蛋白质组学
蛋白质组学研究方法与实验方案

蛋白质组学研究方法与实验方案1. 什么是蛋白质组学?好吧,咱们先聊聊什么是蛋白质组学。
想象一下,咱们的身体就像一个精密的机器,每个部件都有它的角色,而这些部件就是蛋白质。
蛋白质组学,简单来说,就是研究这些蛋白质的科学。
通过它,我们能够了解它们的结构、功能,以及它们在身体里是如何相互作用的。
就像侦探破案一样,蛋白质组学帮我们解开生命的奥秘。
真是既神秘又有趣,尤其是当你发现一些小细节时,那种“啊哈!”的感觉,简直让人兴奋得想跳起来!2. 蛋白质组学的研究方法2.1 样本准备首先,样本准备可是一门艺术。
你不能随便拿个东西就往实验室一扔,这样可不行哦!一般来说,样本可能是血液、细胞或者组织。
准备这些样本时,注意卫生和安全,搞得像开派对一样,干净利索才行。
样本收集后,我们需要把它们冷藏,保持它们的新鲜度,毕竟没人想要一份过期的蛋白质套餐,对吧?2.2 蛋白质提取接下来,我们进入蛋白质提取的阶段。
想象一下,像是在厨房里做大餐,首先要把食材准备好。
提取蛋白质就像把牛肉从牛排里切下来,一刀切下去,油油的鲜香就出来了。
我们用各种化学试剂,像是盐酸、乙醇这些,来分离出蛋白质,得小心别让它们变成一团糟。
处理得当,才能确保后面的分析顺利进行。
3. 蛋白质分析3.1 质谱分析然后就是蛋白质分析环节。
这时候,质谱仪就像一位高级侦探,能够识别出蛋白质的身份。
你可以把质谱想象成一个超级厉害的放大镜,它能让我们看到蛋白质的分子量和结构。
分析结果能告诉我们这些蛋白质的种类、数量,甚至还可以了解它们的相互作用。
哇哦,真的是一门高科技的艺术呢!3.2 数据解读最后,我们得对数据进行解读。
就像读一本悬疑小说,刚开始可能没看懂,但越往后看越有趣。
这个过程需要耐心和细心,数据可能会让你感到困惑,但一旦你理解了其中的奥妙,简直就像解开了一个千古之谜。
通过这些数据,我们能够找到疾病的潜在标志物,或者探索新药物的目标,真是让人感到自豪的工作!4. 实验方案小贴士当然啦,在整个实验过程中,有几个小贴士可以帮助你事半功倍。
蛋白质组学概念

蛋白质组学概念“哎呀,同学们,今天咱们来聊聊蛋白质组学。
”我站在讲台上对着学生们说道。
那什么是蛋白质组学呢?简单来说,蛋白质组学就是一门研究一个生物体、一个细胞或者一个组织在特定时间和条件下所表达的全部蛋白质的学科。
这可不像我们以前学的那种只针对单一蛋白质的研究哦。
比如说,我们拿人体来举例吧。
人体是非常复杂的,不同的细胞、组织有着不同的功能,而这些功能的实现很大程度上依赖于蛋白质。
蛋白质组学就是要全面地去了解这些蛋白质,它们的种类、数量、结构以及相互之间的作用关系。
大家想想看,为什么我们要研究蛋白质组学呢?这可太重要啦!通过研究蛋白质组学,我们可以更好地理解生命活动的本质。
比如说,当人体发生疾病的时候,蛋白质的表达往往会发生变化。
我们通过分析这些变化,就有可能找到疾病的标志物,从而帮助我们早期诊断疾病,甚至开发出针对性的治疗方法。
我给大家讲一个真实的例子吧。
有研究人员在研究癌症的时候,就发现某些特定的蛋白质在癌细胞中会异常表达。
通过深入研究这些蛋白质,他们找到了一些潜在的治疗靶点,为癌症的治疗带来了新的希望。
而且,蛋白质组学在药物研发方面也有着重要的作用。
我们可以通过研究蛋白质和药物的相互作用,来筛选出更有效的药物,提高药物研发的效率和成功率。
另外,蛋白质组学还能帮助我们更好地了解生物的发育过程、环境适应机制等等。
总之,蛋白质组学的应用非常广泛,对我们理解生命、攻克疾病、推动医学和生物学的发展都有着至关重要的意义。
那蛋白质组学是怎么研究的呢?这就涉及到很多技术和方法啦。
比如说,我们常用的有质谱技术。
它可以非常准确地测定蛋白质的分子量、氨基酸序列等信息。
还有双向凝胶电泳技术,它可以把蛋白质分离开来,让我们能够直观地看到有哪些蛋白质存在。
