江苏数学高考真题及答案

合集下载

江苏2010年高考数学试卷(含答案、解析)

江苏2010年高考数学试卷(含答案、解析)

h(x) >0, 使得 f '(x) = h(x)(x 2 − ax + 1) ,则称函数 f (x) 具有性质 P(a) . (1)设函数 f (x) = h(x) + b + 2 (x > 1) ,其中 b 为实数
x +1 ①求证:函数 f (x) 具有性质 P(b)
求函数 f (x) 的单调区间
(1)估计该问题目有错,似乎为 f (x) = ln x + b + 2 (x > 1) ,则有如下解答: x +1

f
'( x)
=
1 x

b+2 (x + 1)2
=
1 x(x +1)2
(x2
− bx +1)

x
> 1 时, h(x) =
1 x(x + 1)2
> 0 恒成立,
∴函数 f (x) 具有性质 P(b) ;
20)
(x

3(m2 − 20) )
m2 + 20
,
m2 + 80 m2 + 20
化简得
y
+
20 m2 + 20
=

10 m2 − 40
(x

3(m2 − 20) m2 + 20 )
令 y = 0 ,解得 x = 1 ,即直线 MN 过 x 轴上定点 (1,0) 。
{ } 19.(16 分)设各项均为正数的数列 {an }的前 n 项和为 Sn ,已知 2a2 = a1 + a3 ,数列 Sn 是公差为 d 的等差数列.

