数学会考模拟试题

合集下载

小升初六年级数学毕业会考模拟卷 附答案 (1)

小升初六年级数学毕业会考模拟卷 附答案 (1)

小升初模拟卷1.毕业会考模拟卷(一)一、填空。

(每空2分,共16分)1.一辆汽车行驶12.5千米用汽油1升,照这样计算,这辆汽车行驶100千米用汽油( )升。

2.在比例尺是1:1000000的地图上量得甲、乙两地的距离是5厘米,如果在1:4000000的地图上,那么甲、乙两地的距离是( )厘米。

3.盒子里装有完全相同的红球、蓝球共10个,如果任意摸一个球,摸到红球的可能性大,那么红球至少有( )个。

4.一个直角三角形的两个锐角分别为∠A 和∠B ,其中∠B 的度数是∠A 度数的12,那么∠B =( )°。

5.把一根绳子对折三次后沿中间剪开,一共有( )段。

6.一个圆柱的体积比与它等底等高的圆锥的体积大6.28立方分米。

已知圆锥的底面半径是1分米,圆锥的高是( )分米。

7.六一儿童节,同学们用彩色的小灯泡布置教室,按“1蓝3红2黄2绿”的规律排列,第100个小灯泡是( )色的。

8.有81个外观完全一样的玻璃球,只有一个稍微重一些,用天平至少称( )次就一定能找出这个玻璃球。

二、选择。

(将正确答案的字母填在括号里)(每小题2分,共16分)1.和你的数学课本封面的面积最接近的是()。

A.0.2平方米B.2平方米C.200平方厘米D.200平方毫米2.当前小学生近视率不断上升,但小学生对自己的近视问题并没有给予足够的重视。

下面是六(1)班学生从一~六年级近视情况记录表。

绘制()统计图最能表示这个班学生6年来近视情况的整体变化趋势。

A.条形B.扇形C.折线D.任意一种3.从学校到书店小明用了40分钟,小华用了50分钟。

小明比小华的速度快()。

A.25% B.75% C.35% D.20%4.出油率一定,香油的质量与芝麻的质量()。

A.成正比例B.成反比例C.不成比例D.无法确定5.把镜子分别放到下列每个选项右侧,从镜子中看到的是的是()。

6.一个圆柱和一个圆锥的底面直径相等,圆锥的高是圆柱高的3倍,圆锥的体积是15立方分米,圆柱的体积是()立方分米。

(完整word版)高中数学会考模拟试题(A).doc

(完整word版)高中数学会考模拟试题(A).doc

高中数学会考模拟试题( A )一选择题(共20 个小题,每小题 3 分,共 60 分)在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上1.满足条件M {1} {1,2,3} 的集合M的个数是A4 B3 C 2 D 12.sin 6000的值为A3 3 1D1 2B C22 23." m 1" 是“直线(m+2)x+3my+1=0 与直线 (m-2)x+(m+2)y-3=0 相互垂直的2A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件4.设函数f ( x) log a x( a 0, a 1) 的图象过点(1,– 3),则 a 的值8A2 B – 2 C1D1 –2 2∥5.直线 a 平面 M, 直线 a⊥直线 b,则直线 b 与平面 M 的位置关系是A 平行B 在面内C 相交D 平行或相交或在面内6.下列函数是奇函数的是A y x 2 1B y sin xC y log 2 ( x 5)D y 2x 3 7.点( 2,5)关于直线x y 1 0 的对称点的坐标是A ( 6, 3)B( -6, -3)C(3, 6)D( -3, -6)8.1 cos2 值为126 3 2 3C 3D7A4 B4 449.已知等差数列{ a n}中,a2 a8 8,则该数列前9 项和S9等于A 18B 27C 3 6D 4510.甲、乙两个人投篮,他们投进蓝的概率分别为 2 , 1 ,现甲、乙两人各投篮 1 次5 2A 1 3 9 4B C10D5 10 511.已知向量a和b的夹角为120 0 rrr, a 3, a b 3,则b等于A 1 B2 2 32C D3 312.两个球的体积之比是8: 27,那么两个球的表面积之比为A 2:3B4: 9C 2 : 3D8 : 27 13.椭圆短轴长是2,长轴是短轴的 2 倍,则椭圆的中心到其准线的距离8 5 4 5C 8 3 4 3A5 B3D5 3x 2 2 cos( 为参数 ) ,那么该圆的普通方程是14.已知圆的参数方程为1 2 sinyA ( x 2)2 ( y 1)2 2B ( x 2)2 ( y 1)2 2C ( x 2)2 ( y 1)2 2D ( x 2) 2 ( y 1)2 215.函数y13) 的最小正周期为sin( x2A2B C 2 D 4 16.双曲线x2 y2 1 的离心率为A2B 3C 21 2D217.从数字1, 2, 3, 4, 5 中任取 3 个,组成没有重复数字的三位数中是偶数的概率1B 3C1 2A5 4 D5 518.圆x2 y 2 2x 4y 20 0 截直线5x 12 y c 0 所得弦长为8,则 C 的值为A10 B-68 C 12 D 10 或 -6819. 6 名同学排成一排,其中甲、乙两人必须排在一起的不同排法有A720 B 360 C 240 D 12020.国庆期间,某商场为吸引顾客,实行“买100 送 20 ,连环送活动”即顾客购物每满100 元,就可以获赠商场购物券 20 元,可以当作现金继续购物。