同学们,蛋白质组学是一个非常有前景的领域,未来还有很多的挑战和机遇等待着我们去探索。
我希望大家能够对这个领域产生兴趣,说不定你们以后就会成为这个领域的专家呢!。
植物蛋白质组学

基因组的组成是固定的,蛋白质组的组成是动态的。 基因组在所有细胞中几乎都是相同的,与之不同,蛋白质组具有很高的细胞和组织特异性。 基因组是相对稳定的,蛋白质组处于高度动态变化之中。 细胞内蛋白质的拷贝数(108)远比基因拷贝数大(105)。 基因可采用PCR扩增和自动测序,而蛋白质还没有这些技术。
pH范围 3—10 4—7 5.0—6.0 上样量 40ug 80ug 120ug
双向荧光差异凝胶电泳 原理:双向荧光差异凝胶系统(DIGE)在传统双向电泳技术的基础上,结合了多重荧光分析的方法,在同一块胶上共同分离多个分别由不同荧光标记的样品,分析它们之间的差异性。极大地提高了结果的准确性,可靠性和重复性。 多块胶垂直二维SDS-PAGE系统 优点:提高二维电泳效率和实验重复性 2-DE工作站 优点: 提高以2-DE为基础的蛋白质组研究的自动化程度和工作效率
1.蛋白质组和蛋白质组学
2.蛋白质组和基因组
蛋白质组和基因组的关系:它们在概念上有相关性,代表某一蛋白质组的蛋白质是由基因组编码的,而基因的功能是通过蛋白质表现出来的。 蛋白质组学研究远比基因组研究复杂: 蛋白质组的复杂性远远高于基因组 一个基因≠一个转录产物≠ 一个蛋白质 基因→不同的转录起始和mRNA的剪切→不同的mRNA →不同的翻译起始→不同的蛋白质→翻译后修饰→蛋白质的功能、稳定性、细胞定位发生变化
优点
缺点
考染
200ng
操作简便, 价格低廉, 便于后续鉴定
灵敏性差, 所需上样量大
银染
0.1ng
灵敏性好, 所需样品少
操作复杂, 不利于后续鉴定
荧光法
1ng
线性动态范围大, 定量及定性较好, 便于后续鉴定
仪器及试剂昂贵
常见显色方法比较
蛋白质组学

百泰派克生物科技
蛋白质组学
“蛋白质组”(Proteome)一词源于蛋白质“PROTEin”与基因组“genOME”两个
词的杂合,意指“一个基因组表达的全套蛋白质”。
“蛋白质组学”(Proteomics)是以蛋白质组为研究对象,从整体水平上分析一个有机体、细胞或组织的蛋白质组成及其活动规律的科学。
蛋白质组学是在20世纪基因组学研究取得巨大成就的基础上发展起来的。
基因组
学研究促进了蛋白质组学研究的发展,蛋白质组学的研究又延伸了基因组学研究的深度。
蛋白质组学的主要研究内容包括蛋白质翻译后修饰的鉴定、蛋白结构与功能分析、蛋白定位、蛋白质差异表达以及蛋白质间的相互作用等。
百泰派克生物科技采用高通量质谱平台提供蛋白质组学服务,包括蛋白的鉴定、蛋白翻译后修饰的定性和定量分析、蛋白相互作用分析、蛋白结构鉴定等一系列分析,还可提供定制化的分析服务,满足不同的实验需求,欢迎免费咨询。
蛋白质组学

研究意义背景
研究意义
研究背景
蛋白质组学书籍随着人类基因组计划的实施和推进,生命科学研究已进入了后基因组时代。在这个时代,生 命科学的主要研究对象是功能基因组学,包括结构基因组研究和蛋白质组研究等。尽管现在已有多个物种的基因 组被测序,但在这些基因组中通常有一半以上基因的功能是未知的。目前功能基因组中所采用的策略,如基因芯 片、基因表达序列分析(Serial analysis of gene expression, SAGE)等,都是从细胞中mRNA的角度来考虑的, 其前提是细胞中mRNA的水平反映了蛋白质表达的水平。但事实并不完全如此,从DNA mRNA蛋白质,存在三个层次 的调控,即转录水平调控(Transcriptional control ),翻译水平调控(Translational control),翻译后水 平调控(Post-translational control )。