古典密码学介绍

合集下载

密码学基础-密码学(古典密码)-精品文档

密码学基础-密码学(古典密码)-精品文档

10
古典密码

象形文字的修改(Modified Hieroglyphics):密 码学的第一个例子是对标准书写符号的修改 ,例如古埃及法老坟墓上的文字(3200-1100 B.C.),核心思想是代替(Substitution)
古典密码

400 B.C.,希腊人艾奈阿斯《城市防卫论 》

艾奈阿斯绳结密码 不同的绳结距离代表不同的字母
第一章 古典密码
密码学的意义 •密码学的历史、现状和未来 •基本术语和定义 •古典密码和相关基础数学理论 •如何用精确的数学语言定义和分析古典密码

密码学的重要性


密码学是信息安全技术的核心和基石,在 信息安全领域起着基本的、无可替代的作 用。这方面的任何重大进展,都会有可能 改变信息安全技术的走向 密码技术和理论的发展始终深刻影响着信 息安全技术的发展和突破
古典密码

曾公密码

选择一首五言律诗作为密码本

国破山河在,城春草木深 感时花溅泪,恨别鸟惊心 烽火连三月,家书抵万金 白头搔更短,浑欲不胜簪

——杜甫《春望》


加密过程:找到军情对应的字,做标记后 放在普通公文中发送 解密过程:字验
17
古典密码

500 B.C.,斯巴达人在军事上用于加解密
2
密码学的地位

信息安全大厦
应用安全
系统安全 网络安全 安全协议 安全的密码算法
密码学
学习密码学的意义

密码学相关理论和技术,是进一步学习和 运用安全技术的基本功

数据保密 身份鉴别 数字签名 数字水印
密码学的发展历史

2.6_转轮密码与M-209

2.6_转轮密码与M-209

第六节转轮密码及M-2091历史回顾二战中最著名的密码要算英格玛(ENIGMA,意为谜),它作为世界上第一部机械密码机,结束了手摇编码的历史,其工作原理奠定了当今计算机加密的基础。

鲍里斯·哈格林1934年,瑞士密码专家鲍里斯·哈格林(Boris Hagelin,1892—1983)为法国秘密机构设计了一台密码机。

他将该机改进成换字器M-209,为美国陆军所采用,二次大战期间这种密码机生产了140,000台。

2为了战胜英格玛,英国人在布莱榭丽公园的小木屋里建起了密码学校,这里聚集着各种不同寻常的怪才数学家、军事家、心理学家、语言学家、象棋高手、填字游戏专家,有些人专门负责处理细节,有些人则通过不合常理的思维跳跃来寻找灵感,到二战结束时,这里已经聚集了7000人。

二战成了密码史上的黄金年代。

军事科学家估计,盟军对密码的成功破译使二战至少提前一年结束。

3但是二战结束后,英国并没有透露英格玛已经被破解的秘密,直到20世纪70年代,各国转向计算机加密的研究,人们才知道布莱榭丽公园的故事。

但那时,很多无名英雄已经长眠地下了。

这其中,天才密码学家图灵的命运最为不幸,他不但没有因为破译英格玛受到奖励,反而因“同性恋”而被政府以“有伤风化罪”起诉,1954年,身心俱疲的图灵服毒自杀,时年42岁。

今天,信息学领域最重要的奖项被命名为“图灵奖”,也许这就是对他的补偿吧。

4当前形势密码,仍是现代战争的关键“计算机时代是继手工密码,机械密码以后,密码发展的第三个阶段,在这一阶段斗争就更复杂了。

”从“9·11”以后的反恐战的密码大战中,我们就可以看出它有多“复杂”。

52006年4月21日,驻阿富汗美军宣布,为了防止“基地”组织恐怖分子窃听,美军已紧急更换了全部通用密码。

美军此次急着更换密码,是因为一名已经脱离“基地”组织的“前恐怖分子”宣称,“基地”组织已于2005年初成功破译了驻阿美军的通用密码,并依靠破译密码全面掌握了美军活动动向。