高中数学会考模拟题(含答案)

高中数学会考模拟题(含答案)

一、选择题(共20个小题,每小题3分,共60分)1.若集合{}13A x x =≤≤,集合{}2B x x =<,则A B =(A ){}12x x ≤< (B ){}12x x << (C ){}3x x ≤ (D ){}23x x <≤2.tan330︒=(A(B(C) (D)3.已知lg2=a ,lg3=b ,则3lg 2=(A )a -b (B )b -a (C )ba(D )a b4.函数()2sin cos f x x x =的最大值为(A )2(B )2-(C )1(D )1-5.随机投掷1枚骰子,掷出的点数恰好是3的倍数的概率为(A )12 (B )13(C )15(D )166.在等比数列{}n a 中,若32a =,则12345a a a a a = (A )8(B )16(C )32(D )7.已知点()0,0O 与点()0,2A 分别在直线y x m =+的两侧,那么m 的取值范围是(A )20m -<< (B )02m << (C )0m <或2m >(D )0m >或2m <-8.如果直线ax +2y +1=0与直线x +3y -2=0互相垂直,那么a 的值等于(A )6(B )-32(C )- (D )-69.函数sin 26y x π⎛⎫=+ ⎪⎝⎭图像的一个对称中心是(A )(,0)12π- (B )(,0)6π-(C )(,0)6π(D )(,0)3π10.已知0a >且1a ≠,且23a a >,那么函数()x f x a =的图像可能是(A ) (B ) (C )(D )11.已知()1f x x x=+,那么下列各式中,对任意不为零的实数x 都成立的是 (A )()()f x f x =-(B )()1f x f x ⎛⎫= ⎪⎝⎭(C )()f x x > (D )()2f x >12.如果一个几何体的三视图中至少有两个三角形,那么这个几何体不可能...是 (A )正三棱锥(B )正三棱柱(C )圆锥(D )正四棱锥13.如图,D 是△ABC 的边AB 的三等分点,则向量CD 等于(A )23CA AB + (B )13CA AB + (C )23CB AB +(D )13CB AB + 14.有四个幂函数:①()1f x x -=; ②()2f x x -=; ③()3f x x =; ④()13f x x =.某同学研究了其中的一个函数,他给出这个函数的两个性质: (1)定义域是{x | x ∈R ,且x ≠0}; (2)值域是{y | y ∈R ,且y ≠0}.如果这个同学给出的两个性质都是正确的, 那么他研究的函数是 (A )① (B )②(C )③(D )④15.如果执行右面的程序框图,那么输出的S 等于(A )45 (B )55 (C )90 (D )11016.若0(,)b a a b R <<∈,则下列不等式中正确的是(A )b 2<a 2(B )1b >1a(C )-b <-a (D )a -b >a +b17.某住宅小区有居民2万户,从中随机抽取200户,调查是否已接入宽带. 调查结果如下表所示:(A )3000户(B )6500户(C )9500户(D )19000户18.△ABC 中,45A ∠=︒,105B ∠=︒,A ∠的对边2a =,则C ∠的对边c 等于(A )2(B(C(D )119.半径是20cm 的轮子按逆时针方向旋转,若轮周上一点转过的弧长是40cm ,则轮子转过的弧度数是(A )2(B )-2(C )4(D )-4CADB20.如果方程x 2-4ax +3a 2=0的一根小于1,另一根大于1,那么实数a 的取值范围是(A )113a << (B )1a >(C )13a <(D )1a =二、填空题(共4道小题,每小题3分,共12分)21.函数()f x ________________________.22.在1-和4之间插入两个数,使这4个数顺次构成等差数列,则插入的两个数的和为____. 23.把函数sin 2y x =的图象向左平移6π个单位,得到的函数解析式为________________. 24.如图,单摆的摆线离开平衡位置的位移s (厘米)和时间t (秒)的函数关系是1sin 223s t ππ⎛⎫=+ ⎪⎝⎭,则摆球往复摆动一次所需要的时间是_____ 秒.ADBCB ;CBDAA ;BBBAB ;DCCAA ;[]1,1-;3;sin 23y x π⎛⎫=+⎪⎝⎭;1。