从mRNA角度考虑,实际上仅包括了转录水平调控,并不能全面代表 蛋白质表达水平。实验也证明,组织中mRNA丰度与蛋白质丰度的相关性并不好,尤其对于低丰度蛋白质来说,相 关性更差。更重要的是,蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等则 几乎无法从mRNA水平来判断。毋庸置疑,蛋白质是生理功能的执行者,是生命现象的直接体现者,对蛋白质结构 和功能的研究将直接阐明生命在生理或病理条件下的变化机制。蛋白质本身的存在形式和活动规律,如翻译后修 饰、蛋白质间相互作用以及蛋白质构象等问题,仍依赖于直接对蛋白质的研究来解决。虽然蛋白质的可变性和多 样性等特殊性质导致了蛋白质研究技术远远比核酸技术要复杂和困难得多,但正是这些特性参与和影响着整个生 命过程。传统的对单个蛋白质进行研究的方式已无法满足后基因组时代的要求。这是因为:(1)生命现象的发生 往往是多因素影响的,必然涉及到多个蛋白质。(2)多个蛋白质的参与是交织成网络的,或平行发生,或呈级联 因果。(3)在执行生理功能时蛋白质的表现是多样的、动态的,并不象基因组那样基本固定不变。
蛋白质组学 名词解释

蛋白质组学名词解释蛋白质组学是一种研究蛋白质组,也就是细胞或生物体内所有蛋白质的组成、结构和功能的学科。
它主要包含蛋白质分离和鉴定、蛋白质互作和代谢、生物信息学分析等方面。
本文将从名词解释入手,分步骤地介绍蛋白质组学的相关概念。
一、蛋白质分离蛋白质分离是蛋白质组学中的基础工作。
它包括对样本中蛋白质的分离、处理、富集,以及去除不必要的成分。
蛋白质分离技术通常分为凝胶电泳、质谱分析、色谱分离等。
其中,凝胶电泳包括SDS-PAGE、二维凝胶电泳等;质谱分析则包括MALDI-TOF、ESI-Q-TOF等;色谱分离则包括离子交换、凝胶过滤、亲和层析等。
二、蛋白质鉴定蛋白质鉴定是蛋白质组学中的重要环节。
鉴定能够帮助我们确认蛋白质的身份,了解其结构和功能。
蛋白质鉴定技术通常包括人工鉴定和机器学习鉴定。
其中,人工鉴定包括质谱图谱解释、蛋白质组图谱解释等;机器学习鉴定则包括支持向量机算法、随机森林算法等。
三、蛋白质互作蛋白质互作是蛋白质组学中的重要研究内容。
它探讨的是蛋白质之间的相互作用,以及这些作用是如何影响生物体内的信号传递、代谢调节等重要生命活动。
蛋白质互作技术通常包括酵母双杂交、原位荧光共聚焦等。
四、蛋白质代谢蛋白质代谢是蛋白质组学中的另一个重要研究内容。
它研究的是蛋白质在生物体内的合成、降解和调节等重要生理过程。
蛋白质代谢技术通常包括代谢标记、蛋白质印迹、蛋白质质量谱等。
五、生物信息学分析生物信息学分析是蛋白质组学研究的一项重要内容。
它用计算机和生物信息学方法对海量蛋白质信息进行分析和处理,从而获得蛋白质的结构、功能、代谢等相关信息。
生物信息学分析技术通常包括基因组学、蛋白质组学、代谢组学等。
总之,蛋白质组学的研究内容非常广泛,它不仅可以帮助我们了解生物体内蛋白质的组成和特性,更可以为生物医学、农业、环保等多个领域的研究提供重要支持。
蛋白质组学及技术介绍PPT通用课件.ppt

3.二相SDS-PAGE
丙烯酰胺/甲叉双丙烯 酰胺溶液
分离胶缓冲液
10%(w/v)过硫酸铵 溶液
(30.8%T,2.6%C):30%(W/V)丙烯酰胺和 0.8%甲叉双丙烯酰胺的水溶 液。将 300g 丙烯酰胺和 8g 甲叉双丙烯酰胺溶解于去离子水中,最后用去离
研究 内容
蛋白质的研究内容主要有两方面:
1、结构蛋白质组学:主要是蛋白质表达模型的研究,包括蛋白质氨基酸序列 分析及空间结构的解析种类分析及数量确定; 2、功能蛋白质组学:主要是蛋白质功能模式的研究,包括蛋白质功能及蛋白 质间的相互作用。
研究 内容
