运筹学作业题及其参考答案

合集下载

运筹学 刁在筠 部分作业的参考答案线性规划部分

运筹学  刁在筠  部分作业的参考答案线性规划部分

第二章 线性规划73P 4. 将下面的线性规划问题化成标准形式12312312312max 2..236230316x x x s t x x x x x x x x −+⎧⎪−+≥⎪⎪+−≤⎨⎪≤≤⎪⎪−≤≤⎩解:将max 化为 min , 3x 用45x x −代替,则1245124512451245min 2()..23()62()30316,0x x x x s t x x x x x x x x x x x x −+−−⎧⎪−+−≥⎪⎪+−−≤⎪⎨≤≤⎪⎪−≤≤⎪≥⎪⎩令221x x ′=+,则1245124512451245min12()..2(1)3()62(1)()30307,0x x x x s t x x x x x x x x x x x x ′−+−−−⎧⎪′−−+−≥⎪⎪′+−−−≤⎪⎨≤≤⎪⎪′≤≤⎪≥⎪⎩将线性不等式化成线性等式,则可得原问题的标准形式12451245612457182912456789min221..23342437,,,,,,,0x x x x s t x x x x x x x x x x x x x x x x x x x x x x ′−+−+−⎧⎪′−+−−=⎪⎪′+−++=⎪⎨+=⎪⎪′+=⎪′≥⎪⎩73P 5、用图解法求解下列线性规划问题:(1) 121212min 3..206122x x s t x x x x +⎧⎪+≥⎪⎨≤≤⎪⎪≥⎩解:图2.1的阴影部分为此问题的可行区域.将目标函数的等值线123x x c +=(c 为常数)沿它的负法线方向()13T−−,移动到可行区域的边界上.于是交点T),(812就是该问题的最优解,其最优值为36.75P 16. 用单纯形法求解下列线性规划问题:(1) 123123123123min 2..360210200,1,2,3j z x x x s t x x x x x x x x x x j ⎧=−−+⎪++≤⎪⎪−+≤⎨⎪+−≤⎪⎪≥=⎩解:将此问题化成标准形式123123412351236min 2..360210200,1,2,3,4,5,6j z x x x s t x x x x x x x x x x x x x j ⎧=−−+⎪+++=⎪⎪−++=⎨⎪+−+=⎪⎪≥=⎩以456,,x x x 为基变量,可得第一张单纯形表为以1x 为进基变量,5x 为离基变量旋转得以2x 为进基变量,6x 为离基变量旋转得1x 2x 3x 4x 5x 6x RHS z2 1 -1 0 000 4x 31 1 1 0060 5x 1-121010 6x 11 -1 0 01201x 2x 3x 4x 5x 6x RHS z0 3 -5 0 -20-204x 0 4 -5 1 -3030 1x 1-1 2 0 1010 6x 02-3-11101 注意单纯形表的格式!2 要用记号把转轴元标出来 3要记住在单纯形表的左边,用进基变量代替离基变量注(零行元素的获得):先将目标函数化成求最小值的形式,再把所有变量移到等式左边,常数移到等式右边。