高中数学会考模拟试题

高中数学会考模拟试题

高中数学会考模拟试题一、选择题:本大题共18小题,每小题3分,共54分.在每小题给出的四个选项中,只有一项是符合题目要求的,请在答题卡相应的位置上填涂.1.设集合}2,1{=S ,}0)2()1(|),{(22=-+-=y x y x T ,则=T S ( ) A .Φ B .}2,1{ C .)}2,1{( D .)}2,1(,2,1{ 2.某几何体的三视图如下图所示,则该几何体为( )A .三棱柱B .三棱锥C .圆锥D .四棱锥 3.计算机执行右边的程序段后,输出的结果是( ) A .1,3 B .4,1 C .0,0 D .6,0 4.函数[])3)(1(log 2x x y --=的定义域为( )A .)3,1(B .]3,1[C .),3()1,(+∞-∞D .5.函数x y x +=2的根所在的区间是( )A .⎪⎭⎫ ⎝⎛--21,1B .⎪⎭⎫ ⎝⎛-0,21C .⎪⎭⎫ ⎝⎛21,0D .⎪⎭⎫⎝⎛1,216.直线012=--y ax 和直线032=+-b x y 平行,则直线b ax y +=和直线13+=x y 的位置关系是( ) A .平行 B .重合 C .平行或重合 D .相交7.从1,2,3,4,5五个数中任意取出3个不重复的数组成一个三位数,这个三位数是偶数的概率是( )A .21B .52C .53D .32 8.函数|2|sin xy =的周期是( )A .2πB .πC .π2D .π4 9.某商场有四类食品,其中粮食类、植物油类、动物食品类及果蔬类分别有40种、10种、20种、20种,现采用分层抽样的方法抽取样本进行食品安全检测,若抽取的动物类食品有6种,则样本容量为( ) A .18 B .22 C .27 D .36 10.sin15cos75cos15sin105+等于( )A .0B .12C D .111.过圆044222=-+-+y x y x 内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .03=-+y xB .03=--y xC .034=-+y xD .034=--y x 12.设R k ∈,下列向量中,与向量)1,1(-=Q 一定不平行的向量是( )A .),(k k =B .),(k k --=C .)1,1(22++=k kD .)1,1(22--=k k 13.下列各一元二次不等式中,解集为空集的是( )A .0)1)(3(>-+x xB .0)1)(4(<-+x xC .0322<+-x xD .02322>--x x 14.在△ABC 中,根据下列条件解三角形,则其中有两个解的是( )A . 70,45,10===B A b B . 100,48,60===B c aC . 80,5,7===A b aD . 45,16,14===A b a 15.已知函数32)(2+-=mx x x f ,当),2(+∞-∈x 时是增函数,当)2,(--∞∈x 时是减函数,则=)1(f ( ) A .-3 B .13 C .7 D .含有m 的变量16.已知一圆的圆心为点(2,-3),一条直径的两个端点分别在x 轴和y 轴上,则此圆的方程是( ) A .13)3()2(22=++-y x B .13)3()2(22=-++y x C .52)3()2(22=++-y x D .52)3()2(22=-++y x17.同时转动如图所示的两个转盘,记转盘甲得到的数为x ,转盘乙得到的数为y ,构成数对(x ,y ),则所有数对(x ,y )中满足4=xy 的概率为( )A .161 B .81 C .163D .4118.若372log πlog 6log 0.8a b c ===,,,则( ).A . a b c >>B . b a c >>C . c a b >>D . b c a >>19.设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为________.20.如图,输出的结果是 .21.已知1||||||=+==b a b a 则=-||b a 。

高中数学会考模拟试题(A)

高中数学会考模拟试题(A)

