自动纠偏系统传统PID控制及仿真
pid自整定原理

pid自整定原理PID控制器是一种广泛应用于工业控制领域的控制器。
控制器的核心部分是PID控制器中的PID参数。
PID控制器的性能取决于PID参数的设定。
PID自整定原理指的是将PID参数自动调整为最优值的过程。
PID控制器是一种反馈控制系统,当被控对象输出变化时,反馈回控制器,控制器通过计算误差来调整输出信号,进而调整被控对象的状态。
PID控制器主要由比例项、积分项和微分项组成。
比例项对误差进行比例计算,积分项对误差进行积分,微分项对误差进行微分。
PID 控制器的定点控制时,通过调整PID参数来实现对被控对象单一点的控制。
PID自整定原理基本原理是:在某个位置(即控制对象),通过特定算法对控制器进行参数配置,对该位置进行控制,测试输出结果,获得误差值,根据误差值调整控制器参数,再次进行控制,直到误差值达到最小值,调节器参数达到最优值,或者满足一定的控制要求。
这样可以实现PID参数自动优化。
PID自整定包括两种方法:在线自整定和离线自整定。
在线自整定是指在实时运行中优化PID参数。
其优点是更具实时性和实际性。
离线自整定是指在预测和模拟中优化PID参数。
这种方法更加安全可靠和可预测。
实际上,PID自整定并不是一成不变的过程,如过程变化,控制对象参数变化,PID自整定应重新进行。
这样也能为工程带来一定的便利。
在实际工程中,PID自整定的应用主要有两个方面:第一个方面是对稳态控制器的确保,即控制器在稳态下能够得到最小的误差。
第二个方面是实现动态控制器,即控制器动态响应能力提高。
通过PID自整定实现动态控制器能够加快系统的响应速度和稳定性。
综上所述,PID自整定原理是通过特定算法对控制器进行参数配置来实现对控制对象的无偏请求控制,使其输出误差达到最小值,调整控制器参数达到最优值的过程。
这种方法在控制工程中得到了广泛的应用。
PID控制器的原理与调节方法

PID控制器的原理与调节方法PID控制器是一种常见的控制算法,广泛应用于工业自动化系统中。
它是通过对反馈信号进行比例、积分和微分处理,来实现对被控对象的控制。
本文将介绍PID控制器的原理和调节方法,并探讨其在实际应用中的一些注意事项。
一、PID控制器原理PID控制器的原理基于三个基本元素:比例、积分和微分。
这三个元素分别对应控制误差的当前值、累积值和变化值。
PID控制器根据这三个元素的加权和来生成控制信号,以实现对被控对象的稳定控制。
1. 比例元素(P)比例元素是根据当前的控制误差进行调节的。
它直接乘以一个比例系数,将误差放大或缩小,生成相应的控制信号。
比例元素的作用是快速响应控制误差,但可能引起超调和震荡。
2. 积分元素(I)积分元素是对控制误差的累积值进行调节的。
它将误差进行积分,得到一个累积值,并乘以一个积分系数,生成相应的控制信号。
积分元素的作用是消除稳态误差,但可能导致系统响应过慢或产生超调。
3. 微分元素(D)微分元素是对控制误差的变化率进行调节的。
它将误差进行微分,得到一个变化率,并乘以一个微分系数,生成相应的控制信号。
微分元素的作用是预测误差的变化趋势,以提前调整控制信号,但可能引起过度调节和噪声放大。
通过调节比例、积分和微分元素的系数权重,可以优化PID控制器的响应速度、控制精度和抗干扰能力。
二、PID控制器调节方法PID控制器的调节方法通常包括经验法和自整定法两种。
1. 经验法经验法是基于经验和试错的方法,通过手动调节PID控制器的系数来实现对被控对象的控制。
具体步骤如下:步骤一:将积分和微分元素的系数设为零,只调节比例元素的系数。
步骤二:逐渐增大比例系数,观察系统的响应,并调整至系统稳定且响应时间较短。
步骤三:增加积分系数,减小系统的稳态误差,但要注意避免系统过调和震荡。
步骤四:增加微分系数,提高系统对突变的响应速度,但要避免过度调节和噪声放大。
2. 自整定法自整定法是基于系统辨识和参数整定理论的方法,通过对系统的频域或时域特性进行分析,自动计算得到PID控制器的系数。
PID的应用和使用以及如何调整