蛋白质组学可分为三个主要领域: 1、蛋白质的微特性以供蛋白质的规模化鉴定和他们的后翻译饰; 2、“差异显示”蛋白质组学供蛋白质水平与疾病在广泛范围的有力应用比 较; 3、应用特定的分析技术如质谱法(包括串联质谱法、生物质谱法)或酵母 双杂交系统以及其他蛋白质组学研究新技术研究蛋白质-蛋白质相互作用。
该方法所研究的蛋白均是在体内经过翻译后修饰的,并且是可 分离的天然状态的相互作用蛋白复合物,能够反映正常生理条件下的 蛋白质间相互作用
蛋白质相互作用
2、酵母双杂交系统:
该系统利用真核细胞调控转录起始过程中,DN A结合结构域(binding domain,BD)识别DNA上的特异序列并使转录激活结构域(activation domain, AD)启动所调节的基因的转录这一原理,将己知蛋白X和待研究蛋白Y的基 因分别与编码AD和BD的序列结合,通过载体质粒转入同一酵母细胞中表 达,生成两个融合蛋白。若蛋白X和Y可以相互作用,则AD和BD在空间上 接近就能形成完整的有活性的转录因子,进而启动转录,表达相应的报告 基因;反之,如果X和Y之间不存在相互作用,报告基因就不会表达。这样, 通过报告基因的表达与否,便可确定是否发生了蛋白质的相互作用。
蛋白质和蛋白质组学

生物信息学
生物信息学在基因组学/蛋白 质组学的研究中起重要作用。 包括数据的输入、储存、加 工、索取以及数据库之间的 联系。
数据处理需要设计各种特殊 软件,对数据进行综合分析, 不同的数据库之间要有高效 自动的应答。
数据库要有严密管理。蛋白 质组比基因组具有更大的复 杂性。
基因组学/蛋白质组学的发展促使生物信息学迅速 发展。
二. 染色质的分子 组成和结构
三. 染色质的结构 与基因表达
基因、基因表达调控
一. 基因的认识与 发展
二. 真核基因组的 结构特点
三. 基因表达调控
蛋白质与蛋白质组学
一. 基因组与蛋白 质组比较
二. 蛋白质组学的 研究方法
感谢观看
Thanks
汇报人姓名
indicates there are approximately 250,000 proteins in the human genome Only 2-5% of proteins in human genome have been identified
Proteomics
Expression proteomics (表达蛋白组学)
蛋白质和蛋白质组 学
PLEASE ENTER YOUR TITLE HERE
蛋白质组(proteome):由一个细胞或一个组织的基因组所表达
的全部相应的蛋白质。
蛋白质组学(proteomics):是研究蛋白质组或应用大规模蛋白
质分离和识别技术研究蛋白质组的一门学科。
蛋白质组及蛋白质组概念的提出
ቤተ መጻሕፍቲ ባይዱ
人类基因组计划的完成3-4万个基 因,30亿对碱基
The study of global changes in protein expression
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
它主要适用于蛋白质显色、完整蛋白质的胶上被动提取 以及质谱分析。
该技术主要包括金属盐染料实用、文档锌-咪唑染料等的使用。
胶体扩散染料
主要用于高灵敏度检出电转印至硝酸纤维素和 PVDF膜上的蛋白质,不用于胶内染色。
英国建立三个蛋白质组研究中心对已完成 或即将完成全基因组测序的生物体进行蛋 白质组研究。
实用文档
Celera公司投资上亿美元独自启动了全 面鉴定和分类汇总人类组织、细胞和体 液中的蛋白质及其异构体,构建新一代 的蛋白质表达数据库的工作。
实用文档
1997年召开了第一次国际“蛋白质组学”会议 1998年在美国旧金山召开了第二届国际蛋白质组学会 议 1999年1月在英国伦敦举行了应用蛋白质组会议
▪ Aim - 3D structures of all protein folds !