运筹学(胡运权)第五版课后答案-运筹作业

运筹学(胡运权)第五版课后答案-运筹作业

运筹学(胡运权)第五版课后答案-运筹作业47页1.1b用图解法找不到满足所有约束条件的公共范围,所以该问题无可行解47页1.1d无界解1 2 3 454321-1-6 -5 -4 -3 -2X2X12x1--2x1+3x1 2 3 44321X12x1+x2=23x1+4x2=X1.2(b)约束方程的系数矩阵A= 1 2 3 42 1 1 2P1 P2 P3 P4基基解是否可行解目标函数值X1 X2 X3 X4P1 P2 -4 11/2 0 0 否P1 P3 2/5 0 11/5 0 是43/5 P1 P4 -1/3 0 0 11/6 否P2 P3 0 1/2 2 0 是 5 P2 P4 0 -1/2 0 2 否P3 P4 0 0 1 1 是 5最优解A=(0 1/2 2 0)T和(0 0 1 1)T49页13题设Xij为第i月租j个月的面积minz=2800x11+2800x21+2800x31+2800x41+4500x12+4500x22+4500x32+6000x1 3 +6000x23+7300x14s.t.x11+x12+x13+x14≥15x12+x13+x14+x21+x22+x23≥10x13+x14+x22+x23+x31+x32≥20x14+x23+x32+x41≥12Xij≥0用excel求解为:( )用LINDO求解:LP OPTIMUM FOUND AT STEP 3 OBJECTIVE FUNCTION V ALUE1) 118400.0V ARIABLE V ALUE REDUCED COSTZ 0.000000 1.000000X11 3.000000 0.000000X21 0.000000 2800.000000X31 8.000000 0.000000X41 0.000000 1100.000000X12 0.000000 1700.000000X22 0.000000 1700.000000X32 0.000000 0.000000X13 0.000000 400.000000X23 0.0000001500.000000X14 12.000000 0.000000ROW SLACK OR SURPLUS DUAL PRICES2) 0.000000 -2800.0000003) 2.000000 0.0000004) 0.000000 -2800.0000005) 0.000000 -1700.000000NO. ITERATIONS= 3答若使所费租借费用最小,需第一个月租一个月租期300平方米,租四个月租期1200平方米,第三个月租一个月租期800平方米,50页14题设a1,a2,a3, a4, a5分别为在A1, A2, B1, B2, B3加工的Ⅰ产品数量,b1,b2,b3分别为在A1, A2, B1加工的Ⅱ产品数量,c1为在A2,B2上加工的Ⅲ产品数量。

天津大学22春“工商管理”《运筹学》作业考核题库高频考点版(参考答案)试题号2

天津大学22春“工商管理”《运筹学》作业考核题库高频考点版(参考答案)试题号2

天津大学22春“工商管理”《运筹学》作业考核题库高频考点版(参考答案)一.综合考核(共50题)1.基可行解中的非零变量的个数小于约束条件数时,该LP问题可求得()。

A.基本解B.多重解C.退化解D.无解参考答案:C2.在完全不确定下的决策方法不包括下列的哪一项?()A.悲观法B.乐观法C.最大收益法D.等可能性法参考答案:C3.可行流应满足的条件是()。

A.容量条件B.平衡条件C.容量条件和平衡条件D.容量条件或平衡条件参考答案:C4.ABC分类法是对库存的物品采用按()分类的。

A.物品质量B.物品价格C.物品数量D.物品产地5.某工厂需要往各车间铺设暖气通道,为使总长度最小,应选用()。

A.最短路线计算法B.最大流量计算法C.最小支撑树计算法D.关键路径法参考答案:C6.下面哪项不是求解“不确定型决策问题”的方法?()A.悲观法B.期望值法C.折衷法D.最小遗憾法参考答案:B7.在一个纯策略对策模型G=(S,D,A)中,表示的是()。

A.局中人甲的策略B.局中人乙的策略C.支付矩阵D.一个局势参考答案:C8.()表示各个阶段开始时所处的自然状况或客观条件。

A.状态B.决策C.状态转移D.指标函数参考答案:A()是用来衡量所实现过程优劣的一种数量指标。

A.状态B.决策C.状态转移D.指标函数参考答案:D10.下面的叙述中,()是错误的。

A.最优解必能在某个基解处达到B.多个最优解处的极值必然相等C.若存在最优解,则最优解唯一D.若可行解区有界则必有最优解参考答案:C11.采用计量方法的前提不包括()。

A.决策问题复杂,多个变量B.多种数量关系表述。

有关数据可得到C.可建模D.模型参数必须是确定参考答案:D12.动态规划中,定义状态时应保证在各个阶段中所做决策的相互独立性。

()A.对B.错参考答案:A13.图解法和单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

() A.对参考答案:A14.对LP问题标准型,利用单纯形法求解时,每做一次换基迭代,都能保证它相应的目标函数值Z必为()。

《运筹学》试题及答案(四)

《运筹学》试题及答案(四)