密码学-古典密码

密码学-古典密码
每组中的两个字母H不ill 同体。制
P 中同行, 为紧靠各自右端的字母 P 中同列, 为紧靠各自下方的字母
密文 非同行同列, 为确定矩阵的对角字母
2. Vigenere体制
设明文m = m1m2…mn,k = k1k2…kn,则密文 c = Ek(m) = c1c2…cn,
其中ci = (mi + ki) mod 26, i = 1, 2, …, n。 当密钥的长度比明文短时,密钥可以周期性地
4. Vernam体制
Vernam密码在加密前首先将明文编码为(0, 1)字符串。
设明文m = m1m2…mn,k = k1k2…kn,其中mi , ki∈GF(2) , 则密文c = c1c2…cn ,其中
ci = mi⊕ki , i ≥1。
在用Vernam密码对明文加密时,如果对不同的明文使 用不同的密钥,则这时Vernam密码为“一次一密”(onetime pad)密码,在理论上是不可破译的。如果存在不 同的明文使用相同的密钥,则这时Vernam密码就比较 容易被破译。
例2.5(P16)
2.3.2 多表古典密码的统计分析
在多表古典密码的分析中,首先要确定密钥字的长度, 也就是要首先确定所使用的加密表的个数,然后再分析确 定具体的密钥。
确定密钥字长的常用方法有:
设设 设
对任意
对任意
密文
对任意
密其密文中文其的中乘的法加都法是都模是q 模乘q法加. 法显.然显, 然简,单简乘单法
密加码法的密密码钥的量密为钥量为
其中的加法和乘法都是模q 加法和乘法.
显然, 简单仿射密码的密钥量为
2. 2 几种典型的古典密码体制
几种典型的单表 古典密码体制