在调整过程中,可以采用试凑法、经验法或仿真法等方法,根据系统响应情况 逐步调整参数。同时,要注意观察系统输出波形,确保系统稳定且满足性能指 标要求。
避免过度调整导致系统失稳
逐步调整
在调整PID参数时,应遵循逐步调整的原则,避免一次性调整过大导致系统失稳 。每次调整后,都应观察系统响应情况,确保系统稳定后再进行下一步调整。
抗干扰措施
为了提高系统的抗干扰能力,可以采用滤波、陷波等方法对 输入信号进行处理,消除或减小干扰信号的影响。同时,也 可以采用鲁棒控制等方法提高系统的鲁棒性。
实时监测和记录数据以便优化
实时监测
在PID控制器运行过程中,应实时监 测系统的输入输出数据、误差信号等 关键信息,以便及时发现并解决问题 。
06
总结:提高PID控制器应用水 平,满足复杂工业需求
Chapter
回顾本次课程重点内容
PID控制器基本原理
比例、积分、微分控制作用及其 相互关系。
01
02
PID控制器应用实例
03
温度控制、压力控制、流量控制 等典型工业过程的PID控制实现 。
04
PID参数整定方法
试凑法、经验法、临界比例度法 等,以及参数整定的注意事项。
系统达到稳态后,期望值与实际 输出值之间的误差,衡量了系统 的准确性。
上升时间 超调量
调节时间 稳态误差
系统响应从稳态值的10%上升到 90%所需的时间,反映了系统的 快速性。
系统响应从扰动发生到重新达到 稳态值所需的时间,反映了系统 的调节能力。
常见问题诊断及解决方案
问题1
01
系统响应过慢
解决方案
限制参数范围
为了防止参数调整过度,可以设定参数的上限和下限,确保参数在合理范围内变 化。同时,也可以采用参数自适应等方法,使参数能够自动适应系统变化。
PID控制原理与参数的整定方法

PID控制原理与参数的整定方法PID控制器是一种常用的自动控制器,在工业控制中广泛应用。
它的原理很简单,即通过不断调节控制信号来使被控制物体的输出接近给定值。
PID控制器由比例(P)、积分(I)和微分(D)三个控制参数组成。
下面将详细介绍PID控制的原理和参数整定方法。
一、PID控制原理1.比例(P)控制比例控制根据被控制量的偏差的大小,按照一定比例调节控制量的大小。
当偏差较大时,调节量增大;当偏差较小时,调节量减小。
此项控制可以使系统快速响应,并减小系统稳态误差。
2.积分(I)控制积分控制根据被控制物体的偏差的积分值来调节控制量。
积分控制的作用主要是消除系统的稳态误差。
当偏差较小但持续较长时间时,积分量会逐渐增大,以减小偏差。
3.微分(D)控制微分控制根据被控制物体的偏差的变化率来调节控制量。
当偏差的变化率较大时,微分量会增大,以提前调整控制量。
微分控制可以减小系统的超调和振荡。
综合比例、积分和微分控制,PID控制器可以通过不同的控制参数整定来适应不同的被控制物体的特性。
二、PID控制参数整定方法1.经验整定法经验整定法是根据对被控制系统的调试经验和运行情况来选择控制参数的方法。
它是通过实际试验来调整控制参数,通过观察系统的响应和稳定性来判断参数的合理性。
2. Ziegler-Nichols整定法Ziegler-Nichols整定法是根据系统的临界响应来选择PID控制参数的方法。
在该方法中,首先将I和D参数设置为零,然后不断提高P控制参数直到系统发生临界振荡。
根据振荡周期和振荡增益的比值来确定P、I和D的参数值。
3.设计模型整定法设计模型整定法是根据对被控系统的数学建模来确定PID控制参数的方法。
通过建立被控系统的数学模型,分析其频率响应和稳态特性,从而设计出合理的控制参数。
4.自整定法自整定法是通过主动调节PID控制器的参数,使被控系统的输出能够接近给定值。
该方法可以通过在线自整定或离线自整定来实现。
PID控制最通俗的解释与PID参数的整定方法