《运筹学》试题及答案一、单选题1. μ是关于可行流f的一条增广链,则在μ上有(D)A.对一切B.对一切C.对一切D.对一切2.不满足匈牙利法的条件是(D)A.问题求最小值B.效率矩阵的元素非负C.人数与工作数相等D.问题求最大值3.从甲市到乙市之间有—公路网络,为了尽快从甲市驱车赶到乙市,应借用()CA.树的逐步生成法B.求最小技校树法C.求最短路线法D.求最大流量法4.串联系统可靠性问题动态规划模型的特点是()DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.当基变量x i的系数c i波动时,最优表中引起变化的有(B)A.最优基BB.所有非基变量的检验数C.第i 列的系数D.基变量X B6.当非基变量x j的系数c j波动时,最优表中引起变化的有(C)A.单纯形乘子B.目标值C.非基变量的检验数D. 常数项7.当线性规划的可行解集合非空时一定(D)A.包含点X=(0,0,···,0)B.有界C.无界D.是凸集8.对偶单纯形法的最小比值规划则是为了保证(B)A.使原问题保持可行B.使对偶问题保持可行C.逐步消除原问题不可行性D.逐步消除对偶问题不可行性9.对偶单纯形法迭代中的主元素一定是负元素()AA.正确B.错误C.不一定D.无法判断10.对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正()BA.换出变量B.换入变量C.非基变量D.基变量11.对LP问题的标准型:max,,0Z CX AX b X==≥,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值Z必为()BA.增大B.不减少C.减少D.不增大12. 单纯形法迭代中的主元素一定是正元素( )AA.正确B.错误C.不一定D.无法判断13.单纯形法所求线性规划的最优解()是可行域的顶点。

