小学奥数系统讲义完整版

合集下载

小学三年级奥数精品讲义1-34讲全

小学三年级奥数精品讲义1-34讲全

小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。

选手们为争夺冠军,都在舞台上发挥着自己的最好水平。

台下的工作人员小熊和小白兔正在统计着最后的得分。

由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。

观众的情绪也影响着两位分数统计者。

只见分数一到小白兔手中,就像变魔术般地得出了答案。

等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。

小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。

于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。

你可以试一试。

”小熊照着小白兔说的去做,果然既快又对。

小学四年级奥数全册精品讲义

小学四年级奥数全册精品讲义
6.如下图,一个三角形分成 36 个小三角形.把每个小三角形涂上红色或蓝色, 两个有公共边的小三角形要涂上不同的颜色,已知涂成红色的三角形比涂成蓝色 的三角形多,那么多_____个.
7.把一条长 15cm 的线段截为三段,使每条线段的长度是整数,用这三条线 段可以组成多少个不同的三角形?(当且仅当两三角形的三条边可以对应相等 时,我们称这两个三角形是相同的.)
如果 M 位上放置标有数码“3”的纸片,一共有_____种不同的放置方法.
M
4.如下图,在 2×2 方格中,画一条直线最多可穿过 3 个方格,在 3×3 方格中, 画一条直线最多可穿过 5 个方格.那么 10×10 方格中,画一条直线最多可穿过 _____个方格.
5. 有一批长度分别为 1,2,3,4,5,6,7,8,9,10 和 11 厘米的细木条,它们的 数量都足够多,从中适当选取 3 根木条作为三条边.可围成一个三角形,如果规定 底边是 11 厘米长,你能围成多少个不同的三角形?
第一讲 加乘原理
加法原理:完成一件工作共有 N 类方法。在第一类方法中有 m1种不同的方法,在第二 类方法中有 m2种不同的方法,……,在第 N 类方法中有 mn 种不同的方法,那么完成这件工 作共有 N=m1+m2+m3+…+mn 种不同方法。
运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以 独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任 何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不 同的问题,分类的标准往往不同,需要积累一定的解题经验。
这两个基本原理是排列和组合的基础,教学时要先通过生活中浅显的实例,如购物问题、 行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。

小学奥数经济问题综合讲义五套(全部含答案)

小学奥数经济问题综合讲义五套(全部含答案)

经济问题1例1。

某商品按定价的八折出售,仍能获得20%的利润,定价时期望的利润是百分之多少?例2. 某商店进了一批笔记本,按 30%的利润定价。

当售出这批笔记本的 80%后,为了尽早销完,商店把这批笔记本按定价的一半出售.问销完后商店实际获得的利润是百分之多少?例3。

有一种商品,甲店进货价比乙店进货价便宜 10%.甲店按 20%的利润来定价,乙店按 15%的利润来定价,甲店的定价比乙店的定价便宜 11。

2元.问甲店的进货价是多少元?例4。

开明出版社出版的某种书,今年每册书的成本比去年增加 10%,但是仍保持原售价,因此每本利润下降了40%,那么今年这种书的成本在售价中所占的百分比是多少?例5。

一批商品,按期望获得 50%的利润来定价。

结果只销掉 70%的商品.为尽早销掉剩下的商品,商店决定按定价打折销售.这样所获得的全部利润,是原来的期望利润的82%,问:打了多少折扣?例6。

某商品按定价出售,每个可以获得45元钱的利润.现在按定价打85折出售8个,所能获得的利润,与按定价每个减价35元出售12个所能获得的利润一样。

问这一商品每个定价是多少元?例7。

张先生向商店订购某一商品,共订购60件,每件定价100元.张先生对商店经理说:“如果你肯减价,每件商品每减价1元,我就多订购3件。

”商店经理算了一下,如果差价 4%,由于张先生多订购,仍可获得原来一样多的总利润。

问这种商品的成本是多少?练习11.某商品按每个5元利润卖出11个的钱,与按每个11元的利润卖出10个的钱一样多。

这种商品的成本是多少元?2.商店进了一批钢笔,用零售价10元卖出20支与用零售价11元卖出15支的利润相同。

问这批钢笔的进货价是每支多少钱?3.租用仓库堆放2吨货物,每月租金6000元,这些货来估计要销售2个月,实际降低了价格,结果1个月就销售完了,由于节省了租金,结算下来,反而多赚1000元。