2003年江苏高考数学试题及答案

2003年江苏高考数学试题及答案

2003年普通高等学校招生全国统一考试(江苏卷)数 学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分第Ⅰ卷1至2页,第Ⅱ卷3至10页考试结束后,将本试卷和答题卡一并交回第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.如果函数2y ax bx a =++的图象与x 轴有两个交点,则点(,)a b aOb 在平面上的区域(不包含边界)为( )2.抛物线2ax y =的准线方程是2=y ,则a 的值为 ( ) A .81 B .-81 C .8 D .-8 3.已知==-∈x tg x x 2,54cos ),0,2(则π( )A .247 B .-247 C .724 D .-724 4.设函数0021,1)(0,,0,12)(x x f x x x x f x 则若>⎪⎩⎪⎨⎧>≤-=-的取值范围是( ) A .(-1,1)B .(1,)-+∞a aAB C DC .(-∞,-2)∪(0,+∞)D .(-∞,-1)∪(1,+∞)5.O 是平面上一定点,A B C 、、是平面上不共线的三个点,动点P 满足[)(),0,,AB AC OP OA P ABACλλ=++∈+∞则的轨迹一定通过ABC 的A .外心B .内心C .重心D .垂心6.函数1ln,(1,)1x y x x +=∈+∞-的反函数为( ) A .1,(0,)1x xe y x e -=∈+∞+ B .1,(0,)1x xe y x e +=∈+∞- C .1,(,0)1x xe y x e -=∈-∞+ D .1,(,0)1x xe y x e +=∈-∞- 7.棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为( )A .33aB .34aC .36aD .312a8.设20,()a f x ax bx c >=++,曲线()y f x =在点00(,())P x f x 处切线的倾斜角的取值范围为0,,4P π⎡⎤⎢⎥⎣⎦则到曲线()y f x =对称轴距离的取值范围为 ( ) A .10,a ⎡⎤⎢⎥⎣⎦B .10,2a ⎡⎤⎢⎥⎣⎦C .0,2ba⎡⎤⎢⎥⎣⎦D .10,2b a ⎡-⎤⎢⎥⎣⎦9.已知方程0)2)(2(22=+-+-n x x m x x 的四个根组成一个首项为41的的等差数列,则=-||n m ( ) A .1B .43C .21D .8310.已知双曲线中心在原点且一个焦点为F (7,0),直线1-=x y 与其相交于M 、N 两点,MN 中点的横坐标为32-,则此双曲线的方程是 ( ) A .14322=-y x B .13422=-y x C .12522=-y xD .15222=-y x11.已知长方形的四个顶点A (0,0),B (2,0),C (2,1)和D (0,1),一质点从AB 的中点0P 沿与AB 的夹角θ的方向射到BC 上的点1P 后,依次反射到CD 、DA 和AB 上的点2P 、3P 和4P (入射角等于反射角),设4P 的坐标为(4x ,0),若214<<x ,则tg θ的取值范围是 ( ) A .(31,1)B .(31,32) C .(52,21) D .(52,32) 12.一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A .π3B .4πC .π33D .π62003年普通高等学校招生全国统一考试(江苏卷)数 学(理工农医类)第Ⅱ卷(非选择题共90分)二.填空题:本大题共4小题,每小题4分,共16分把答案填在题中横线上13.92)21(xx -的展开式中9x 系数是14.某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取___________,__________,___________辆15.某城市在中心广场建造一个花圃,花圃分为6个部分(如图)4种不同的栽种方法有___________________种16.对于四面体ABCD ,给出下列四个命题①,,AB AC BD CD BC AD ==⊥若则②,,AB CD AC BD BC AD ==⊥若则③,,AB AC BD CD BC AD ⊥⊥⊥若则④,,AB CD AC BD BC AD ⊥⊥⊥若则其中真命题的序号是__________________.(写出所有真命题的序号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或或演算步骤17.(本小题满分12分)有三种产品,合格率分别为0.90,0.95和0.95,各抽取一件进行检验(Ⅰ)求恰有一件不合格的概率;(Ⅱ)求至少有两件不合格的概率(精确到0.001)18.(本小题满分12分)已知函数()sin()(0,0)f x x R ωϕωϕπ=+>≤≤是上的偶函数,其图象关于点3(,0)4M π对称,且在区间0,2π⎡⎤⎢⎥⎣⎦上是单调函数ωϕ和的值 19.(本小题满分12分)如图,在直三棱柱111C B A ABC -中,底面是等腰直角三角形,︒=∠90ACB ,侧棱21=AA ,D 、E 分别是1CC 与B A 1的中点,点E 在平面ABD 上的射影是△ABD 的重心G(Ⅰ)求B A 1与平面ABD 所成角的大小(结果用反三角函数值表示) (Ⅱ)求点1A 到平面AED 的距离E GD CBAC 1B 1A 120.(本小题满分12分)已知常数0,(0,),(1,0)a c a i >==向量经过原点O 以c i λ+为方向向量的直线与经过定点(0,)2A a i c λ-以为方向向量的直线相交于P ,其中λ∈试问:是否存在两个定点E 、F ,使得PE PF +为定值若存在,求出E 、F 的坐标;若不存在,说明理由21.(本小题满分12分) 已知0,a n >为正整数(Ⅰ)设()n y x a =-,证明1'()n y n x a -=-;(Ⅱ)设()()n nn f x x x a =--,对任意n a ≥,证明1'(1)(1)'(n n f n n f n ++>+22.(本小题满分14分)设0a >,如图,已知直线:l y ax =及曲线2:,C y x C =上的点1Q 的横坐标为作直线平行于x 轴,交直线11n n l P P ++于点,再从点作直线平行于y 轴,交曲线1.(1,2,3,n n C Q Q n +=于点 …)的横坐标构成数列{}n a(Ⅰ)试求1n n a a +与的关系,并求{}n a 的通项公式; (Ⅱ)当111,2a a =≤时,证明1211()32n k k k k a a a ++=-<∑ (Ⅲ)当1a =时,证明1211()3nk k k k a a a ++=-<∑2003年普通高等学校招生全国统一考试数 学 试 题(江苏卷)答案一、选择题:本题考查基本知识和基本运算,每小题5分,满分60分.1.C 2.B 3.D 4.D 5.B 6.B 7.C 8.B 9.C 10.D 11.C 12.A 二、填空题:本题考查基本知识和基本运算,每小题4分,满分16分. 13.221- 14.6,30,10 15.12016.①④三、解答题17.本小题要主考查相互独立事件概率的计算,运用数学知识解决问题的能力,满分12分. 解:设三种产品各抽取一件,抽到合格产品的事件分别为A 、B 和C. (Ⅰ)95.0)()(,90.0)(===C P B P A P , .50.0)()(,10.0)(===C P B P A P因为事件A ,B ,C 相互独立,恰有一件不合格的概率为176.095.095.010.005.095.090.02)()()()()()()()()()()()(=⨯⨯+⨯⨯⨯=⋅⋅+⋅⋅+⋅⋅=⋅⋅+⋅⋅+⋅⋅C P B P A P C P B P A P C P B P A P C B A P C B A P C B A P 答:恰有一件不合格的概率为0.176. 解法一:至少有两件不合格的概率为)()()()(C B A P C B A P C B A P C B A P ⋅⋅+⋅⋅+⋅⋅+⋅⋅012.005.010.095.005.010.0205.090.022=⨯+⨯⨯⨯+⨯= 解法二:三件产品都合格的概率为812.095.090.0)()()()(2=⨯=⋅⋅=⋅⋅C P B P A P C B A P由(Ⅰ)知,恰有一件不合格的概率为0.176,所以至有两件不合格的概率为.012.0)176.0812.0(1]176.0)([1=+-=+⋅⋅-C B A P答:至少有两件不合的概率为0.012.(18)在小题主要考查三角函数的图象和单调性、奇偶性等基本知识,以及分析问题和推理计算能力,满12分分。