AA.一定B.一定不C.不一定D.无法判断14.单纯形法所求线性规划的最优解()是基本最优解。

大工19春《运筹学》在线作业123参考答案

大工19春《运筹学》在线作业123参考答案

大工19春《运筹学》在线作业123参考答案大工19春《运筹学》在线作业1数学规划的研究对象为()。

A.数值最优化问题B.最短路问题C.整数规划问题D.最大流问题正确答案:A运筹学的基本特点不包括()。

A.考虑系统的整体优化B.多学科交叉与综合C.模型方法的应用D.属于行为科学正确答案:D()是解决多目标决策的定量分析的数学规划方法。

A.线性规划B.非线性规划C.目标规划D.整数规划正确答案:C线性规划问题中决策变量应为()。

A.连续变量B.离散变量C.整数变量D.随机变量正确答案:A数学规划模型的三个要素不包括()。

A.决策变量B.目标函数C.约束条件D.最优解正确答案:D数学规划的应用极为普遍,它的理论和方法已经渗透到自然科学、社会科学和工程技术中。

T.对F.错正确答案:A存储论的对象是一个由补充、存储和需求三个环节构成的现实运行系统,且以存储为中心环节,故称为存储系统。

T.对F.错正确答案:A满足目标要求的可行解称为最优解。

T.对F.错正确答案:A运筹学是运用数学方法,对需要进行管理的问题统筹规划,为决策机构进行决策时提供以数量化为基础的科学方法。

T.对F.错正确谜底:A线性规划的建模是指将用语言文字描述的应用问题转化为用线性规划模型描述的数学问题。

T.对F.错正确答案:A在国际上,通常认为“运筹学”与“管文科学”是具有相同或附近涵义。

T.对F.错正确谜底:A整数规划问题中的整数变量可以分为一般离散型整数变量和连续型整数变量。

T.对F.错正确答案:B线性规划数学模型的三要素包括目标函数、约束条件和解。

T.对F.错正确谜底:B基本解的概念适用于所有的线性规划问题。

T.对F.错正确谜底:B线性规划问题的可行解是满足约束条件的解。

T.对F.错正确谜底:A存储策略是决定多长时间补充一次货物以及每次补充多少数量的策略。

T.对F.错正确谜底:A线性规划的最优解是指使目标函数达到最优的可行解。

T.对F.错正确答案:A线性规划的求解方法包括图解法、纯真形法、椭球法、内点法等。

运筹学作业解答

运筹学作业解答

运筹学作业解答1.1 现有一家公司准备制定一个广告宣传计划来宣传开发的新产品,以使尽可能多的未来顾客特别是女顾客得知。

现可利用的广告渠道有电视、广播和报纸,根据市场调查整理得到下面的数据:该企业计划用于此项广告宣传的经费预算是80万元,此外要求:①. 至少有200万人次妇女接触广告宣传;②. 电视广告费用不得超过50万元,③. 电视广告至少占用三个单元一般时间和两个单元黄金时间,④. 广播和报纸广告单元均不少于5个单元而不超过10个单元。

试为该企业制定广告计划,使得广告所接触的未来顾客总数尽可能多,建立线性规划数学模型。

解:设一般时间、黄金时间、广播、报纸广告单元数分别新x1、x2、x3、x4,则线性规划模型为:1.2 某公司一营业部每天需从A、B两仓库提货用于销售,需提取的商品有:甲商品不少于240件,乙商品不少于80台,丙商品不少于120吨。

已知:从A仓库每部汽车每天能运回营业部甲商品4件,乙商品2台,丙商品6吨,运费200元/每部;从B仓库每部汽车每天能运回营业部甲商品7件,乙商品2台,丙商品2吨,运费160元/每部。

问:为满足销售量需要,营业部每天应发往A、B两仓库各多少部汽车,并使总运费最少。

解:依题意有设营业部每天发往A、B两仓库X1、X2部汽车,则线性规划模型为Max Z = 200X1+160X2s.t. 4X1+7X2 ≥2402X1+2X2 ≥806X1+2X2 ≥120X j≥0,j=1,2,且为整数用图解法得最优解为:X* = (10, 30)TZ* = 6800答案:最优解为X*=(15/4 , 3/4 , 0 , 0 )T,Z* =33/41.4 用二阶段法求下列线性规划问题,并用图解法说明二个阶段各步迭代与图解的基本解点的对应关系。

Min Z = 2x1 +4x2s.t.x1 +5x2 ≤ 804x1 +2x2 ≥ 20x1 +x2 = 10x1、x2 ≥ 0答案:最优解为X* = (10,0)T,Z* = 201.5判断下列说法是否正确? 为什么?(1) 在单纯形法迭代中,任何从基变量中替换出来的变量在紧接着的下一次迭代中可能会再进入基变量。

运筹学作业2(清华版第二章部分习题)答案

运筹学作业2(第二章部分习题)答案2.1 题 (P . 77) 写出下列线性规划问题的对偶问题:(1)123123123123123m ax 224..34223343500,z x x x s t x x x x x x x x x x x x =++⎧⎪++≥⎪⎪++≤⎨⎪++≤⎪≥≥⎪⎩无约束,;解:根据原—对偶关系表,可得原问题的对偶规划问题为:123123123123123m ax 235..223424334,0,0w y y y s t y y y y y y y y y y y y =++⎧⎪++≤⎪⎪++≤⎨⎪++=⎪≥≤≤⎪⎩(2)1111m in ,1,,,1,,0,1,,;1,,m n ij ij i j n ij ij i j nij ij j j ij z c x c x a i m c x b j nx i m j n====⎧=⎪⎪⎪==⎪⎨⎪⎪==⎪⎪≥==⎪⎩∑∑∑∑ 解:根据原—对偶关系表,可得原问题的对偶规划问题为:11m ax 1,,;1,,m n i i j ji j i j ij i w a u b v u v c i m j n u ==⎧=+⎪⎪⎪+≤⎨⎪==⎪⎪⎩∑∑ j 无约束,v 无约束2.2判断下列说法是否正确,为什么?(1) 如果线性规划的原问题存在可行解,则其对偶问题也一定存在可行解; 答:错。

因为:若线性规划的原问题存在可行解,且其对偶问题有可行解,则原问题和可行问题都将有最优解。

但,现实中肯定有一些问题是无最优解的,故本题说法不对。

例如原问题1212212m ax 31..30,0z x x x x s t x x x =++≥⎧⎪≤⎨⎪≥≥⎩有可行解,但其对偶问题1211212m in 33..10,0w y y y s t y y y y =+≥⎧⎪+≥⎨⎪≤≥⎩无可行解。