每千克货物降低了多少元?4.某种蜜瓜大量上市,这几天的价格每天都是前一天的80 %.妈妈第一天买了2个,第二天买了3个,第三天买了5个,共花了38元。

数学讲义(五年级奥数)

数学讲义(五年级奥数)

2 因数和倍数(2) 【题型概述】 今天, 我们学习因数的运用, 解决这种问题主要是根据问题的要求, 寻找因数的个数。 【典型例题】 29÷( )=( )· · · · · ·5,在括号内填上适当的数,使等式成立,共有多少种 不同的填法? 思路点拨 根据有余数除法各部分之间的关系,可以知道除数与商的积是 29-5=24. 两个自然数相乘的积是 24 的有四种情况:1×24,2×12,3×8,4×6,再根据“除 数比余数大”可以知道除数只能是 24,12,8,6. 所以,共有 4 种不同的填法。 【举一反三】 1.37÷( )=( ) · · · · · ·5,在括号内填上适当的数,使等式成立,共有多少 种不同的填法?
6. 有 50 张卡片,分别写着 1~50 这 50 个数,正反两面写的数字相同,卡片一面是 红,一面是蓝,某班有 50 名学生,老师把 50 张卡片中蓝色的一面都朝上摆在桌 子上,对同学说: “请你们按学号顺序逐个到前面来翻卡片,规则是:凡是卡片上 的数是自己学号的倍数,就把它翻过来,蓝翻成红,红翻成蓝。 ”那么当每个学生 都翻完以后,红色朝上的卡片有几张?
4. 五个连续奇数的和是 35,这 5 个奇数中最大的一个是多少?
5. 有三个不同的自然数组成一个等式: ■+△+○=■×△-○ 这三个数中最多有多少个奇数?
4,奇数和偶数(2) 【题型概述】 奇数和偶数有一些有趣而常用的性质: 1. 奇数≠偶数,连续自然数中的奇数和偶数时相间排列的。 2. 偶数个奇数相加的和是偶数,奇数个奇数相加的和是奇数,任意个偶数相加的 和是偶数。 3. 奇数±奇数=偶数,奇数±偶数=奇数,偶数±偶数=偶数 偶数±奇数=奇数 4. 奇数×偶数=偶数,奇数×奇数=奇数,偶数×偶数=偶数 运用这些性质可以解决很多问题。 【典型例题】

小学三年级奥数精品讲义(1-34讲全集)

小学三年级奥数精品讲义(1-34讲全集)

小学三年级奥数精品讲义目录第一讲加减法的巧算(一)第二讲加减法的巧算(二)第三讲乘法的巧算第四讲配对求和第五讲找简单的数列规律第六讲图形的排列规律第七讲数图形第八讲分类枚举第九讲填符号组算式第十讲填数游戏第十一讲算式谜(一)第十二讲算式谜(二)第十三讲火柴棒游戏(一)第十四讲火柴棒游戏(二)第十五讲从数量的变化中找规律第十六讲数阵中的规律第十七讲时间与日期第十八讲推理第十九讲循环第二十讲最大和最小第二十一讲最短路线第二十二讲图形的分与合第二十三讲格点与面积第二十四讲一笔画第二十五讲移多补少与求平均数第二十六讲上楼梯与植树第二十七讲简单的倍数问题第二十八讲年龄问题第二十九讲鸡兔同笼问题第三十讲盈亏问题第三十一讲还原问题第三十二讲周长的计算第三十三讲等量代换第三十四讲一题多解第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。

选手们为争夺冠军,都在舞台上发挥着自己的最好水平。

台下的工作人员小熊和小白兔正在统计着最后的得分。

由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。

观众的情绪也影响着两位分数统计者。

只见分数一到小白兔手中,就像变魔术般地得出了答案。

等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。

小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗?”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。

于是(93+95+96+88+89+91+93+91)÷8=90+(3+5+6―2―1+1+3+1)÷8=90+2=92。

你可以试一试。

”小熊照着小白兔说的去做,果然既快又对。

小学数学奥数方法讲义40讲一

小学数学奥数方法讲义40讲一

第一讲观察法————————————————姚老师数学乐园广安岳池姚文国在解答数学题时,第一步是观察。

观察是基础,是发现问题、解决问题的首要步骤。

小学数学教材,特别重视培养观察力,把培养观察力作为开发及培养学生智力的第一步。

观察法,是通过观察题目中数字的变化规律及位置特点,条件及结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目解答出来的一种解题方法。