2008年江苏高考数学真题及答案

2008年江苏高考数学真题及答案

2008年江苏高考数学真题及答案本试卷分第I 卷(填空题)和第II 卷(解答题)两部分.考生作答时,将答案答在答题卡上,在本试卷上答题无效.考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、准考证号填写在答题卡上,认真核对条形码上的 准考证号、姓名,并将条形码粘贴在指定位置上.2.选择题答案使用2B铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或炭素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损.5.作选考题时,考生按照题目要求作答,并用2B 铅笔在答题卡上把所选题目对应的标号涂黑. 参考公式:样本数据,,,的标准差1x 2x n xs =其中为样本平均数x 柱体体积公式V Sh =其中为底面积,为高S h一、填空题:本大题共1小题,每小题5分,共70分. 1.的最小正周期为,其中,则= ▲ .()cos 6f x x πω⎛⎫=-⎪⎝⎭5π0ω>ω2.一个骰子连续投2 次,点数和为4 的概率 ▲ . 3.表示为,则= ▲ . 11ii+-a bi +(),a b R ∈a b +=4.A=,则A Z 的元素的个数 ▲ . {()}2137x x x -<-5.,的夹角为,, 则 ▲ .a b120︒1a = 3b = 5a b -=6.在平面直角坐标系中,设D 是横坐标与纵坐标的绝对值均不大于2 的点构成的区域,xoy 锥体体积公式13V Sh=其中为底面积,为高S h 球的表面积、体积公式,24S R π=343V R π=其中R 为球的半径E 是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则所投的点落入E 中的概率是 ▲ .7.某地区为了解70-80岁老人的日平均睡眠时间(单位:h ),随即选择了50为老人进行调查,下表是这50为老人日睡眠时间的频率分布表。

2020年江苏省高考数学试卷(含答案详解)

2020年江苏省高考数学试卷(含答案详解)

绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

本卷满分为160分,考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.参考公式:柱体的体积V Sh =,其中S 是柱体的底面积,h 是柱体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1.已知集合{1,0,1,2},{0,2,3}A B =-=,则A B = _____.2.已知i 是虚数单位,则复数(1i)(2i)z =+-的实部是_____.3.已知一组数据4,2,3,5,6a a -的平均数为4,则a 的值是_____.4.将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.5.如图是一个算法流程图,若输出y 的值为2-,则输入x 的值是_____.6.在平面直角坐标系xOy 中,若双曲线22x a ﹣25y =1(a >0)的一条渐近线方程为y=2x ,则该双曲线的离心率是____.7.已知y =f (x )是奇函数,当x ≥0时,()23 f x x =,则f (-8)的值是____.8.已知2sin ()4πα+=23,则sin 2α的值是____.9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2cm ,高为2cm ,内孔半轻为0.5cm ,则此六角螺帽毛坯的体积是____cm.10.将函数y =πsin(2)43x ﹢的图象向右平移π6个单位长度,则平移后的图象中与y 轴最近的对称轴的方程是____.11.设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和221()n n S n n n +=-+-∈N ,则d +q 的值是_______.12.已知22451(,)x y y x y R +=∈,则22x y +的最小值是_______.13.在△ABC 中,43=90AB AC BAC ==︒,,∠,D 在边BC 上,延长AD 到P ,使得AP =9,若3()2PA mPB m PC =+- (m 为常数),则CD 的长度是________.14.在平面直角坐标系xOy 中,已知(0)2P ,A ,B 是圆C :221(362x y +-=上的两个动点,满足PA PB =,则△PAB 面积的最大值是__________.二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1;(2)求证:平面AB 1C ⊥平面ABB 1.16.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,2,45a c B ===︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.17.某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O 在水平线MN 上、桥AB 与MN 平行,OO '为铅垂线(O '在AB 上).经测量,左侧曲线AO 上任一点D 到MN 的距离1h (米)与D 到OO '的距离a (米)之间满足关系式21140h a =;右侧曲线BO 上任一点F 到MN 的距离2h (米)与F 到OO '的距离b (米)之间满足关系式3216800h b b =-+.已知点B 到OO '的距离为40米.(1)求桥AB 的长度;(2)计划在谷底两侧建造平行于OO '的桥墩CD 和EF ,且CE 为80米,其中C ,E 在AB 上(不包括端点).桥墩EF 每米造价k (万元)、桥墩CD 每米造价32k (万元)(k >0).问O E '为多少米时,桥墩CD 与EF 的总造价最低?18.在平面直角坐标系xOy 中,已知椭圆22:143x y E +=的左、右焦点分别为F 1,F 2,点A 在椭圆E 上且在第一象限内,AF 2⊥F 1F 2,直线AF 1与椭圆E 相交于另一点B .(1)求△AF 1F 2的周长;(2)在x 轴上任取一点P ,直线AP 与椭圆E 的右准线相交于点Q ,求OP QP ⋅ 的最小值;(3)设点M 在椭圆E 上,记△OAB 与△MAB 的面积分别为S 1,S 2,若S 2=3S 1,求点M 的坐标.19.已知关于x 的函数(),()y f x y g x ==与()(,)h x kx b k b =+∈R 在区间D 上恒有()()()f x h x g x ≥≥.(1)若()()222 2()f x x x g x x x D =+=-+=∞-∞+,,,,求h (x )的表达式;(2)若2 1 ln ,()()()(0) x x g k x h kx k D f x x x =-+==-=+∞,,,,求k 的取值范围;(3)若()422242() 2() (48 () 4 3 02 f x x x g x x h x t t x t t t =-=-=--+<,,,[] , D m n =⊆⎡⎣,求证:n m -≤.20.已知数列{}*()∈n a n N 的首项a 1=1,前n 项和为S n .设λ与k 是常数,若对一切正整数n ,均有11111k k kn n n S S a λ++-=成立,则称此数列为“λ–k ”数列.(1)若等差数列{}n a 是“λ–1”数列,求λ的值;(2)若数列{}n a 是2”数列,且a n >0,求数列{}n a 的通项公式;(3)对于给定的λ,是否存在三个不同的数列{}n a 为“λ–3”数列,且a n ≥0?若存在,求λ的取值范围;若不存在,说明理由,数学Ⅱ(附加题)【选做题】本题包括A 、B 、C 三小题,请选定其中两小题........,.并在相应的答题区域内作答.............若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-2:矩阵与变换]21.平面上点(2,1)A -在矩阵11a b ⎡⎤=⎢⎥-⎣⎦M 对应的变换作用下得到点(3,4)B -.(1)求实数a ,b 的值;(2)求矩阵M 的逆矩阵1M -.B .[选修4-4:坐标系与参数方程]22.在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.C .[选修4-5:不等式选讲]23.设x ∈R ,解不等式2|1|||4x x ++≤.【必做题】第24题、第25题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.24.在三棱锥A —BCD 中,已知CB =CD =,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.25.甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n 次这样的操作,记甲口袋中黑球个数为X n ,恰有2个黑球的概率为p n ,恰有1个黑球的概率为q n .(1)求p 1·q 1和p 2·q 2;(2)求2p n +q n 与2p n-1+q n-1的递推关系式和X n 的数学期望E (X n )(用n 表示).绝密★启用前2020年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题~第20题,共20题)。