(2) 如果线性规划的对偶问题无可行解,则原问题也一定无可行解;答:错,如(1)中的例子。

(完整word版)运筹学》习题答案 运筹学答案汇总

《运筹学》习题答案一、单选题1.用动态规划求解工程线路问题时,什么样的网络问题可以转化为定步数问题求解( )BA.任意网络B.无回路有向网络C.混合网络D.容量网络2.通过什么方法或者技巧可以把工程线路问题转化为动态规划问题?( )BA.非线性问题的线性化技巧B.静态问题的动态处理C.引入虚拟产地或者销地D.引入人工变量3.静态问题的动态处理最常用的方法是?BA.非线性问题的线性化技巧B.人为的引入时段C.引入虚拟产地或者销地D.网络建模4.串联系统可靠性问题动态规划模型的特点是( )DA.状态变量的选取B.决策变量的选取C.有虚拟产地或者销地D.目标函数取乘积形式5.在网络计划技术中,进行时间与成本优化时,一般地说,随着施工周期的缩短,直接费用是( )。

CA.降低的 B .不增不减的 C .增加的 D .难以估计的6.最小枝权树算法是从已接接点出发,把( )的接点连接上CA.最远B.较远C.最近D.较近7.在箭线式网络固中,( )的说法是错误的。

DA.结点不占用时间也不消耗资源B.结点表示前接活动的完成和后续活动的开始C.箭线代表活动D.结点的最早出现时间和最迟出现时间是同一个时间8.如图所示,在锅炉房与各车间之间铺设暖气管最小的管道总长度是( )。

CA.1200B.1400C.1300D.17009.在求最短路线问题中,已知起点到A ,B ,C 三相邻结点的距离分别为15km ,20km,25km ,则( )。

DA.最短路线—定通过A 点B.最短路线一定通过B 点C.最短路线一定通过C 点D.不能判断最短路线通过哪一点10.在一棵树中,如果在某两点间加上条边,则图一定( )AA.存在一个圈B.存在两个圈 C .存在三个圈 D .不含圈11.网络图关键线路的长度( )工程完工期。

CA.大于B.小于C.等于D.不一定等于 600 700300 500 400锅炉房12312.在计算最大流量时,我们选中的每一条路线( )。

《运筹学》 第四章习题及 答案

《运筹学》第四章习题一、思考题1.运输问题的数学模型具有什么特征?为什么其约束方程的系数矩阵的秩最多等于1-+n m ?2. 用左上角法确定运输问题的初始基本可行解的基本步骤是什么?3. 最小元素法的基本思想是什么?为什么在一般情况下不可能用它直接得到 运输问题的最优方案?4. 沃格尔法(V ogel 法)的基本思想是什么?它和最小元素法相比给出的运输问题的初始基本可行解哪一个更接近于最优解?为什么?5. 试述用闭回路法检验给定的调运方案是否最优的原理,其检验数的经济意义是什么?6. 用闭回路法检验给定的调运方案时,如何从任意空格出发去寻找一条闭回路?这闭回路是否是唯一的?7. 试述用位势法求检验数的原理、步骤和方法。

8. 试给出运输问题的对偶问题(对产销平衡问题)。

9. 如何把一个产销不平衡的运输问题(产大于销或销大于产)转化为产销平衡的运输问题。

10.一般线性规划问题应具备什么特征才可以转化为运输问题的数学模型? 11.试述在表上作业法中出现退化解的涵义及处理退化解的方法。

二、判断下列说法是否正确1.运输问题模型是一种特殊的线性规划模型,所以运输问题也可以用单纯形方法求解。

2.因为运输问题是一种特殊的线性规划模型,因而求其解也可能出现下列四种情况:有唯一最优解;有无穷多个最优解;无界解;无可行解。

3.在运输问题中,只要给出一组(1-+n m )个非零的{}j i x ,且满足∑==nj i j i a x 1,∑==mi j j i b x 1,就可以作为一个基本可行解。