观察要有次序,要看得仔细、看得真切,在观察中要动脑,要想出道理、找出规律。

*例1(适于一年级程度)此题是九年义务教育六年制小学教科书数学第二册,第11页中的一道思考题。

书中除图1-1的图形外没有文字说明。

这道题旨在引导儿童观察、思考,初步培养他们的观察能力。

这时儿童已经学过20以内的加减法,基于他们已有的知识,能够判断本题的意思是:在右边大正方形内的小方格中填入数字后,使大正方形中的每一横行,每一竖列,以及两条对角线上三个数字的和,都等于左边小正方形中的数字18。

实质上,这是一种幻方,或者说是一种方阵。

解:现在通过观察、思考,看小方格中应填入什么数字。

从横中行10+6+□=18会想到,18-10-6=2,在横中行右面的小方格中应填入2(图1-2)。

从竖右列7+2+□=18(图1-2)会想到,18-7-2=9,在竖右列下面的小方格中应填入9(图1-3)。

从正方形对角线上的9+6+□=18(图1-3)会想到,18-9-6=3,在大正方形左上角的小方格中应填入3(图1-4)。

从正方形对角线上的7+6+□=18(图1-3)会想到,18-7-6=5,在大正方形左下角的小方格中应填入5(图1-4)。

从横上行3+□+7=18(图1-4)会想到,18-3-7=8,在横上行中间的小方格中应填入8(图1-5)。

又从横下行5+□+9=18(图1-4)会想到,18-5-9=4,在横下行中间的小方格中应填入4(图1-5)。

图1-5是填完数字后的幻方。

北师版小学数学四年级上册奥数讲义(全)【学生版】

BS版小学数学(奥数)讲义数学四年级上册姓名:2020年秋季班~四年级奥数~目录第1讲和倍、差倍问题 (2)第2讲和差问题 (9)第3讲行程问题 (16)第4讲追及问题 (22)第5讲植树问题 (29)第6讲周期问题 (37)第7讲假设法解题 (43)第8讲还原问题 (49)第9讲盈亏问题 (57)第10讲年龄问题 (64)第11讲复合应用题(一) (69)第12讲复合应用题(二) (75)1~四年级奥数~2第1讲和倍、差倍问题【知识要点】1. 和倍问题【含义】已知两个数的和及两数的倍数关系,要求这两个数各是多少,这类应用题叫做和倍问题。

【数量关系】总和÷(几倍+1)=较小的数总和-较小的数=较大的数或较小的数×几倍=较大的数【解题思路】简单的题目直接利用公式,复杂的题目变通后利用公式。

2. 差倍问题【含义】已知两个数的差及两数的倍数关系,要求这两个数各是多少,这类应用题叫做差倍问题。

【数量关系】两数的差÷(几倍-1)=较小的数较小的数+两数的差=较大的数或较小的数×几倍=较大的数【解题思路】简单的题目直接利用公式,复杂的题目变通后利用公式。

【例题1】果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵?~四年级奥数~练习1:1. 用锡和铝制成的合金是720千克,其中铝的重量是锡的5倍。

铝和锡各用了多少千克?【例题2】甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍?练习2:1.一块长方形黑板的周长是96分米,长是宽的3倍。

这块黑板的长和宽各是多少分米?3~四年级奥数~4 【例题3】甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少?练习3:1.果园里有梨树、桃树和苹果树共1200棵,其中梨树的棵数是苹果树的3倍,桃树的棵数是苹果树的4倍。

求梨树、桃树和苹果树各有多少棵?【例题4】果园里桃树的棵数是杏树的3倍,且桃树比杏树多124棵。

(北京市)小学四年级寒假奥数班讲义

小学四年级奥数目录第一讲图形的计数(一)第二讲图形的计数(二)第三讲速算与巧算(一)第四讲速算与巧算(二)第五讲和差倍问题第六讲还原问题第七讲年龄问题第八讲盈亏问题第九讲最佳方案第十讲平均数问题第十一讲长方形、正方形的周长和面积第十二讲综合测试第一讲图形的计数(一)一.知识点回顾1.弄清图形中所包含的基本图形,图形的特征和变化规律。