各省高考真题数学及答案

各省高考真题数学及答案

各省高考真题数学及答案高考数学试题是每年高考的重要部分,很多考生对于数学部分的考试难度颇为担忧。

为了帮助考生更好地应对高考数学试题,以下将列举各省历年高考数学试题及答案,供考生参考。

北京高考数学试题及答案:1. (2019年北京高考数学试题)题目:已知函数$f(x)=\frac{x}{2}+3$,则$f(4)=$?A. 5B. 6C. 7D. 8答案:B. 6上海高考数学试题及答案:1. (2018年上海高考数学试题)题目:在等边三角形ABC中,点M是边AC上的动点,若BM=2CM,则三角形MBC的面积是三角形ABC的几分之一?A. 1/2B. 1/3C. 1/4D. 1/6答案:C. 1/4广东高考数学试题及答案:1. (2017年广东高考数学试题)题目:已知函数$f(x)=\frac{3x-1}{2}$,则对任意实数x,不等式$f(x)<4$的解集为?A. x<5B. x>5/3C. x>5D. x<5/3答案:A. x<5江苏高考数学试题及答案:1. (2016年江苏高考数学试题)题目:已知AB=AC,AD⊥BC,BD=CD,角BAD=40°,求角ACD的度数。

A. 70°B. 60°C. 50°D. 40°答案:B. 60°浙江高考数学试题及答案:1. (2015年浙江高考数学试题)题目:已知直角三角形ABC中,AB=3,BC=4,∠ABC=90°,若D为BC边上一点且∠ACD=∠BAD,求BD的长度。

A. 2B. 3C. 4D. 5答案:C. 4各省高考数学试题虽然难度不尽相同,但通过细心复习及多做练习,相信考生们定能应对。

祝愿所有参加高考的考生都能取得优异的成绩,实现自己的高考梦想!。

2020年高考卷理科数学(江苏卷)附答案

2020年高考卷理科数学(江苏卷)附答案

2. 3. 4.已知集合如{一顷封如{M3}则刀口=已知i是虚数单位,贝愎数z=(E)(2t)的实部是已知一组数据4,2a.3・a ,5,6的平均数为4,则a的值是.将一颗质地均匀的正方体骰子先后抛掷2次观察向上的点数,则点数和为5的概率是o4. S.右图是一个算法流程图,若输出y的值为2则输入x的值为ago6.2在平面宜角坐标系xOy中若以仙线/5=l(a>0)的一条渐近线方w程为'一2二则该双曲线的离心率是—o27.已知y=f(x>是奇函数,当x>0时,/⑴二F,则,(一8)的值是。

sin2(—+«)=—.8.已知43,则sm2a的值是_。

9.如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的,己知螺帽的底面正六边形边长为2cm,高为2cm,内孔半径为0.5cm,则此六角螺帽毛坯的体积是cm\* = 3sin 2x + —10.将函数 I 4的图像向右平移M 个单位长度,则T 移后的图像与*轴最近的对称轴方程是—0U.设{■}是公差为〃的等差数列,{如}是公比为q 的等比数列,己知数列 {"心的前项和&顼-"1*^),则d+g 的值是—。

12.已知5xy +/=l(W e/e)t 则x 2+/的最小值是。

13.在△此中,t !B = 4, 4C=3.匕助C=90。

,。

在边AC 延长血坦炉,使得如=9,若是一 O后=血而专_』无(S 为常数),则co 的於度«㈣■14 .在平面直角坐标系H 夕中尸修。

已知I z 4、B 是圆 2)=36上的两个动点,满足PA=PB ,则△ "8的面积的最大值是15.在三棱柱如C —44G 中,ABLAC. B X CL 平面"分别是AC> %7的中点<1)求证:£少〃平面"MG :< 2)求证:平面^C±平面“时16.在△ABC中,角A、B、C的对边分别为a、b、c,已知a=3,c=旧,B=45。