古典密码的实验报告

古典密码的实验报告

古典密码的实验报告古典密码的实验报告引言:密码学作为一门古老而又神秘的学科,一直以来都吸引着人们的兴趣。

在古代,人们用各种各样的密码来保护重要信息的安全性。

本实验旨在通过实际操作,探索古典密码的加密原理和破解方法,从而深入了解密码学的基本概念和应用。

一、凯撒密码凯撒密码,又称移位密码,是最简单的一种古典密码。

其原理是通过将明文中的每个字母按照一定的规则进行移位,得到密文。

在本实验中,我们选择了一个简单的凯撒密码进行破解。

首先,我们选择了一段明文:“HELLO WORLD”,并将其按照凯撒密码的规则进行移位,假设移位数为3,则得到密文:“KHOOR ZRUOG”。

接下来,我们尝试使用暴力破解的方法来还原明文。

通过尝试不同的移位数,我们发现当移位数为3时,得到的明文与原文完全一致。

这表明我们成功地破解了凯撒密码,并还原了原始的明文。

二、维吉尼亚密码维吉尼亚密码是一种基于多个凯撒密码组合而成的密码算法。

其原理是通过使用不同的移位数对明文进行加密,从而增加了密码的复杂度。

在本实验中,我们选择了一段明文:“CRYPTOGRAPHY”,并使用维吉尼亚密码进行加密。

我们选择了一个关键词“KEY”作为加密密钥。

首先,我们将关键词“KEY”重复至与明文长度相同,得到“KEYKEYKEYKEYK”。

然后,将明文中的每个字母与关键词中对应位置的字母进行凯撒密码的移位操作。

经过加密后,我们得到了密文:“LXFOPVEFRNHR”。

接下来,我们尝试使用破解方法来还原明文。

通过尝试不同的关键词和移位数的组合,我们发现当关键词为“KEY”且移位数为3时,得到的明文与原文完全一致。

这表明我们成功地破解了维吉尼亚密码,并还原了原始的明文。

三、栅栏密码栅栏密码是一种基于换位操作的密码算法。

其原理是通过将明文中的字母按照一定的规则进行重新排列,得到密文。

在本实验中,我们选择了一段明文:“HELLO WORLD”,并使用栅栏密码进行加密。

1古典密码

1古典密码

2016/6/19
第一章 古典密码
27
单字母密码
• 单表代换密码 移位(shift )密码、乘数(multiplicative)密码 仿射(affine ) 密码、多项式(Polynomial)密码 密钥短语(Key Word)密码 • 多表代换密码 维吉尼亚(Vigenere)密码 博福特(Beaufort)密码 滚动密钥(running-key)密码 弗纳姆 (Vernam)密码 转子机(rotor machine)
Smith,J.L.,The Design of Lucifer, A Cryptographic Device for Data Communication, 1971 Smith,J.L.,…,An Expremental Application of Cryptogrphy to a remotely Accessed Data System, Aug.1972 Feistel,H.,Cryptography and Computer Privacy, May 1973
2016/6/19 14
第一章 古典密码
基本概念
• 密码学(Cryptology): 是研究信息系统安全保 密的科学. 密码编码学(Cryptography): 主要研究对信息 进行编码,实现对信息的隐蔽. 密码分析学(Cryptanalytics):主要研究加密消 息的破译或消息的伪造.
2016/6/19 第一章 古典密码 9
Example -V
• Nomenclator 代码本 c.1400 字母、符号、单词、短语 代码 代码 字母、符号、单词、短语
应用:World War II
2016/6/19
第一章 古典密码

02 古典密码及分析

02 古典密码及分析


已知明文攻击,known plaintext

选择明文攻击,chosen plaintext

选择密文攻击,chosen ciphertext

选择文本攻击,chosen text

西安电子科技大学计算机学院
7
基于密码分析的攻击
Cryptanalytic Attacks
An algorithm that meets one or both of the following criteria:
An encryption scheme is said to be computationally secure if either of the foregoing two criteria are met.
unconditionally secure
8
西安电子科技大学计算机学院
穷举攻击
Key Size (bits)


西安电子科技大学计算机学院
15
对称密码模型
(Symmetric Cipher Model)
西安电子科技大学计算机学院
16
西安电子科技大学计算机学院
17

对称密码安全的两个必备条件:

加密算法必须是足够强的 a strong encryption algorithm 惟有发送者和接收者知道的秘密密钥 a secret key known only to sender / receiver C = EK(P) P = DK(C)
10
密码学的发展历史