2.从各图中所包含基本图形的个数多少出发,依次数出它们的个数,并求出它们的和。

3.被分成几个部分的图形,可以先从各部分的基本图形出发,数出所含图形的个数,再求各部分的总和,做到不重复、不遗漏,正确地解答较复杂的图形个数问题,有助于培养同学们思维的有序性和良好的学习习惯。

二.典型例题例1. 数出下面图中有多少条线段。

思路导航:要正确解答这类问题,需要我们按照一定的顺序来数,做到不重复,不遗漏。

从图中可以看出,从A点出发的不同线段有3条:AB、AC、AD;从B点出发的不同线段有2条:BC、BD;从C点出发的不同线段有1条:CD。

因此,图中共有3+2+1=6条线段。

数线段的规律:线段上有n个点(包括两个端点),n个点把这条线段共分成线段总数为:1+2+3+…+(n-1)。

解:这条线段有4个点,所以线段的总和为1+2+3=6(条)答:图中的线段有6条。

练一练:数出下列图中有多少条线段。

(2)例2.数出下面图中有多少个角。

思路导航:在∠AOB内有三条角分线OC1、OC2、OC3,∠AOB被这三条角分线分成4个基本角,那么∠AOB内总共有多少个角呢?首先有这4个基本角,其次是包含有2个基本角组成的角有3个(即∠AOC2、∠C1OC3、∠C2OB),然后是包含有3个基本角组成的角有2个(即∠AOC3、∠C1OB),最后是包含有4个基本角组成的角有1个(即∠AOB),所以∠AOB内总共有角:4+3+2+1=10(个)数角的规律:数角的方法和数线段的方法类似,图中共有几条射线组成若干个角,角的总个数为1+2+3+…+(n-1)。

小学三年级奥数教程讲义

小学三年级奥数教程讲义Newly compiled on November 23, 2020小学三年级奥数教程学校:________________________班次:__________________________姓名:_________________________目录◆第一讲加减法的巧算(一)◆第二讲加减法的巧算(二)◆第三讲乘法的巧算◆第四讲配对求和◆第五讲找简单的数列规律◆第六讲图形的排列规律◆第七讲数图形◆第八讲分类枚举◆第九讲填符号组算式◆第十讲填数游戏◆第十一讲算式谜(一)◆第十二讲算式谜(二)◆第十三讲火柴棒游戏(一)◆第十四讲火柴棒游戏(二)◆第十五讲从数量的变化中找规律◆第十六讲数阵中的规律◆第十七讲时间与日期◆第十八讲推理◆第十九讲循环◆第二十讲最大和最小◆第二十一讲最短路线◆第二十二讲图形的分与合◆第二十三讲格点与面积◆第二十四讲一笔画◆第二十五讲移多补少与求平均数◆第二十六讲上楼梯与植树◆第二十七讲简单的倍数问题◆第二十八讲年龄问题◆第二十九讲鸡兔同笼问题◆第三十讲盈亏问题◆第三十一讲还原问题◆第三十二讲周长的计算◆第三十三讲等量代换◆第三十四讲一题多解◆第三十五讲总复习第一讲加减法的巧算森林王国的歌舞比赛进行得既紧张又激烈。

选手们为争夺冠军,都在舞台上发挥着自己的最好水平。

台下的工作人员小熊和小白兔正在统计着最后的得分。

由于他们对每个选手分数的及时通报,台下的观众频频为选手取得的好成绩而热烈鼓掌,同时,观众也带着更浓厚的兴趣边看边猜测谁能拿到冠军。

观众的情绪也影响着两位分数统计者。

只见分数一到小白兔手中,就像变魔术般地得出了答案。

等小熊满头大汗地算出来时,小白兔已欣赏了一阵比赛,结果每次小熊算得结果和小白兔是一样的。

小熊不禁问:“白兔弟弟,你这么快就算出了答案,有什么决窍吗”小白兔说:“比如2号选手是93、95、98、96、88、89、87、91、93、91,去掉最高分98,去掉最低分87,剩下的都接近90为基准数,超过90的表示成90+‘零头数’,不足90的表示成90-‘零头数’。