PID控制最通俗的解释与PID参数的整定方法PID控制是一种经典的反馈控制算法,常用于工业自动化领域。
它的基本原理是根据系统的偏差值、积分项和微分项来调整输出控制信号,以实现对系统状态的控制。
在工业领域,PID控制常用于调节温度、压力、流量等参数,以及机器人、无人驾驶车辆等设备的姿态控制。
PID控制的通俗解释是通过将系统的目标与实际输出进行比较,并根据比较结果对输出信号进行调整,使得系统的输出接近目标值。
为了更好地说明PID控制的原理,我们可以将其比喻为一个驾驶员在驾驶汽车时的控制方式。
驾驶员观察车速表,目标是将车速调整到指定的速度,那么驾驶员会采取以下几个步骤来实现控制:1. 比较目标速度与实际速度的差异:驾驶员观察车速表上的显示,将目标速度与实际速度进行比较,得到一个偏差值。
如果目标速度是60km/h,而实际速度是50km/h,那么偏差值就是10km/h。
2.调整加速或刹车力度:根据偏差值,驾驶员会调整加速或刹车的力度,以使得车速逐渐接近目标速度。
当偏差值为正时,表示实际速度低于目标速度,驾驶员会增加油门的踩下程度;当偏差值为负时,表示实际速度高于目标速度,驾驶员会减小油门的踩下程度或踩刹车。
3.跟随目标速度调整力度:为了更加精确地调整车速,驾驶员不仅会根据当前的偏差值调整力度,还会考虑过去的偏差值。
如果过去一段时间内车速一直低于目标速度,表示驾驶员的力度不够,那么他会进一步增加油门的踩下程度;反之,如果过去一段时间内车速一直高于目标速度,表示驾驶员的力度过大,那么他会稍微减小油门的踩下程度。
通过上述步骤的不断迭代,驾驶员可以逐渐将车速调整到目标速度,并保持在目标速度附近,从而实现了对车速的控制。
这种驾驶员调整车速的方式就类似于PID控制的基本原理。
PID参数的整定指的是确定PID控制器中的比例系数(Proportional)、积分系数(Integral)和微分系数(Derivative)。
PID

关于PID整定PID是比例,积分,微分的缩写. 比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。
比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。
积分调节作用:是使系统消除稳态误差,提高无差度。
因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。
积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。
反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。
积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。
微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。
因此,可以改善系统的动态性能。
在微分时间选择合适情况下,可以减少超调,减少调节时间。
微分作用对噪声干扰有放大作用,因此过强的加微分调节,对系统抗干扰不利。
此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。
微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。
如何实现PID控制在一些系统中,需要进行PID控制,如一些板卡采集系统,甚至在一些DCS和PLC的系统中有时要扩充系统的PID控制回路,而由于系统硬件和回路的限制需要在计算机上增加PID控制回路。
在紫金桥系统中,实时数据库提供了PID控制点可以满足PID控制的需要。
进入到实时数据库组态,新建点时选择PID控制点。
紫金桥提供的PID控制可以提供理想微分、微分先行、实际微分等多种控制方式。
进行PID控制时,可以把PID的PV连接在实际的测量值上,OP连接在PID实际的输出值上。
这样,在实时数据库运行时,就可以自动对其进行PID控制。
PID参数的调整:在PID参数进行整定时如果能够有理论的方法确定PID参数当然是最理想的方法,但是在实际的应用中,更多的是通过凑试法来确定PID的参数。
PID控制及其应用