高中数学会考模拟试题(A )一选择题(共20个小题,每小题3分,共60分)在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上 1. 满足条件}3,2,1{}1{=⋃M 的集合M 的个数是A 4B 3C 2D 1 2.0600sin 的值为A 23B 23- C 21- D 213."21"=m 是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直的A 充分必要条件B 充分不必要条件C 必要不充分条件D 既不充分也不必要条件4.设函数()log (0,1)a f x x a a =>≠的图象过点(18,–3),则a 的值A 2B –2C – 12D 125.直线a ∥平面M, 直线a ⊥直线b ,则直线b 与平面M 的位置关系是A 平行B 在面内C 相交D 平行或相交或在面内6.下列函数是奇函数的是 A 12+=x yB x y sin =C )5(log 2+=x yD 32-=xy7.点(2,5)关于直线01=++y x 的对称点的坐标是A (6,3)B (-6,-3)C (3,6)D (-3,-6)8.21cos12π+值为A634+ B 234+ C 34 D 749.已知等差数列}{n a 中,882=+a a ,则该数列前9项和9S 等于 A 18 B 27 C 3 6 D 4510.甲、乙两个人投篮,他们投进蓝的概率分别为21,52,现甲、乙两人各投篮1次A 15B 103C 910D 4511.已知向量a 和b 的夹角为0120,3,3a a b =⋅=- ,则b 等于A 1 B23 C 23 D 212.两个球的体积之比是8:27,那么两个球的表面积之比为 A 2:3 B 4:9 C3:2 D 27:813.椭圆短轴长是2,长轴是短轴的2倍,则椭圆的中心到其准线的距离 A558 B 554 C 338 D 334 14. 已知圆的参数方程为22()12x y θθθ⎧=⎪⎨=⎪⎩为参数,那么该圆的普通方程是A 22(2)(1)2x y -+-=B 22(2)(1)2x y +++=C 22(2)(1)2x y -+-= D 22(2)(1)2x y +++= 15.函数)321sin(+=x y 的最小正周期为 A2πB πC π2D π4 16.双曲线122=-y x 的离心率为A22B 3C 2 D2117.从数字1,2,3,4,5中任取3个,组成没有重复数字的三位数中是偶数的概率 A51 B 53 C 41 D 52 18.圆0204222=-+-+y x y x 截直线0125=+-c y x 所得弦长为8,则C 的值为A 10 B-68 C 12 D 10或-6819.6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有 A720 B 360 C 240 D 12020.国庆期间,某商场为吸引顾客,实行“买100送20 ,连环送活动”即顾客购物每满100元,就可以获赠商场购物券20元,可以当作现金继续购物。

高中数学会考模拟试题5(供参考)

高中数学会考模拟试题5(供参考)

高中数学会考模拟试题(5)本试卷第I 卷和第II 卷两部分 第I 卷为选择题,第II 卷为非选择题 第I 卷(选择题,共48分) 注意事项:1 答第I 卷前,考生务必用蓝 黑色墨水笔或圆珠笔将姓名 座位号 考试证号 考点名称 考场序号填写在答题卡上,并用2B 铅笔在答题卡规定位置涂黑自己的试卷类型 考试证号和考试科目2 每小题选出答案后,用铅笔涂黑答题卡上对应题目的答案标号 如需改动,用橡皮擦干净后,再选涂其它答案 答案写在试题卷上无效一、选择题(每小题3分,共48分)1 已知集合{}3,1,0=A ,{}2,1=B ,则B A ⋃等于( )A {}1B {}3,2,0C {}3,2,1,0D {}3,2,1 2 已知130=α,则α的终边在()A 第一象限B 第二象限C 第三象限D 第四象限3 算式60cos 60sin 2的值是()A23 B21 C43 D34 函数)(21R x x y ∈=的反函数是( ) A R x x y ∈=,2 B R x x y ∈=,C R x x y ∈=,21 D R x x y ∈=,415 如图,在正六边形ABCDEF 中,点O 为其中点, 则下列判断错误的是 ( )A AB OC =B AB ∥DEC AD BE =D AD FC =6 函数)1lg(+=x y 的定义域是( )A ),0(+∞B ),(+∞-∞C ),1[+∞-D ),1(+∞-7 直线02=+y x 的斜率k 的值为() A 21-B21C 2-D 28 在空间中,下列命题正确的是( )A 平行于同一平面的两条直线平行B 平行于同一直线的两个平面平行C 垂直于同一直线的两条直线平行D 垂直于同一平面的两条直线平行9 某地区对用户用电推出两种收费办法,供用户选择使用:一是按固定电价收取;二是按分时电价收取------在固定电价的基础上,平时时段电价每千瓦时上浮0 03元;低谷时段电价每千瓦时下浮0 25元。

甘肃高中数学会考模拟试题


3333x2y2 ??1 上一点 P 到两焦点的距离之积为 m。 则当 m 取最大值 时,点 P 的坐 3. 椭圆 259 2. 若 sin(180???)?标是( ) 5353,)和(,?) 22225353
C. (0,3)和(0,?3)D. (,)和(?,) 22222 4. 函数 y?2sinx?cosx?1?2sinx 的最小正周期是( ) ? A.B. ? 2 5. 直线?与两条直线 y?1,x?y?7?0 分别交于 P、Q 两点。 线段 PQ 的中点坐标为(1,?1),那么直线?的斜率是( ) 2323 A.B.C. ? 3232 ? 6. 为了得到函数 y?3sin2x , x?R 的图象,只需将函数 y?3sin(2x?),x?R 的 3 A. (5,0)和(?5,0) B. ( 图象上所有的点( ) A. 向左平行移动 C. 向左平行移动 ? 个单位长度 个单位长度 3? D. ? C. 2? D. 4?
的反函数是( ) A. y? x2?1(x?0) B. y? x2?1(x?0) C. y??x2?1(x?0) D. y??x2?1(x?0) x?1?1 ,g(x)?f(?x),则 g(x)( ) x?1 A. 在 R 上是增函数 B. 在(??,?1)上是增函数 C. 在(1,??) 上是减函数 D. 在(??,?1)上是减函数 2 2 2 16. 不等式 log1(x?2)?log1x 的解集是( ) A. {x|x??1 或 15. 若 f(x)?
D. 既不充分也不必要条件 A. 充分而不必要条件 C. 充要条件
1?xx(ex?e?x)12. 设函数 f(x)?,g(x)?lg,则( ) 1?x2 A. f(x)是奇函数,g(x)是偶函数 B. f(x)是偶函数,g(x)是