2021高考数学真题试卷(江苏卷)带答案解析

2021年高考数学真题试卷(江苏卷)一、填空题1.已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为________.【答案】1【考点】交集及其运算【解析】【解答】解:∵集合A={1,2},B={a,a2+3}.A∩B={1},∴a=1或a2+3=1,解得a=1.故答案为:1.【分析】利用交集定义直接求解.2.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是________.【答案】√10【考点】复数代数形式的乘除运算,复数求模【解析】【解答】解:复数z=(1+i)(1+2i)=1﹣2+3i=﹣1+3i,∴|z|= √(−1)2+32= √10.故答案为:√10.【分析】利用复数的运算法则、模的计算公式即可得出.3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取________件.【答案】18【考点】分层抽样方法= 【解析】【解答】解:产品总数为200+400+300+100=1000件,而抽取60辆进行检验,抽样比例为6010006,100=18件,则应从丙种型号的产品中抽取300× 6100故答案为:18【分析】由题意先求出抽样比例即为6100,再由此比例计算出应从丙种型号的产品中抽取的数目.4.如图是一个算法流程图:若输入x的值为116,则输出y的值是________.【答案】-2【考点】选择结构,程序框图【解析】【解答】解:初始值x= 116,不满足x≥1,所以y=2+log2116=2﹣log224=﹣2,故答案为:﹣2.【分析】直接模拟程序即得结论.5.若tan(α﹣π4)= 16.则tanα=________.【答案】75【考点】两角和与差的正切公式【解析】【解答】解:∵tan(α﹣π4)=tanα−tanπ41+tanαtanπ4= tanα−1tanα+1= 16∴6tanα﹣6=tanα+1,解得tanα= 75,故答案为:75.【分析】直接根据两角差的正切公式计算即可6.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则V1V2的值是________.【答案】32【考点】旋转体(圆柱、圆锥、圆台),球的体积和表面积【解析】【解答】解:设球的半径为R,则球的体积为:43πR3,圆柱的体积为:πR2•2R=2πR3.则V1V2=2πR34πR33= 32.故答案为:32.【分析】设出球的半径,求出圆柱的体积以及球的体积即可得到结果.7.记函数f(x)= √6+x−x2定义域为D.在区间[﹣4,5]上随机取一个数x,则x∈D的概率是________.【答案】59【考点】一元二次不等式的解法,几何概型【解析】【解答】解:由6+x﹣x2≥0得x2﹣x﹣6≤0,得﹣2≤x≤3,则D=[﹣2,3],则在区间[﹣4,5]上随机取一个数x,则x∈D的概率P= 3−(−2)5−(−4)= 59,故答案为:59【分析】求出函数的定义域,结合几何概型的概率公式进行计算即可.8.在平面直角坐标系xOy中,双曲线x23﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是________.【答案】2 √3【考点】双曲线的简单性质【解析】【解答】解:双曲线x23﹣y2=1的右准线:x= 32,双曲线渐近线方程为:y= √33x,所以P(32,√32),Q(32,﹣√32),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:12×4×√3=2 √3.故答案为:2 √3.【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.9.等比数列{a n}的各项均为实数,其前n项为S n,已知S3= 74,S6= 634,则a8=________.【答案】32【考点】等比数列的通项公式,等比数列的前n项和【解析】【解答】解:设等比数列{a n}的公比为q≠1,∵S3= 74,S6= 634,∴a1(1−q3)1−q= 74,a1(1−q6)1−q= 634,解得a1= 14,q=2.则a8= 14×27=32.故答案为:32.【分析】设等比数列{a n}的公比为q≠1,S3= 74,S6= 634,可得a1(1−q3)1−q= 74,a1(1−q6)1−q= 634,联立解出即可得出.10.