1. 简介PID控制指的是一种闭环控制方式,将输入输出偏差的比例(P)、积分(I)和微分(D)通过线性组合构成控制量,对被控制对象进行控制。
2.PID控制原理在模拟控制系统中,控制器最常用的控制规律是PID控制。
模拟PID控制系统原理框图如图1-1所示。
系统由模拟PID控制器和被控对象组成。
PID控制器是一种线性控制器,它根据给定值rin(t)与实际输出值yout(t)构成控制偏差PID的控制规律为或写成传递函数的形式式中,Kp---比例系数;Ti--积分时间常数;Td---微分时间常数。
简单说来,PID控制器各校正环节的作用如下:(1)比例环节:成比例地反映控制系统的偏差信号error(t),偏差一旦产生,控制器立即产生控制作用,以减少偏差。
(2)积分环节:主要用于消除静差,提高系统的无差度。
积分作用的强弱取决于积分时间常数TI,TI越大,积分作用越弱,反之则越强。
(3)微分环节:反映偏差信号的变化趋势(变化速率),并能在偏差信号变得太大之前,在系统中引入一个有效的早期修正信号,从而加快系统的动作速度,减少调节时间。
3.数字PID算法原理在计算控制系统中,使用的是数字PID控制器,数字PID控制算法通常又分为位置式PID 控制算法和增量式PID控制算法。
位置式算法输出的是执行机构的实际位置,如有干扰的话,会导致大幅度变化。
而增量式PID是指数字控制器的输出只是控制量的增量,所以电机控制一般都采用增量式PID算法。
增量式PID算法公式:----△u( k ) = K p△e(k)+Kie(k)+Kd[△e(k)-△e(k-1)]----△e(k) = e(k) – e(k-1)-----△e(k-1) = e(k-1) – e(k-2)-----e(k) = r(k) – c(k) (因在速度控制导通角上开始是从大变小,所以该公式须变成c(k)-r(k))参数说明:k--------------采样序号, k = 0, 1, 2----;r(t)-----------速度给定值;c(t)-----------速度实际输出值;△u( k )------第K次采样时刻的计算机输出增量值;e(k)----------第K次采样时刻输入的偏差值;e(k-1)--------第(k-1)次采样时刻输入的偏差值;K I-------------积分系数,K I = K P*T/T I;K D------------微分系数,K D = K P*T D/T;T--------------采样调期;Kp------------比例系数;T I-------------积分时间常数T D------------微分时间常数4.PID 控制参数整定方法PID 控制参数的自动整定分两步进行,第一步是初始确定PID 控制参数;第二步是在初定的PID 控制参数基础上,根据直线电机控制系统的响应过程和控制目标期望值,修正初定的PID 参数,直至电机系统的控制指标符合所需求为止.在数字控制系统中,采样周期T 是一个比较重要的因素,采样周期的选取,应与PID 参数的整定综合考虑,选取采样周期时,一般应考虑下列几个因素: (1) 采样周期应远小于对象的扰动信号的周期。
自动化控制系统中的PID控制算法优化

自动化控制系统中的PID控制算法优化随着工业自动化和智能化水平的提高,控制系统已经成为现代化制造业中不可或缺的部分。
而其中最常用的控制算法之一便是PID控制算法,它可以根据系统反馈信息自动调节控制器的输出信号,使被控对象的输出值稳定在设定值上。
然而,实际应用中PID控制算法存在一些限制和问题,如响应速度不够快、过冲过大、抗扰度差等,这些问题在一定程度上制约了自动化控制系统的稳定性和可靠性。
为了解决这些问题,我们需要对PID控制算法进行优化,以确保系统更加稳定和精确地控制被控对象。
一、PID控制算法简介PID控制算法是一种基于系统反馈信息的闭环控制算法,其名称源自三个不同的控制参数:比例系数(P,Proportional)、积分时间(I,Integral)和微分时间(D,Derivative)。
PID控制算法通过输出信号的比例、积分和微分分量来调节被控对象,使其输出符合设定值。
P分量:根据被控对象的误差,控制器以比例系数的大小输出给被控对象一个调节信号,调节量与误差成正比。
I分量:积分时间参数是避免误差积累的重要参数,它是根据误差的历史变化量计算的。
积分操作可以消除系统存在的静态误差,并且偏差持续一段时间后还可以累积掉,从而减少系统的稳态误差。
D分量:微分时间参数是根据误差的历史变化率进行计算的。
当误差的变化率很大时,微分项就会对控制信号进行阻尼作用,从而使控制系统更加平稳。
二、PID控制算法存在的问题虽然PID控制算法已经被广泛应用于自动化控制系统中,但是它还存在一些问题,如响应速度不够快、过冲过大、抗扰度差等。
1. 响应速度不够快PID控制算法的响应速度依赖于系统动态特性和PID参数的取值。
例如,当被控对象存在非线性、滞后和时变性等特性时,将会对PID控制算法的响应速度产生不良影响。
2. 过冲过大过冲是指被控对象输出在到达设定值之前超出或低于设定值的情况。
具有非线性或惯性的物理系统、控制系统响应时间过长时容易出现过冲现象。