实用文档
主要内容
第一节 蛋白质组学的概念及发展进展 第二节 蛋白质组表达模式的研究方法 第三节 蛋白质组功能模式的研究方法
实用文档
第一节 蛋白质组学的概念及发展进展
实用文档
蛋白质组和蛋白质组学的概念
蛋白质组(proteome):PROTEins + genOME,意 思是Proteins expressed by a genome(基因组表达的 所有蛋白质)。
工 Hans G. Dehmelt and Wolfgang Paul - 1989年同获诺贝尔物理奖 作 主要贡献:开发了离子阱质谱技术。
20世纪40年代 开始用于有机物分析
20世纪60年代
出现了气相色谱-质谱联用仪 成为有机物分析的重要仪器
20世纪80年代
质谱新技术:电喷雾电离源,大气压化学电离源 液相色谱-质谱联用仪 感应耦合等离子体质谱仪
实用文档
Sir Joseph John Thomson - 1906年诺贝尔物理奖 主要贡献:气态下离子导电的理论和实验探索
Frederick Soddy - 1921年诺贝尔化学奖
质 主要贡献:使我们对放射活性物质的认识大大提高,另外他对同位素的 起源和性质也作了出色工作。
谱 相Βιβλιοθήκη Francis William Aston - 1922年诺贝尔化学奖 主要贡献:使用质谱方法大规模的研究非放射性元素的同位素;提出整
关 数规则。
这三种染料的电泳染色结果与在酵母中通过SAGE所获得的 基因表达水平的动态范围相匹配。
在Tris/甘氨酸转印缓冲液中染色后,蛋白质可被转印至膜上 并进行免疫染色或Edman测序来鉴定蛋白质。
实用文档
金属螯合染料
这是一类与现代蛋白质组学研究相兼容的、相对较新 的蛋白质显色试剂,其设计专门与常用微量化学表征 过程兼容。它们不包含戊二醛、甲醛或Tween-20等, 很容易和集成化蛋白质组学平台(包括自动化凝胶染 色仪、图像分析工作站、机器人剪切仪器、蛋白质酶 解工作站和质谱仪等)相结合。
Genomics (基因组学) Post-genomic science (后基因组时代)
Functional genomics (功能基因组学) ▪ Transcriptomics( 转录组学) ▪ Proteomics (蛋白质组学) ▪ Metabolomics (代谢组学)
Structural genomics (结构基因组学)
这些软件可以完成蛋白质点的识别、匹配等, 具有很强的分析功能,但其缺点是需要很多 的图像手工校对,
实用文档
实用文档
实用文档
正常肝细 胞和肝癌 细胞的蛋 白质组双 向电泳差 异表达谱
园点标记 的点为两 者的差异 蛋白
数字号码
为蛋白质
点在参考
胶中的索
实用文档
引号
蛋白质的胶内酶切
包括感兴趣蛋白点的挖取、含蛋白质凝胶的 脱色、胶内蛋白质的酶切等过程
蛋白质组学(proteomics)
指应用各种技术手段来研究蛋白质组的一门新兴科 学,其目的是从整体的角度分析细胞内动态变化的 蛋白质组成成份、表达水平与修饰状态,了解蛋白 质之间的相互作用与联系,揭示蛋白质功能与细胞 生命活动规律。
实用文档
主要研究内容
了解某种特定的细胞、组 织或器官制造的蛋白质种类;
蛋白质组功能模式
The systematic study of proteinprotein interactions through the isolation of protein complexes
实用文档
实用文档
基因组 组
转录组
蛋白
The study of proteins expressed by genomes Completion of the sequencing of the 1st draft of human genome
明确各种蛋白质分子是如 何形成类似于电路的网络的;
描绘蛋白质的精确三维结构,揭 示其结构上的关键部位,如与药物结 合并且决定其活性的部位。
实用文档
蛋白质组研究包括两个方面:
Proteomic s
表达蛋白组学
The study of global changes in protein expression