第1阶段:1949年以前

1949年以前的密码技术可以说是一种艺术,而不是一种科 学,那时的密码专家是凭直觉和信念来进行密码设计和分 析的,而不是靠推理证明。

古典密码方法是

古典密码方法是
古典密码方法是一种使用传统技术和手段进行加密和解密的密码方法。

这些方法通常是基于置换、替换和混淆的原理,使用字母、数字或符号进行编码和解码。

它们通常依赖于密钥,通过改变字母的顺序、替换字母或使用其他算法来隐藏原始信息。

常见的古典密码方法包括凯撒密码、单行移位密码、多行移位密码、培根密码等。

凯撒密码是一种基于字母位移的替换密码,通过将字母按照一定的位移量移动来加密信息。

单行移位密码和多行移位密码是一种将字母按照指定的规则在网格中移动,然后读取特定位置上的字母来加密信息的方法。

培根密码则是将字母表按照一定的规则与一个由五个字母组成的组合进行对应,将原始信息转换为一串由'A'和'B'组成的编码。

古典密码方法在现代密码学中已经不再安全,因为它们往往容易受到频率分析、统计分析和其他攻击方法的攻击。

现代密码学中更常使用的是基于数学原理和复杂算法的对称加密和非对称加密方法。

古典加密的两种基本方法

古典加密的两种基本方法
在密码学中,加密是将原始数据转换为未知形式的过程,以隐藏数据的含义和信息。

古典加密是指用于加密数据的传统方法,有两种基本方法:替换密码和置换密码。

1. 替换密码
替换密码是一种将字符或字母替换为其他字符或字母的加密方法。

最简单的替换密码是凯撒密码。

凯撒密码是一种最古老的加密技术,它将字母按照一定的位移量进行替换。

例如,当位移量为3时,A将被替换为D,B将被替换为E等等。

这种方法非常容易被破解,因为只需要尝试每一种可能的位移量,就可以找到正确的解密方法。

更加复杂的替换密码有多种方法,例如多表替换密码、单表替换密码、维吉尼亚密码等等。

这些方法通过不同的替换规则和密钥来增加加密强度。

2. 置换密码
置换密码是一种将原始数据重新排列的加密方法。

最简单的置换密码是栅栏密码。

栅栏密码将原始数据写成一列,然后将这一列按照一定的间隔进行划分,最后按照不同的顺序排列。

例如,当间隔为3时,
原始数据'HELLO WORLD'可以被排列成'HLOOLRWE LD'。

这种方法也容易被破解,因为只需要尝试不同的间隔和排列方式即可。

更加复杂的置换密码有多种方法,例如双重置换密码、多重置换密码、列置换密码等等。

这些方法通过不同的置换规则和密钥来增加加密强度。

总之,古典加密虽然有很多弱点,但是这些基本方法为现代加密技术的发展奠定了基础,也有助于我们更好地理解密码学的基本概念。

现代密码学第二讲(必修):古典密码学


置换密码
练习: 明文: nice work
X1234 Pi(x) 2 4 1 3
求密文和逆置换。
思考: 当明文 字符不 是4的整 数倍怎 么办?
置换密码
已知多对明文和密文,可以推导置换表(即 密钥);
穷举攻击:已知密文,明文为有意义字符, 至多尝试m! 个,可以恢复明文
分组为m,至多有m!个置换
helloeveryone惟密文攻击维吉尼亚密码由m个移位密码构成移位密码不改变字符的分布故若能确定m则可以找到每个移位密码的位移量k若用给定的m个密钥表周期地对明文字母加密则当明文中有两个相同字母组长度大于3在明文序列中间隔的字母数为m的倍数时这两个明文字母组对应的密文字母组必相同
《现代密码学》第二讲
数学描述: 用数字表示每个字母:
abcdefghijk l mn o p q r s t u v w x y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
c = E(p) = (p + k) mod (26) p = D(c) = (c – k) mod (26)
穷举攻击:已知密文,且明文为有意义字符 ,至多尝试25次,可以恢复明文.
仿射密码(Affine Cipher)
移位密码的扩展
明文p ∈Z26,密文c ∈Z26 , 密钥k=(a,b) ∈ Z’26× Z26 且gcd(a,26)=1.
加密:
c = E(p) = (a × p + b) mod 26
解密:
p = D(c) = (c – b) × a-1mod 26
仿射密码
例:令密钥k=(7,3), 且gcd(7,26)=1.

密码学简介68891

(4)若p1=p2,则插入一个事先约定的字母于重复字母 之间,并用前述方法处理。
(5)若明文字母为奇数个,则在明文的末端添加某个约 定好的字母作为填充。
例:密钥为monarchy,构造的字母矩阵 如下:
MON A R C HY BD E F G I/J K
L P QS T
U V WX Z
(3)按密钥决定的次序按列一次读出
14235 c r ypt ogr ap
密钥中字 母在英文 字母表中 出现的次 序为 14235
hyi s a
nappl
i edsc 故时:的C换r位yp加to密gria密p文hy为ies:a:nCapOnpHliNedIIscYciRenIcPeD.e密N钥P为AScPreSnCy
MD5的破解
2004年8月17日,美国加州圣巴巴拉的国际密码 学会议(Crypto’2004)上,来自中国山东大学 的王小云教授做了破译MD5、HAVAL-128、 MD4和RIPEMD算法的报告,公布了MD系列算 法的破解结果。
MD5密码算法,运算量达到2的80次方。即使采 用现在最快的巨型计算机,也要运算100万年以上 才能破解。但王小云和她的研究小组用普通的个人 电脑,几分钟内就可以找到有效结果。
个字母)
(1)若p1,p2在同一行,则对应的密文c1,c2分别是紧靠 p1 p2右端的字母。其中第一列被看作是最后一列的右方。
(2)若p1,p2在同一列,则对应的密文c1,c2分别是紧 靠p1 p2下方的字母。其中第一行被看作是最后一行的下 方。
(3)若p1,p2不在同一行也不在同一列,则对应的密文 c1,c2是由p1 p2确定的矩阵的其它两角的字母。且c1和 p1同行,c2和p2同行。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中国地质大学古典密码学介绍课程名称:趣味密码学教师姓名:刘勇姓名:肖国栋班级: 052098j-18学号: 20091002670 专业:土木工程所在院系:工程学院日期: 2011 年 12 月目录前言 (1)第一章古典密码学概念和意义 (3)第二章古典密码学发展历史 (5)第三章古典密码学内容及分类 (8)第一节代换密码 (9)第二节置换密码 (11)第四章几种典型的古典密码 (13)第一节滚筒密码和掩格密 (13)第二节棋盘密码 (14)第三节移位代换密码 (15)第四节 Playfair密码 (15)第五节圆盘密码 (18)第六节维吉尼亚密码 (19)参考文献 (20)前言随着科学技术的迅猛发展,人们对信息安全和保密的重要性认识不断提高,在信息安全中起着举足轻重作用的密码学也就成为信息安全中不可或缺的重要部分。