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元.要使一年的总运费与总存储费用之和最小,则x的值是________.【答案】30【考点】基本不等式,基本不等式在最值问题中的应用【解析】【解答】解:由题意可得:一年的总运费与总存储费用之和= 600x ×6+4x≥4×2× √900x⋅x=240(万元).当且仅当x=30时取等号.故答案为:30.【分析】由题意可得:一年的总运费与总存储费用之和=600x×6 +4x ,利用基本不等式的性质即可得出.11.已知函数f (x )=x 3﹣2x+e x ﹣ 1e x ,其中e 是自然对数的底数.若f (a ﹣1)+f (2a 2)≤0.则实数a 的取值范围是________.【答案】 [-1, 12 ]【考点】函数奇偶性的性质,利用导数研究函数的单调性,一元二次不等式的解法,基本不等式 【解析】【解答】解:函数f (x )=x 3﹣2x+e x ﹣ 1e x 的导数为:f′(x )=3x 2﹣2+e x + 1e x ≥﹣2+2 √e x ⋅1e x=0,可得f (x )在R 上递增;又f (﹣x )+f (x )=(﹣x )3+2x+e ﹣x ﹣e x +x 3﹣2x+e x ﹣ 1e x =0, 可得f (x )为奇函数, 则f (a ﹣1)+f (2a 2)≤0,即有f (2a 2)≤﹣f (a ﹣1)=f (1﹣a ), 即有2a 2≤1﹣a , 解得﹣1≤a≤ 12 , 故答案为:[﹣1, 12 ].【分析】求出f (x )的导数,由基本不等式和二次函数的性质,可得f (x )在R 上递增;再由奇偶性的定义,可得f (x )为奇函数,原不等式即为2a 2≤1﹣a ,运用二次不等式的解法即可得到所求范围. 12.如图,在同一个平面内,向量 OA⃗⃗⃗⃗⃗ , OB ⃗⃗⃗⃗⃗ , OC ⃗⃗⃗⃗⃗ 的模分别为1,1, √2 , OA ⃗⃗⃗⃗⃗ 与 OC ⃗⃗⃗⃗⃗ 的夹角为α,且tanα=7, OB ⃗⃗⃗⃗⃗ 与 OC ⃗⃗⃗⃗⃗ 的夹角为45°.若 OC ⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R ),则m+n=________.【答案】 3【考点】平面向量的基本定理及其意义,两角和与差的余弦公式,两角和与差的正弦公式,同角三角函数间的基本关系【解析】【解答】解:如图所示,建立直角坐标系.A (1,0).由 OA⃗⃗⃗⃗⃗ 与 OC ⃗⃗⃗⃗⃗ 的夹角为α,且tanα=7. ∴cosα= 5√2 ,sinα= 5√2 . ∴C (15,75) .cos (α+45°)= √22(cosα﹣sinα)= −35 .sin (α+45°)= √22(sinα+cosα)= 45 .∴B (−35,45) .∵ OC⃗⃗⃗⃗⃗ =m OA ⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R ), ∴ 15 =m ﹣ 35 n , 75 =0+ 45 n , 解得n= 74 ,m= 54 . 则m+n=3. 故答案为:3.【分析】如图所示,建立直角坐标系.A (1,0).由 OA⃗⃗⃗⃗⃗ 与 OC ⃗⃗⃗⃗⃗ 的夹角为α,且tanα=7.可得cosα= 5√2 ,sinα= 5√2 .C (15,75) .可得cos (α+45°)= −35 .sin (α+45°)= 45 .B (−35,45) .利用 OC ⃗⃗⃗⃗⃗ =m OA⃗⃗⃗⃗⃗ +n OB ⃗⃗⃗⃗⃗ (m ,n ∈R ),即可得出. 13.在平面直角坐标系xOy 中,A (﹣12,0),B (0,6),点P 在圆O :x 2+y 2=50上.若 PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ ≤20,则点P 的横坐标的取值范围是________.【答案】 [-5 √2 ,1]【考点】平面向量数量积的运算,直线和圆的方程的应用【解析】【解答】解:根据题意,设P (x 0 , y 0),则有x 02+y 02=50,PA⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =(﹣12﹣x 0 , ﹣y 0)•(﹣x 0 , 6﹣y 0)=(12+x 0)x 0﹣y 0(6﹣y 0)=12x 0+6y+x 02+y 02≤20, 化为:12x 0+6y 0+30≤0,即2x 0+y 0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立 {x 02+y 02=502x 0+y 0+5=0,解可得x 0=﹣5或x 0=1, 结合图形分析可得:点P 的横坐标x 0的取值范围是[﹣5 √2 ,1], 故答案为:[﹣5 √2 ,1].