各国政府支持,国际著名研究和商业机构 加盟: 1996年澳大利亚建立了世界上第一个蛋白 质组研究中心(Australia Proteome Analysis Facility,APAF)
实用文档
美国国立癌症研究院(NCI)投资1 000 万美元建立肺、直肠、乳腺、卵巢肿瘤的 蛋白质组数据库。
NCI和FDA共同投资数百万美元建立癌症不同 阶段的蛋白质组数据库。
indicates there are approximately 250,000 proteins in the human genome Only 2-5% of proteins in human genome have been identified
实用文档
实用文档
功能蛋白质组学 (functional proteomics)的提出
实用文档
实用文档
(五)质谱分析
样品分子离子化后,根据不同离子间质核比 (m/z)的差异来分离并确定分子量
离子化
m/z
质谱
定性 定量
实用文档
原理
质谱分析是先将物质离子化,按离子的质荷 比分离,然后测量各种离子谱峰的强度而实 现分析目的的一种分析方法。
实用文档
质谱技术发展过程
20世纪初
J.J. Thomson制成第一台质谱仪 主要是用来进行同位素测定和无机元素分析
蛋白质组学
实用文档
背景
基因数量有限性和基因结构的相对稳定性 VS 生命现象的复杂性和多变性
从genomic到 proteome
实用文档
对蛋白质的数量、结构、性质、相互关系和生 物学功能进行全面深入的研究已成为生命科学 研究的迫切需要和重要任务。
实用文档
The era of ‘omics’-based science
1994年由Williams和Wilkins提出,是一个动态的概念, 指的是不同细胞在不同时相表达不同的蛋白质。
实用文档
蛋白质组:
对应于基因组的所有蛋白质构成的整体,不是 局限于一个或几个蛋白质。
同一基因组在不同细胞、不同组织中的表达情 况各不相同 。
在空间和时间上动态变化着的整体。
实用文档
实用文档
科技部已将疾病蛋白质组研究列入我国“973” 计划项目和“863”计划项目;国家自然科学基 金委员会也将“蛋白质组研究”列为重点项目。 我国在鼻咽癌、白血病、肝癌和肺癌蛋白质组 研究方面取得了较大的进展。
实用文档
第二节 蛋白质组表达模式的研究方法
实用文档
主要研究目标
研究蛋白质组组成成分、差异和功能
实用文档
样品预分级主要作用在于提高低 丰度蛋白质的上样量和检测灵敏 度。
实用文档
组织水平上的蛋白质组样品制备
临床样本都是各种细胞或组织混杂, 而且状态不一,如肿瘤中癌变的上皮类 细胞总是与血管、基质细胞等混杂。
实用文档
激光捕获显微切割(laser capture microdissection,LCM)
实用文档
2-DE技术的缺点
极酸、极碱性蛋白质,疏水性蛋白质,极大 蛋白质、极小蛋白质以及低丰度蛋白质用此 种技术难于有效分离。
胶内酶解过程费时、费力,难于与质谱联用 实现自动化。
实用文档
新型非凝胶技术
液相色谱法 liquid chromatography,LC 毛细管电泳 capillary electrophoresis,CE
可直接在显微镜下从组织切片中精 确分离特定的细胞或细胞群。
实用文档
(二)蛋白质组研究中的样品分离
双向凝胶电泳two-dimensional electrophoresis,2-DE):利用蛋白质 的等电点和分子量,结合凝胶化学特性, 分离各种蛋白质的方法。
实用文档
实用文档
实用文档
特点
可分离10~100 kD分子量的蛋白质 高灵敏度和高分辨率 便于计算机进行图像分析处理 与质谱分析匹配
胺基黑常用于转印至聚偏二氟乙烯(PVDF)和/ 或硝酸纤维素膜上的蛋白质的染色。
银染的缺点是:对某些种类的蛋白质染色效果差, 对其后的蛋白质测序和质谱分析造成影响。
这两种染色技术都可减少胶内蛋白质产量。
实用文档
负染
能专门提高PAGE胶上蛋白质的回收率,但不能用于膜上 染色。
结果表现为胶面着色而蛋白质点透明。
实用文档
(三)常见蛋白质显色技术