密码学的研究前景十分广阔,这个总是秘而不宣的重要角色,在未来发展中将起到不可估量的作用。

1985年Koblitz和Miller提出将椭圆曲线用于公钥密码体制,他们第一次用椭圆曲线成功地实现了已有的一些公钥密码算法包括Differ-Hellman算法。

现在椭圆曲线密码体制不仅是一个重要的理论研究领域,而且已经作为民用信息安全技术走向产业化。

在信息技术领域的保密通信、数字签名、秘密共享、消息认证、密钥管理,人工智能密码学,量子密码学,安全电子商务系统,电子现金系统,电子选举系统,电子招投标系统,电子彩票系统等,密码学都在发挥着不为人知的作用。

而古典密码学则是在密码学发展中占据着举足重轻的地位。

本文将针对古典密码学进行简单的介绍,而让人们更加向往密码学这个神奇的世界。

本文的目标是帮助人们认识和理解古典密码学。

第一章主要介绍古典密码学的概念:什么是古典密码学及其有什么特点?除此之外,对研究古典密码学的意义也进行了一定的介绍;第二章则是讲述古典密码学在密码学发展进程中的历史;第三章对古典密码学内容作了阐述,并对古典密码的分类作了分类:代换密码和置换密码;第四章则是对几种典型的古典密码进行介绍,并举出一些例子,以加深人们对古典密码的认识。

本论文对我自己是一种初步尝试,涉及的专业性的知识可能认识不够,加上水平所限,不可避免存在疏漏和不足,忘老师与予批评指正。

第一章古典密码学概念和意义古典密码概念:在计算机出现以前,密码学的算法主要是通过字符之间代替或易位实现的,我们称这些密码体制为古典密码。

古典密码学主要是指20世纪40年代之前的密码编码和密码分析技术,特别是1935年到1940年。

这期间,由于军事、数学、通讯等相关技术的发展,特别是两次世界大战中对军事信息保密传递和破获敌方信息的需求,密码学得到了空前的发展,并广泛的用于军事情报部门的决策其中包括:易位密码、代替密码(单表代替密码、多表代替密码等)。

这些密码算法大都十分简单,现在已经很少在实际应用中使用了。

由于密码学是涉及数学、通讯、计算机等相关学科的知识,就我们现有的知识水平而言,只能初步研究古典密码学的基本原理和方法。

但是对古典密码学的研究,对于理解、构造和分析现代实用的密码都是很有帮助的。

古典密码学意义:由于古典密码学是密码学的分支,所以它具有密码通用的功能和作用。

密码是通信双方按约定的法则进行信息特殊变换的一种重要保密手段。

依照这些法则,变明文为密文,称为加密变换;变密文为明文,称为脱密变换。

密码在早期仅对文字或数码进行加、脱密变换,随着通信技术的发展,对语音、图像、数据等都可实施加、脱密变换。

密码学是在编码与破译的斗争实践中逐步发展起来的,并随着先进科学技术的应用,已成为一门综合性的尖端技术科学。

它与语言学、数学、电子学、声学、信息论、计算机科学等有着广泛而密切的联系。

它的现实研究成果,特别是各国政府现用的密码编制及破译手段都具有高度的机密性。

例如在希特勒一上台时,德国就试验并使用了一种命名为“谜”的密码机,“谜”型机能产生220亿种不同的密钥组合,假如一个人日夜不停地工作,每分钟测试一种密钥的话,需要约 4.2万年才能将所有的密钥可能组合试完,希特勒完全相信了这种密码机的安全性。