九年级数学会考模拟试题 试题

本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。

天元区2021届九年级数学会考模拟试题〔无答案〕特别提醒:1.答案一律用黑色笔填写上在答题卡上,写在试题卷上无效.2.在答题之前请认真阅读试题及有关说明.3.请合理安排好答题时间是.一、选择题〔本大题满分是24分,每一小题3分〕在以下各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确之答案的字母代号按要求...需要用2B 铅笔涂黑. 1.以下计算中,正确的选项是A .020=B .2a a a =+C 3±D .623)(a a =×10n,那么n 的值是〔 〕A. -7B. -6C. 6D. 73.平面直角坐标系中,某点在第二象限且它的横坐标、纵坐标之和为2,那么该点的坐标可能是〔 〕 A .〔-1,2〕 B.〔-1,3〕 C.〔4,-2〕 D.〔0,2〕4. 某班抽取5名同学参加体能测试,成绩如下:80,90,75,75,80.以下表述错误的选项是......A.众数是80 B.中位数是75 C.平均数是80 D.极差是15 5. 假如点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是〔 〕6.如图,以下程度放置的几何体中,左视图不是..长方形的是〔 〕 7.方程01122=--+xx x 的解是〔 〕 A. x =-1 B. x =2 C. x =-1或者x =2 D. 无解8. 如图,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,那么sin ∠APO 等于〔 〕A 、54B 、53C 、34D 、43二、填空题〔本大题满分是24分,每一小题3分〕 〔第8题〕 9.函数26y x =-中,自变量x 的取值范围是 .0322=--x x 的解是 .ky x=的图象经过点(-3,1),那么k 的值是 . 12.如图,CD 是△ABC 的外角∠ACE 的平分线,AB ∥CD ,∠ACE=100°,那么∠A=____________。

高中数学会考模拟试题(A)

高中数学会考模拟试题(A )一选择题(共20个小题,每小题3分,共60分) 在每小题给出的四个备选答案中,只有一个是符合题目要求的,请把所选答案的字母按要求填在相应的位置上1.满足条件}3,2,1{}1{=⋃M 的集合M 的个数是 A4B3 C2D1 2.0600sin 的值为A18B27 C36D4510.甲、乙两个人投篮,他们投进蓝的概率分别为21,52,现甲、乙两人各投篮1次则两个人都投进的概率是 A 15B 103C 910D 4511.已知向量a 和b 的夹角为0120,3,3a a b =⋅=-,则b 等于A1B23D2 12.两个球的体积之比是8:27,那么两个球的表面积之比为 A2:3B4:9 C 3:2D 27:813.椭圆短轴长是2,长轴是短轴的2倍,则椭圆的中心到其准线的距离 A558B 554C 338D 334 14A (x -C (x -15A 2πB 16A2217A 511819.20元,场购物,最多可以获赠购物券累计 A120元B136元C140元D160元二填空题(共4小题,每小题3分,共12分) 21.直线x y 33=与直线1=x 的夹角 22.直角坐标系xoy 中若定点A (1,2)与动点(x,y )满足4=⋅oA op ,则点P 的轨迹方程为 23.平面内三点A (0,-3),B (3,3),C (x ,-1)若AB ∥BC ,则x 的值24.已知函数11)(+=x x f ,则)]([x f f 的定义域为 三:解答题(3小题,共28分)25.如图ABCD 是正方形,⊥PD 面ABCD ,PD=DC ,E 是PC 的中点O 为⊥所以DE ⊥面PBC(2) 作EF ⊥PB 于F ,连DF ,因为DE ⊥面PBC 所以DF ⊥PB 所以EFD ∠是二面角的平面角 设PD=DC=2a,则DE=a DF a 362,2=又DE ⊥面PBC (已证) DE ⊥EF 所以23sin =∠EFD 即060=∠EFD26.(1)解:设双曲线方程为)0,0(12222>>=-b a b y a x因为13,1,4,2,322222=-∴=∴=+==y x b b a c a(2)将2:+=kx y l 代入双曲线中得0926)31(22=---kx x k由直线与双曲线交与不同两点的⎪⎩⎪⎨⎧>-=-+=∆≠-0)1(36)31(36)26(0312222k k k k 即k 设A 得1x 即k 27.(1)(1x f ∴(2) 12(3所以41≤a 即0<a 或41≤a。