小学四年级奥数讲义

小学四年级奥数讲义第一部分:数学基础知识1.1 自然数和整数- 自然数是指从1开始的正整数,用符号$N$表示。

- 整数是自然数和其相反数的集合,用符号$Z$表示。

1.2 加法和减法- 加法是将两个数合并在一起,得到它们的总数。

- 例如:$2 + 3 = 5$。

- 减法是从一个数中减去另一个数,得到它们的差。

- 例如:$5 - 2 = 3$。

1.3 乘法和除法- 乘法是将两个数相乘,得到它们的积。

- 例如:$2 × 3 = 6$。

- 除法是将一个数分割成若干等份,得到它们的商。

- 例如:$6 ÷ 3 = 2$。

第二部分:奥数技巧和练2.1 快速计算- 利用9的乘法法则,可以快速计算一个数乘以9的结果。

- 例如:$4 × 9 = 36$。

- 利用倍数关系,可以快速计算一个数的倍数。

- 例如:$3 × 4 = 12$。

2.2 算式变换- 利用算式的性质,可以将复杂的算式转化为简单的算式。

- 例如:$(3 + 4) × 5 = 7 × 5 = 35$。

- 利用分配律,可以将一个数拆分成两个数的和或差。

- 例如:$8 × 7 = (5 + 3) × 7 = 5 × 7 + 3 × 7 = 35 + 21 = 56$。

2.3 枚举法和猜想法- 枚举法是一种通过列举所有可能情况来解决问题的方法。

- 例如:求两个数的最大公约数,可以列举出所有可能的公约数,然后找出其中最大的一个。

- 猜想法是一种根据已有规律猜测答案的方法,然后通过严谨的推理来证明猜想是否正确。

- 例如:猜测一个数是偶数时,它一定能被2整除,然后通过证明偶数定义来证明猜想的正确性。

第三部分:练题1. 计算:$2 + 3 × 4 - 5 = ?$2. 计算:$7 - (4 × 2 + 1) = ?$3. 快速计算:$6 × 9 = ?$4. 快速计算:$5 × 7 = ?$5. 利用枚举法找出10以内的所有偶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算能力 速算与巧算、分数百分数、循环小数、分数拆分、四则混合运算等等

基础知识 和差倍、年龄、植树、周期、鸡兔、方阵、逻辑、容斥、排列组合等

图形问题 平面图形、立体图形、几何计数、周长面积、表面积体积、阴影面积

行程问题 相遇、追及、行程、流水、过桥、时钟、圆周、发车间隔等等

数论问题 平方数、奇数、偶数、约数、倍数、质数、合数、整除、余数、进制

小学奥数知识点分类 小学奥数大约 80 个知识点,可分成 5 大类,数论和行程是重点也是难点。 求和公式二:12+22+32+……n2 =

求和公式三:13+23+33+……n3 = 6. 速算巧算基本方法 凑整法、改变运算次序法、连续数求和、基准法、分组法、拆分法 7. 等差数列,等比数列,【拆分与裂项】,【换元法】,【错位相消法】, 【构造法】等较难的计算方法。 拆分裂项公式:

等差数列公式: 第一部分 计算能力

万丈高楼平地起,计算能力任何时候都是学好数学的根基,必须高度重视! 基本公式 1. 运算顺序 第一级:括号:( )→[ ] → { } 第二级:×÷: 同一级别可以交换运算次序 第三级:+-: 同一级别可以交换运算次序 2. 去括号 ① a+(b+c)=a+b+c a+(b-c)=a+b-c ② a-(b+c)=a-b-c a-(b-c)=a-b+c ③ a×(b×c)=a×b×c a×(b÷c)=a×b÷c ④ a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c 3. 分配律/结合律 乘法: a×(b+c) = a×b+a×c a×b+a×c = a×(b+c) 除法:(a+b) ÷c = a÷c+b÷ c a÷c+b÷ c = (a+b) ÷c 4. 两个必须掌握的性质 两个数的和一定,则两数越相近,积越大 两个数的积一定,则两数越分散,和越大 5. 几个计算公式 完全平方和(差)公式:(a±b)2 = a2±2ab+b2 平方差公式: a2-b2 = (a+b)(a-b) 求和公式一:1+2+3+……+n =

简单等比公式: 例题分析 1. 393+404+397+398+405+401+400+399+391+402

2. 比较下面 A,B 两数的大小:A=2009×2009, B=2008×2010 3. 结果末尾有多少个零?