4.表上作业法实质上就是求解运输问题的单纯形法。

5.按最小元素法或元素差额法给出的初始基本可行解,从每一空格出发都可以找到一闭回路,且此闭回路是唯一的。

6.如果运输问题单位运价表的某一行(或某一列)元素分别加上一个常数k ,最优调运方案将不会发生变化。

7.如果运输问题单位运价表的某一行(或某一列)元素分别乘上一个常数k ,最优调运方案将不会发生变化。

运筹学作业解答(1-2)

运筹学作业(一)
题1.1:总结线性规划模型的特征; 判断下列数学模型是否为线性规划模型。 (模型a、b、c为常数;θ 为可取某常数值的参变量;x、y为变量)
(1) max Z = 3 x1 + 5 x 2 + 7 x3 x1 + 2 x 2 − 6 x3 ≥ 8 5 x + x + 8 x ≤ 20 1 2 3 3 x1 + 4 x 2 = 12 x1 , x3 ≥ 0
题1.9:填空题
1.在用图解法求线性规划问题时,目标函数Z= ClX1+C2X2,则直线ClX1+C2X2=10是Z的一条平行线 平行线,而 平行线 当可行域非空有界时最优解必定能在可行域的顶点上 顶点上达 顶点上 到。 2.线性规划数学模型三要素:决策变量 、目标函数 、 决策变量 目标函数 约束条件 3.线性规划中,任何基对应的决策变量称为基变量 基变量。 基变量 4.若某线性规划问题存在唯一最优解,从几何上讲,它 必定在可行解域的某个 顶点 处达到;从代数上讲,它 也一定是某个基变量组的 基可行解
s = 10 y 1 + 20 y y1 + 4 y y1 + y y1, y
2 2
2
st
= 10 ≥ 2
≥ 1
2
2 y1 + y
2
≥ 0
max s = 15 y 1 + 20 y 2 − 5 y 3 − y1 − 5 y 2 + y 3 ≥ − 5 5 y − 6 y − y ≤ − 6 1 2 3 st 3 y 1 + 10 y 2 − y 3 = − 7 y 1 ≥ 0 , y 2 ≤ 0 , y 3 无约束
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学作业参考答案
使用教材:汤代焱等编著,《运筹学》,中南大学出版社,2002.9
一、作业题
第1章 线性规划基础:1.3题
第2章 单纯形法:2.3题(1)
第3章 对偶问题及对偶单纯形法:3.7题
第5章 运输问题与指派问题:5.6题,5.10题
第8章 动态规划:8.1题
第9章 图与网络分析:9.5题,9.9题
第10章 网络计划技术:10.2题
第11章 单目标决策:11.1题
二、《运筹学》作业题参考答案
第1章 P7:1.3题,x1=8,x253,Zmax=380

第2章 P25:2.3(1)题,x2=5/2,x4=14,x7=42,x1=x3=x5=x6=0,Zmax=180
第3章 P40:2.7题
1) Zyyymax201210123
yyyyyyyyyyjj1231231232631220≤


≥一切,

2) y*(,,,,,)120300,Zmax=44
3) X*(,,)0416,Smin=44
第5章 P85:5.6题,Smin=17500(元)
P86:5.10题,S=10(小时)
第8章 P145:8.1题,S=68
第9章 P182:9.5题,V1至各点最短路径如下图所示(画双线路线)

v2 v5 v8 1
2
P184:9.9题。目前流量为5,不是网络最大流,因在图中还存在增流链。
第10章 网络计划技术,P206:10.2题

第11章 单目标决策,P224:11.1题,现在扩大的方案为最优方案。

v1 v3 v7 v10 v11
v4 v6 v9
2
1 7
9

5 5
8 1
2
4

3
6

1 9 7

2

4 1
3

1
v1不能到达v8

① ② ③ ⑥ ④ ⑤ ⑦ ⑧
2

4

3

2

2
3
4

6
2

0 0 2 4 7 7 113 115 6
9

6
10
4
4

相关文档
最新文档