高中数学会考模拟试题(附答案)

高二数学会考模拟试卷班级: 姓名:一、选择题:本大题共12小题,每小题5分,满分60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,4,6,8A =,{}1,2,3,6,7B =,则=)(B C A U ( )A .{}2,4,6,8B .{}1,3,7C .{}4,8D .{}2,6 20y -=的倾斜角为( ) A .6π B .3π C .23π D .56π3.函数y = )A .(),1-∞B .(],1-∞C .()1,+∞D .[)1,+∞ 4.某赛季,甲、乙两名篮球运动员都参加了7场比赛,他们所有比赛得分的情况用如图1所示的茎叶图表示,则甲、乙两名运动员得分的平均数分别为( ) A .14、12 B .13、12C .14、13D .12、145.在边长为1的正方形ABCD 内随机取一点P ,则点P 到点A 的距离小于1的概率为( )A .4π B .14π- C .8π D .18π- 6.已知向量a 与b 的夹角为120,且1==a b ,则-a b 等于( ) A .1 BC .2D .37.有一个几何体的三视图及其尺寸如图2所示(单位:cm ),( A .212cm π B. 215cm π C. 224cm πD. 236cm π8.若372log πlog 6log 0.8a b c ===,,,则( ) A . a b c >>B . b a c >>C . c a b >>D . b主视图6侧视图图2图19.已知函数()2sin()f x x ωϕ=+0,2πωϕ⎛⎫>< ⎪⎝⎭的图像如图3所示,则函数)(x f 的解析式是( )A .10()2sin 116f x x π⎛⎫=+ ⎪⎝⎭B .10()2sin 116f x x π⎛⎫=- ⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .()2sin 26f x x π⎛⎫=- ⎪⎝⎭ 10.一个三角形同时满足:①三边是连续的三个自然数;②最大角是 最小角的2倍,则这个三角形最小角的余弦值为( )A .378 B .34 C .74 D .1811.在等差数列{}n a 中, 284a a +=,则 其前9项的和9S 等于 ( )A .18B .27C .36D .912.已知实数x,y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+,0,0,1y x y x 则z=y-x 的最大值为( )A.1 B.0 C.-1 D.-213. 函数x y x +=2的根所在的区间是( )A .⎪⎭⎫ ⎝⎛--21,1B .⎪⎭⎫ ⎝⎛-0,21C .⎪⎭⎫⎝⎛21,0 D .⎪⎭⎫ ⎝⎛1,2114.函数|2|sin xy =的周期是( ) A .2πB .πC .π2D .π4 15. sin15cos75cos15sin105+等于( ) A .0B .12C .32D .116. 过圆044222=-+-+y x y x 内一点M (3,0)作圆的割线l ,使它被该圆截得的线段最短,则直线l 的方程是( )A .03=-+y xB .03=--y xC .034=-+y xD .034=--y x1 Oxy 1112π图3二、填空题:本大题共4小题,每小题5分,满分20分. 17.圆心为点()0,2-,且过点()14,的圆的方程为 . 18.如图4,函数()2x f x =,()2g x x =,若输入的x 值为3, 则输出的()h x 的值为 .19.若函数84)(2--=kx x x f 在[]8,5上是单调函数,则k 的取值范围是20.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是21.已知两条直线82:,2)3(:21-=+=++y mx l y m x l . 若21l l ⊥,则m = 22.样本4,2,1,0,2-的标准差是23.过原点且倾斜角为060的直线被圆04x 22=-+y y 所截得的弦长为三、解答题:本大题共6小题,满分80分. 解答须写出文字说明、证明过程和演算步骤. 24.(本小题满分10分)在△ABC 中,角A ,B ,C 成等差数列.(1)求角B 的大小;(2)若()sin A B +=sin A 的值.25.已知:a 、b 、c 是同一平面内的三个向量,其中a =(1,2) (Ⅰ)若|c |52=,且a c //,求c 的坐标; (Ⅱ)若|b |=,25且b a 2+与b a 2-垂直,求a 与b 的夹角θ 26.(本小题满分12分)如图5,在四棱锥P ABCD -中,底面ABCD 为正方形,PA ⊥平面ABCD ,PA AB =,点E 是PD 的中点.(1)求证://PB 平面ACE ;(2)若四面体E ACD -的体积为2,求AB 的长.图427.(本小题满分12分)某校在高二年级开设了A ,B ,C 三个兴趣小组,为了对兴趣小组活动的开展情况进行调查,用分层抽样方法从A ,B ,C 三个兴趣小组的人员中,抽取若干人组成调查小组,有关数据见下表(单位:人) (1)求x ,y 的值;(2)若从A ,B 两个兴趣小组抽取的人中选2人作专题发言,求这2人都来自兴趣小组B 的概率.28. (本小题满分12分)已知数列{}n a 是首项为1,公比为2的等比数列,数列{}n b 的前n 项和2n S n =.