平面垂直的匀强磁场内,磁感应强度按0sin B B t ω=的规律变化。

已知cm 10=a ,T 10220-⨯=B ,rad/s 50=ω,Ω=10R ,求线圈中感应电流的最大值。

解:由于是一条导线折成的两个圆,所以,两圆的绕向相反。

2220(4)3cos i d d Ba a a B t dt dtεπππωωΦ=-=--⋅+=, ∴203cos ia B t I R Rεπωω==A πR ωB a πI 32202max1042.910501021.035--⨯=⨯⨯⨯⨯==。

16—5.匀强磁场中有一长方形导线框,分别以相同的角速度绕图a 、b 、c 、d 所示的固定转轴旋转,如图16—43所示。

证明:四种情况下线圈中感应电流的最大值相等。

td d m Φε-=,其中解:由法拉第电磁感应定律,m cos ΦBS θ=,θ为线圈平面的法线方向与磁场B 的夹角。

则电动势的大小为ωθΦεsin d d mBS t==,ω为线圈旋转的角速度大小。

电动势的最大值为max BS εω=,电流的最大值为max /i BS R ω=,R 为线圈的电阻.对于题设的四种情况,因线圈的面积相同,旋转角速度相同,则四种情况下的最大电流均相同。

16—6.如图所示,半径为a 的长直螺线管中,有0d d >tB的磁场,一直导线弯成等腰梯形的闭合回路ABCDA ,总电阻为R ,上底为a ,下底为a 2,求:(1)AD 段、BC 段和闭合回路中的感应电动势;(2)B 、C 两点AOBθ间的电势差C B U U -.解:(1)首先考虑OAD ∆,2133224OAD S a a a ∆=⋅=, ∴234OAD d dB dBS a d t d t d tε∆Φ=-=-⋅=-⋅感1, 而DA lAOODADDAE d l E d l E d l E d l E d l εε=⋅=⋅+⋅+⋅=⋅=⎰⎰⎰⎰⎰涡涡涡涡涡感1∴234AD d Ba d tε=⋅; 再考虑OBC ∆,有效面积为2123OAD S a π=⋅扇,∴26dB a d t πε=-⋅感2, 同理可得:26BC dBa d tπε=⋅; 那么,梯形闭合回路的感应电动势为:23()64BC AD dBa d tπεεε=-=-⋅,逆时针方向。

(2)由图可知,AB CD a ==,所以,梯形各边每段a 上有电阻5Rr =,回路中的电流:23()64a d BI R R d tεπ==-⋅,逆时针方向; 那么,2232()510B C BC BC dBU U I r I R a dtπεε+-=⋅-=⋅-=-⋅。

16-7.圆柱形匀强磁场中同轴放置一金属圆柱体,半径为R ,高为h ,电阻率为ρ,如图所示。

若匀强磁场以d Bk dt =(0k k >,为恒量) 的规律变化,求圆柱体内涡电流的热功率。

解:在圆柱体内任取一个半径为r ,厚度为dr ,高为h 的小圆柱通壁,有:2l d B E dl r dt π⋅=⋅⎰涡,即:22d B r k r dtεππ=⋅=涡, 由电阻公式lR S ρ=,考虑涡流通过一个d r 环带,如图, 有电阻:2rR h d r πρ=,而热功率:22223()22k r k h d P i R r dr r hdrπππρρ===,∴2243028R k h k h R P r d r ππρρ==⎰。

16-8.一螺绕环,每厘米绕40匝,铁心截面积2cm 0.3,磁导率0200μμ=,绕组中通有电流mA 0.5,环上绕有二匝次级线圈,求:(1)两绕组间的互感系数;(2)若初级绕组中的电流在s 10.0内由A 0.5降低到0,次级绕组中的互感电动势。

涡流解:已知4040000.01n ==初匝,2N =次,50200810μμπ-==⨯,42310S m -=⨯。

(1)由题意知螺绕环内:B nI μ=,则通过次级线圈的磁链: N BS N n I S ψμ==次次次, ∴54428104000310 6.0310M N nS H I ψμπ---===⨯⨯⨯⨯⨯=⨯次初;(2)42506.0310 3.02100.1I MV t ε--∆-==⨯⨯=⨯∆初次。

16-9.磁感应强度为B 的均匀磁场充满一半径为R 的圆形空间B ,一金属杆放在如图14—47所示中位置,杆长为2R ,其中一半位于磁场内,另一半位于磁场外。

当0d Bdt>时,求:杆两端感应电动势的大小和方向。

解:∵ac ab bc εεε=+,而:Oabab d dtεΦ=-扇形, ∴a bε=2233[]d R d B R B dt -=, Obcbc d dt ε∆Φ=-=22[]1212d R R d B B dt dtππ--=,∴a c ε=223[]12R R d Bdt π+; ∵0d Bdt>,∴0a c ε>,即ac ε从a c →。

16-10.一截面为长方形的螺绕环,其尺寸如图所示,共有N 匝,求此螺绕环的自感。

解:如果给螺绕环通电流,有环内磁感应强度:012()2N I B R r R r μπ=<<则SB d S Φ=⋅⎰⎰,有:210201ln22R R N I h R N Ih dr r R μμππΦ=⋅⋅=⎰利用自感定义式:L I ψ=,有:L =2021ln 2N h R R μπ。

16-11.均匀磁场B被限制在半径R =10 cm 的无限长圆柱空间内,方向垂直纸面向里.取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位已知π=31θ,置如图所示.设磁感强度以d B /d t =1 T/s 的匀速率增加,cm 6==Ob Oa ,求等腰梯形回路中感生电动势的大小和方向.答案:mV 68.3,指向:沿adcb 绕向× ×× × RB cb a O θ解:大小: mV 68.3d d )sin 2121(d d d d 22=⋅-==Φ=tBOa R t B S t θθξ 指向:沿adcb 绕向。

16-12.一圆形线圈A 由50匝细导线绕成,其面积为4cm 2,放在另一个匝数等于100匝、半径为20cm 的圆形线圈B 的中心,两线圈同轴.设线圈B 中的电流在线圈A 所在处激发的磁场可看作匀强磁场。

求: (1)两线圈的互感;(2)当线圈B 中的电流以50A/s 的变化率减小时,线圈A 中的感生电动势的大小。

解:设B 中通有电流I ,则在A 处产生的磁感应强度为:002242B B B B BN I N I B R R R μμππ=⋅=(1)A 中的磁通链为:02A B A A A A BN N IN BS S R μψ==⋅。

则:02A B AABBN N S M I R μψ==,∴7476410501004102010 6.281020.2M H ππ----⨯⋅⋅⋅⨯==⨯=⨯⋅. (2)∵0646.281050 3.14102A B A A B N N S d d IV d t R dtμψ--=⋅=⨯⋅=⨯,∴43.1410A V ε-=⨯。

16—13.如图,半径分别为b 和a 的两圆形线圈(b >>a ),在0=t 时共面放置,大圆形线圈通有稳恒电流I ,小圆形线圈以角速度ω绕竖直轴转动,若小圆形线圈的电阻为R ,求:(1)当小线圈转过 90时,小线圈所受的磁力矩的大小;(2)从初始时刻转到该位置的过程中,磁力矩所做功的大小。

相关文档
最新文档