4. 100 +99+98-97-96-95+……+10+9+8-7-6-5+4+3+2-1 巩固练习 5. 376+385+391+380+377+389+383+374+366+378 6. 1÷50+2÷50+3÷50+……50÷50 2010 ÷2010 7. 9999999×2009 7777×3333÷1111

8. 9. 比较下面 A,B 两数的大小: A=987654321×123456789; B=987654322×123456788

10. 1996+1994-1992-1990+1988+1986-1984-1982+1980+1978 -1976-1974+1972+1970……+4+2

第二部分 基础知识 基础知识点列表 序号 知识点名称 序号 知识点名称 序号 知识点名称 1 归一归总 9 鸡兔问题 17 加法乘法原理 2 和差问题 10 方阵问题 18 排列与组合 3 和倍问题 11 抽屉问题 19 商品利润 4 差倍问题 12 容斥问题 20 存款利息 5 植树问题 13 逻辑问题 21 浓度问题 6 年龄问题 14 数字谜 22 工程问题 7 盈亏问题 15 等差数列 23 正反比例 8 周期问题 16 一笔画 24 牛吃草问题

A 归一问题 【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标 准,求出所要求的数量。这类应用题叫做归一问题。 【数量关系】 总量÷份数=1 份数量 1 份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数 【解题思路】先求出单一量,以单一量为标准,求出所要求的数量。

【例题】买 5 支铅笔要 0.6 元钱,买同样的铅笔 16 支,需要多少钱? 解:(1)买 1 支铅笔多少钱?0.6÷5=0.12(元) (2)买 16 支铅笔需要多少钱?0.12×16=1.92(元) 列成综合算式:0.6÷5×16=0.12×16=1.92(元) 答:需要 1.92 元。 11. 3 台拖拉机 3 天耕地 90 公顷,5 台拖拉机 6 天耕地多少公顷?

12. 5 辆汽车 4 次可以运送 100 吨钢材,如果用同样的 7 辆汽车运送 105 吨钢材,需要运几次?

A 归总问题 【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求 的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天) 的总工作量、几公亩地上的总产量、几小时行的总路程等。 【数量关系】 1 份数量×份数=总量 总量÷1 份数量=份数 总量÷另一份数=另一每份数量 【解题思路】先求出总数量,再根据题意得出所求的数量。

【例题】服装厂原来做一套衣服用布 3.2 米,改进裁剪方法后,每套衣服 用布 2.8 米。原来做 791 套衣服的布,现在可以做多少套? 解:(1)这批布总共有多少米? 3.2×791=2531.2(米) (2)现在可以做多少套? 2531.2÷2.8=904(套) 列成综合算式 3.2×791÷2.8=904(套) 答:现在可以做 904 套。 13. 小华每天读 24 页书,12 天读完了《红岩》一书。小明每天读 36 页书, 几天可以读完《红岩》?

14. 食堂运来一批蔬菜,原计划每天吃 50 千克,30 天慢慢消费完这批蔬 菜。后来根据大家的意见,每天比原计划多吃 10 千克,这批蔬菜可 以吃多少天?

A 和差问题 【含义】已知两个数量的和与差,求两个数量各是多少,这类应用题叫和 差问题。 【数量关系】大数=(和+差)÷ 2 小数=(和-差)÷ 2 【解题思路】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

【例题】甲乙两班共学生 98 人,甲班比乙班多 6 人,求两班各有多少人? 解:甲班人数=(98+6)÷2=52(人) 乙班人数=(98-6)÷2=46(人) 答:甲班有 52 人,乙班有 46 人。 15. 长方形的长和宽之和为 18 厘米,长比宽多 2 厘米,求长方形的面积?

16. 有甲乙丙三袋化肥,甲乙两袋共重 32 千克,乙丙两袋共重 30 千克, 甲丙两袋共重 22 千克,求三袋化肥各重多少千克。

17. 甲乙两车原来共装苹果 97 筐,从甲车取下 14 筐放到乙车上,结果甲 车比乙车还多 3 筐,两车原来各装苹果多少筐?