然而,英国获知了“谜”型机的密码原理,完成了一部针对“谜”型机的绰号叫“炸弹”的密码破译机,每秒钟可处理2000个字符,它几乎可以破译截获德国的所有情报。

后来又研制出一种每秒钟可处理5000个字符的“巨人”型密码破译机并投入使用,至此同盟国几乎掌握了德国纳粹的绝大多数军事秘密和机密,而德国军方却对此一无所知;太平洋战争中,美军成功破译了日本海军的密码机,读懂了日本舰队司令官山本五十六发给各指挥官的命令,在中途岛彻底击溃了日本海军,击毙了山本五十六,导致了太平洋战争的决定性转折。

因此,我们可以说,密码学为战争的胜利立了大功。

在当今密码学不仅用于国家军事安全上,人们已经将重点更多的集中在实际应用,在你的生活就有很多密码,例如为了防止别人查阅你文件,你可以将你的文件加密;为了防止窃取你钱物,你在银行账户上设置密码,等等。

随着科技的发展和信息保密的需求,密码学的应用将融入了你的日常生活。

第二章古典密码学的发展历史密码学的发展历程大致经历了三个阶段:古代加密方法、古典密码和近代密码。

1.古代加密方法(手工阶段)源于应用的无穷需求总是推动技术发明和进步的直接动力。

存于石刻或史书中的记载表明,许多古代文明,包括埃及人、希伯来人、亚述人都在实践中逐步发明了密码系统。

从某种意义上说,战争是科学技术进步的催化剂。

人类自从有了战争,就面临着通信安全的需求,密码技术源远流长。

古代加密方法大约起源于公元前440年出现在古希腊战争中的隐写术。

当时为了安全传送军事情报,奴隶主剃光奴隶的头发,将情报写在奴隶的光头上,待头发长长后将奴隶送到另一个部落,再次剃光头发,原有的信息复现出来,从而实现这两个部落之间的秘密通信。

公元前400年,斯巴达人就发明了“塞塔式密码”,即把长条纸螺旋形地斜绕在一个多棱棒上,将文字沿棒的水平方向从左到右书写,写一个字旋转一下,写完一行再另起一行从左到右写,直到写完。

解下来后,纸条上的文字消息杂乱无章、无法理解,这就是密文,但将它绕在另一个同等尺寸的棒子上后,就能看到原始的消息。

这是最早的密码技术。

我国古代也早有以藏头诗、藏尾诗、漏格诗及绘画等形式,将要表达的真正意思或“密语”隐藏在诗文或画卷中特定位置的记载,一般人只注意诗或画的表面意境,而不会去注意或很难发现隐藏其中的“话外之音”。

比如:我画蓝江水悠悠,爱晚亭枫叶愁。

秋月溶溶照佛寺,香烟袅袅绕轻楼2.古典密码(机械阶段)古典密码的加密方法一般是文字置换,使用手工或机械变换的方式实现。

古典密码系统已经初步体现出近代密码系统的雏形,它比古代加密方法复杂,其变化较小。

古典密码的代表密码体制主要有:单表代替密码、多表代替密码及转轮密码。

3.近代密码(计算机阶段)密码形成一门新的学科是在20世纪70年代,这是受计算机科学蓬勃发展刺激和推动的结果。

快速电子计算机和现代数学方法一方面为加密技术提供了新的概念和工具,另一方面也给破译者提供了有力武器。

计算机和电子学时代的到来给密码设计者带来了前所未有的自由,他们可以轻易地摆脱原先用铅笔和纸进行手工设计时易犯的错误,也不用再面对用电子机械方式实现的密码机的高额费用。