(1)求数列{}n a 与{}n b 的通项公式;(2)求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和.29. (本小题满分12分)直线y kx b =+与圆224x y +=交于A 、B 两点,记△AOB 的面积为S (其中O 为坐标原点).(1)当0k =,02b <<时,求S 的最大值; (2)当2b =,1S =时,求实数k 的值.数学试题参考答案及评分标准二、填空题:本大题主要考查基本知识和基本运算.共4小题,每小题5分,满分20分.13.()22225x y ++=(或224210x y y ++-=) 14.915.()0,+∞(或[)0,+∞) 16.122⎡⎤⎢⎥⎣⎦,三、解答题24.解:(1)在△ABC 中,A B C π++=,由角A ,B ,C 成等差数列,得2B A C =+. 解得3B π=.(2)方法1:由()sin 2A B +=,即()sin 2C π-=,得sin 2C =. 所以4C π=或34C π=. 由(1)知3B π=,所以4C π=,即512A π=. 所以5sin sinsin 1246A πππ⎛⎫==+ ⎪⎝⎭sincoscossin4646ππππ=+12222=+⨯4=.25. 解(Ⅰ)设20,52,52||),,(2222=+∴=+∴==y x y x c y x c x y y x a a c 2,02),2,1(,//=∴=-∴= ……2分由20222=+=y x x y ∴42==y x 或42-=-=y x∴)4,2(),4,2(--==c c 或 ……5分(Ⅱ)0)2()2(),2()2(=-⋅+∴-⊥+b a b a b a b a ……7分 0||23||2,02322222=-⋅+∴=-⋅+b b a a b b a a ……(※) ,45)25(||,5||222===b a 代入(※)中, 250452352-=⋅∴=⨯-⋅+⨯∴b a b a ……10分 ,125525||||cos ,25||,5||-=⋅-=⋅=∴==b a b a θ26.(1)证明:连接BD 交AC 于点O ,连接EO ,因为ABCD 是正方形,所以点O 是BD 的中点. 因为点E 是PD 的中点,所以EO 是△DPB 的中位线.所以PBEO .因为EO ⊂平面ACE ,PB ⊄平面ACE , 所以PB平面ACE .(2)解:取AD 的中点H ,连接EH , 因为点E 是PD 的中点,所以EHPA .因为PA ⊥平面ABCD ,所以EH ⊥平面ABCD . 设AB x =,则PA AD CD x ===,且1122EH PA x ==. 所以13E ACD ACD V S EH -∆=⨯ 1132AD CD EH =⨯⨯⨯⨯3111262123x x x x ===.解得2x =.故AB 的长为2. 27.解:(1)由题意可得,3243648x y==, 解得2x =,4y =.(2)记从兴趣小组A 中抽取的2人为1a ,2a ,从兴趣小组B 中抽取的3人为1b ,2b ,3b ,则从兴趣小组A ,B 抽取的5人中选2人作专题发言的基本事件有()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b 共10种.设选中的2人都来自兴趣小组B 的事件为X ,则X 包含的基本事件有()12,b b ,()13,b b ,()23,b b 共3种.所以()310P X =. 故选中的2人都来自兴趣小组B 的概率为310.28.解:(1)因为数列{}n a 是首项为1,公比为2的等比数列,所以数列{}n a 的通项公式为12n n a -=. 因为数列{}n b 的前n 项和2n S n =.所以当2n ≥时,1n n n b S S -=-()22121n n n =--=-,当1n =时,111211b S ===⨯-, 所以数列{}n b 的通项公式为21n b n =-. (2)由(1)可知,1212n n n b n a --=. 设数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为n T , 则 213572321124822n n n n n T ----=++++++, ①即111357232122481622n n n n n T ---=++++++, ② ①-②,得2111112111224822n n nn T --=++++++- 11121211212n nn -⎛⎫- ⎪-⎝⎭=+-- 2332nn +=-, 所以12362n n n T -+=-. 故数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和为12362n n -+-.29.解:(1)当0k =时,直线方程为y b =,设点A 的坐标为1()x b ,,点B 的坐标为2()x b ,,由224x b +=,解得12x =, 所以21AB x x =-= 所以12S AB b==22422b b +-=≤.当且仅当b =,即b =S 取得最大值2.(2)设圆心O 到直线2y kx =+的距离为d,则d=.因为圆的半径为2R =, 所以2AB ===. 于是241121k S AB dk =⨯===+,即2410k k -+=,解得2k =.故实数k 的值为2+2-,2-+2-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 4 页 第 2 页 共 4页