A 和倍问题 【含义】已知两个数的和及大数是小数的几倍(或小数是大数的几分之 几),要求这两个数各是多少,这类应用题叫做和倍问题。 【数量关系】总和 ÷(几倍+1)=较小的数 总和 - 较小的数 = 较大的数 较小的数 ×几倍 = 较大的数 【解题思路】简单的题目直接利用公式,复杂的题目变通后利用公式。

【例题】果园里有杏树和桃树共 248 棵,桃树的棵数是杏树的 3 倍,求杏 树、桃树各多少棵? 解:(1)杏树有多少棵? 248÷(3+1)=62(棵) (2)桃树有多少棵? 62×3=186(棵) 答:杏树有 62 棵,桃树有 186 棵。

18. 东西两个仓库共存粮 480 吨,东库存粮数是西库存粮数的 1.4 倍,求 两库各存粮多少吨?

19. 甲站原有车 52 辆,乙站原有车 32 辆,若每天从甲站开往乙站 28 辆, 从乙站开往甲站 24 辆,几天后乙站车辆数是甲站的 2 倍?

20. 甲乙丙三数之和是 170,乙比甲的 2 倍少 4,丙比甲的 3 倍多 6,求三 数各是多少?

A 差倍问题 【含义】已知两个数的差及大数是小数的几倍(或小数是大数的几分之 几),要求这两个数各是多少,这类应用题叫做差倍问题。 【数量关系】两个数的差÷(几倍-1)=较小的数 较小的数×几倍=较大的数 【解题思路】简单的题目直接利用公式,复杂的题目变通后利用公式。 【例题】果园里桃树的棵数是杏树的 3 倍,而且桃树比杏树多 124 棵。求 杏树、桃树各多少棵? 解:(1)杏树有多少棵? 124÷(3-1)=62(棵) (2)桃树有多少棵? 62×3=186(棵) 答:果园里杏树是 62 棵,桃树是 186 棵。

21. 爸爸比儿子大 27 岁,今年,爸爸的年龄是儿子年龄的 4 倍,求父子 二人今年各是多少岁?

22. 商场改革经营管理办法后,本月盈利比上月盈利的 2 倍还多 12 万元, 又知本月盈利比上月盈利多 30 万元,这两个月盈利各是多少万元?

23. 粮库有 94 吨小麦和 138 吨玉米,如果每天运出小麦和玉米各是 10 吨, 多少天后,玉米是小麦的 12 倍?

A 植树问题 基本类型及公式: ①在直线上或者不封闭的曲线上植树,两端都植树。 基本公式:棵树=段数+1;棵距(段长)×段数=总长 ②在直线上或者不封闭的曲线上植树,两端都不植树。 基本公式:棵树=段数-1;棵距(段长)×段数=总长

③在封闭曲线上植树: 基本公式:棵树=段数;棵距(段长)×段数=总长 关键问题:确定所属类型,从而确定棵数与段数的关系。

【例题】一条河堤 136 米,每隔 2 米栽一棵垂柳,头尾都栽,共栽多少棵 垂柳? 解:136÷2+1=68+1=69(棵) 答:一共要栽 69 棵垂柳。 24. 一个圆形池塘周长为 400 米,在岸边每隔 4 米栽一棵白杨树,一共能 栽多少棵白杨树?

25. 甲乙丙三人锯同样粗细的钢条,分别领取 1.6 米,2 米,1.2 米长的 钢条,要求都按 0.4 米规格锯开,劳动结束后,甲乙丙分别锯了 24 段,25 段,27 段,谁锯钢条的速度最快?

26. 某一淡水湖的周长 1350 米,在湖边每隔 9 米种柳树一株,在两株柳树 中间种植 2 株夹枝桃,可栽柳树多少株?可栽夹枝桃多少株?两株夹枝 桃之间相距多少米?

27. 一座大桥长 500 米,给桥两边的电杆上安装路灯,若每隔 50 米有一 个电杆,每个电杆上安装 2 盏路灯,一共可以安装多少盏路灯?

A 年龄问题 【含义】这类问题是根据题目的内容而得名,它的主要特点是两人的年龄 差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。 【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其 与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。 【解题思路】可以利用“差倍问题”的解题思路和方法。

【例题】爸爸今年 35 岁,亮亮今年 5 岁,今年爸爸的年龄是亮亮的几倍? 明年呢? 解 35÷5=7(倍) (35+1)÷(5+1)=6(倍) 答:今年爸爸的年龄是亮亮的 7 倍,明年爸爸的年龄是亮亮的 6 倍。

相关文档
最新文档