总之,利用电子计算机可以设计出更为复杂的密码系统。

尽管古典密码体制受到当时历史条件的限制,没有涉及到非常高深或者复杂的理论,但在其慢长的发展演化过程中,已经充分表现出了现代密码学的两大基本思想-代替和换位,而且还将数学的方法引入到密码分析和研究中。

这为后来密码学成为系统的学科以及相关学科的发展奠定了坚实的基础,如计算机科学、复杂性理论等等。

可见古典密码学在密码学发展过程中扮演了不可磨灭的角色。

第三章古典密码学内容及分类密码学内容:密码学(Cryptogra phy现代准确的术语为“密码编制学”,简称“编密学”,与之相对的专门研究如何破解密码的学问称之为“密码分析学”。

密码学是主要研究通信安全和保密的学科,他包括两个分支:密码编码学和密码分析学。

密码编码学主要研究对信息进行变换,以保护信息在传递过程中不被敌方窃取、解读和利用的方法,而密码分析学则于密码编码学相反,它主要研究如何分析和破译密码。

这两者之间既相互对立又相互促进。

密码的基本思想是对机密信息进行伪装。

一个密码系统完成如下伪装:加密者对需要进行伪装机密信息(明文)进行伪装进行变换(加密变换),得到另外一种看起来似乎与原有信息不相关的表示(密文),如果合法者(接收者)获得了伪装后的信息,那么他可以通过事先约定的密钥,从得到的信息中分析得到原有的机密信息(解密变换),而如果不合法的用户(密码分析者)试图从这种伪装后信息中分析得到原有的机密信息,那么,要么这种分析过程根本是不可能的,要么代价过于巨大,以至于无法进行。

古典密码学分类:古典密码有着悠久的历史,从古代一直到计算机出现以前,古典密码学主要有两大基本方法:①代替密码:就是将明文的字符替换为密文中的另一种的字符,接收者只要对密文做反向替换就可以恢复出明文。

②置换密码(又称易位密码):明文的字母保持相同,但顺序被打乱了。

第一节代换密码代换密码(代替密码)就是明文中每一个字符被替换成密文中的另外一个字符,代替后的各字母保持原来位置。

对密文进行逆替换就可恢复出明文。

有四种类型的代替密码:(1)单表代替密码:就是明文的一个字符用相应的一个密文字符代替。

加密过程中是从明文字母表到密文字母表的一一映射。

(2)同音代替密码:它与简单代替密码系统相似,唯一的不同是单个字符明文可以映射成密文的几个字符之一,例如A可能对应于5、13、25或56,“B”可能对应于7、19、31或42,所以,同音代替的密文并不唯一。

(3)多字母组代替密码:字符块被成组加密,例如“ABA”可能对应于“RTQ”,ABB可能对应于“SLL”等。

(4)多表代替密码:由多个简单的代替密码构成,例如,可能有5个被使用的不同的简单代替密码,单独的一个字符用来改变明文的每个字符的位置。

多字母代替密码是字母成组加密,在第一次世界大战中英国人就采用这种密码。

字母成对加密。

把Huffman编码用作密码,这是一种不安全的多字母代替密码。

多表代替密码。

维吉尼亚密码是多表代替密码的例子。

多表代替密码有多个单字母密钥,每一个密钥被用来加密一个明文字母。

第一个密钥加密明文的第一个字母,第二个密钥加密明文的第二个字母等等。

在所有的密钥用完后,密钥又再循环使用,若有20个单个字母密钥,那么每隔20个字母的明文都被同一密钥加密,这叫做密码的周期。

在经典密码学中,密码周期越长越难破译,使用计算机就能够轻易破译具有很长周期的代替密码。

凯撒密码就是单表代替密码,它的每一个明文字符都由其右边第3个(模26)字符代替(A由D代替,B由E代替,W由Z代替,X由A代替,Y由B代替,Z由C代替)。

相关文档
最新文档