线




_
_
_
_
_
_
_
_
_
_

_




_
_
_
_
_
_
_
_
_
_
_
_



_
_
_
_
_
_
_
_
_
_
_



_
_
_
_
_
_
_
_
_
_
_



_
_
_
_
_
_
_
_
_
_
_
_
_
_
晋江晋兴职校数学科会考模拟试卷 【说明】 本试卷分为第Ⅰ、Ⅱ卷两部分,请将为第Ⅰ卷选择题的答案填入答题格内,第Ⅱ卷可在各题后直接作答,共100分,考试时间120分钟。 第Ⅰ卷 (选择题 共48分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 一、选择题(本大题共12小题,每小题4分,共48分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知下列三个关系式①-3N;②0=;③{a,b,c,d}{a,b};④0{1,2}其中正确的个数为( ) A.0 B.1 C.2 D.3 2.用列举法表示集合:方程437x的解集正确的是( ) A.1 B.{1} C. 437x D.{x|1x} 3.集合A=(-1,2],B=[0,3), 则AB=( ) A.(-1,3) B.[0,2] C.(-1,0] D.[2,3) 4.设命题:3pa,命题:1qa,则下列命题中正确的是( ) A.qp B.qp C.qp D.pq 5.若函数232fxx,则3f的值是( ) A.7 B.16 C.25 D.20 6.一元二次不等式350xx的解集是( ) A {x|53xx或}B.{x|5x} C.{x|3x} D. {x|53x} 7.将弧度29转化为角度为( ) A.200 B. 400 C.80 0 D.1600 8.已知数列23n,则下列各数是该数列中的项的数是( ) A.14 B.19 C.24 D.30 9.在等比数列na中,已知34a, 68a, 则9a( ) A.10 B.12 C.16 D.32 10.如果cos<0且sin<0,则是 ( ) A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角
11.设全集为R,集合{15}Axx,则CA=( )
A. {1}xx B. {5}xx C. {15}xxx或 D. {15}xxx或
12.下列函数中既是奇函数又在区间(0, +∞)内是增函数的是( )
A.xy3 B.xy1 C.22xy D.xy31

第Ⅱ卷(非选择题 共52分)
题号 第Ⅰ卷 第Ⅱ卷 总分
填空题 21 22 23 24

得分
二、填空题(本大题共8小题,每小题4分,共32分。请把正确答案填在题中横线上)
13.用描述法表示集合:不等式253x的解集 {_____________}
14、与点(3,7)关于y轴对称的点是___________
15.设函数23fxx,则其定义域是_____________
16.设集合A={a,b,c,d},B={c,d,e,f}则AB=_____________
17.等差数列:7,3,-1,-5,…中,9a=_____________
18.已知点P(5,12)为角终边上的一点,则sin_______,cos_______
tan
________

19.可判断函数235fxx的奇偶性是为其定义域R内的______函数
20.等比数列:1,3,15,45…中,其公比q_____,此等比数列的一个通项公式
na______________,且5a
_______

21.已知函数y=f(x)的图像如图所示,试写出它的
单调递增区间_________________
单调递减区间__________________

x
o

2


3

2


2

y
第 3 页 共 4 页 第 4 页 共 4页



线



线




三、解答题(本大题共4小题,每小题5分,共20分,解答应写出必要的文字说明、证明过
程或演算步骤)
22.U={小于10的正整数} , A={1,3,5} ,B={3,4,5}
求:AB ,AB ,UCA 及 UCB 。

23.已知:余弦函数4cos5,且为第二象限角,
求:sin及tan的值。

24.设函数221,03,03xxfxxx
(1)求f(x)的定义域
(2)求f(-2),f(0),f(3)的值

25、甲,乙两人聚在 一起聊天
甲:最近有什么新业务吗?
乙:有一份非常适合你的合同你签吗?
甲:请说说具体内容
乙 :我每天为你提供10万元的商品,你的付款方式为:第一天只需支付1分钱的货款,第二
天只需支付2分钱的货款,第三天只需支付4分钱的货款,第四天只需支付8分钱的货款,依
次类推,以后每天的支付的货款书都是前一天的2倍,合同期限为30天,一个月要支付你300
万元的商品呢?对你来说是多么合适啊?机会难得,赶紧签了吧!
如果是你,你会签约吗?说明理由。


第 5 页 共 4 页 第 6 页 共 4页



线




_
_
_
_
_
_
_
_
_
_

_




_
_
_
_
_
_
_
_
_
_
_
_



_
_
_
_
_
_
_
_
_
_
_



_
_
_
_
_
_
_
_
_
_
_



_
_
_
_
_
_
_
_
_
_
_
_
_
_

相关文档
最新文档