【分析】根据题意,设P (x 0 , y 0),由数量积的坐标计算公式化简变形可得2x 0+y 0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.14.设f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )= {x 2,x ∈Dx ,x ∉D,其中集合D={x|x=n−1n,n ∈N *},则方程f (x )﹣lgx=0的解的个数是________.【答案】 8【考点】分段函数的解析式求法及其图象的作法,函数的周期性,对数函数的图象与性质,根的存在性及根的个数判断【解析】【解答】解:∵在区间[0,1)上,f (x )= {x 2,x ∈Dx ,x ∉D ,第一段函数上的点的横纵坐标均为有理数, 又f (x )是定义在R 上且周期为1的函数,∴在区间[1,2)上,f (x )= {(x −1)2,x ∈Dx −1,x ∉D ,此时f (x )的图象与y=lgx 有且只有一个交点;同理:区间[2,3)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[3,4)上,f (x )的图象与y=lgx 有且只有一个交点;区间[4,5)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[5,6)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[6,7)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[7,8)上,f (x )的图象与y=lgx 有且只有一个交点; 区间[8,9)上,f (x )的图象与y=lgx 有且只有一个交点; 在区间[9,+∞)上,f (x )的图象与y=lgx 无交点; 故f (x )的图象与y=lgx 有8个交点; 即方程f (x )﹣lgx=0的解的个数是8, 故答案为:8【分析】由已知中f (x )是定义在R 上且周期为1的函数,在区间[0,1)上,f (x )= {x 2,x ∈Dx ,x ∉D ,其中集合D={x|x=n−1n,n ∈N *},分析f (x )的图象与y=lgx 图象交点的个数,进而可得答案.二、解答题15.如图,在三棱锥A ﹣BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E 、F (E 与A 、D 不重合)分别在棱AD ,BD 上,且EF ⊥AD . 求证:(Ⅰ)EF ∥平面ABC ; (Ⅱ)AD ⊥AC .【答案】 证明:(Ⅰ)因为AB ⊥AD ,EF ⊥AD ,且A 、B 、E 、F 四点共面, 所以AB ∥EF ,又因为EF ⊊平面ABC ,AB ⊆平面ABC ,所以由线面平行判定定理可知:EF ∥平面ABC ;(Ⅱ)在线段CD 上取点G ,连结FG 、EG 使得FG ∥BC ,则EG ∥AC , 因为BC ⊥BD ,所以FG ⊥BC , 又因为平面ABD ⊥平面BCD , 所以FG ⊥平面ABD ,所以FG ⊥AD , 又因为AD ⊥EF ,且EF∩FG=F , 所以AD ⊥平面EFG ,所以AD ⊥EG , 故AD ⊥AC .【考点】空间中直线与直线之间的位置关系,直线与平面平行的判定【解析】【分析】(Ⅰ)利用AB∥EF及线面平行判定定理可得结论;(Ⅱ)通过取线段CD上点G,连结FG、EG使得FG∥BC,则EG∥AC,利用线面垂直的性质定理可知FG⊥AD,结合线面垂直的判定定理可知AD⊥平面EFG,从而可得结论.16.已知向量a=(cosx,sinx),b⃗=(3,﹣√3),x∈[0,π].(Ⅰ)若a∥b⃗,求x的值;(Ⅱ)记f(x)= a⋅b⃗,求f(x)的最大值和最小值以及对应的x的值.【答案】解:(Ⅰ)∵a=(cosx,sinx),b⃗=(3,﹣√3),a∥b⃗,∴﹣√3cosx+3sinx=0,∴tanx= √3,∵x∈[0,π],∴x= π3,(Ⅱ)f(x)= a⋅b⃗=3cosx﹣√3sinx=2 √3(√32cosx﹣12sinx)=2 √3cos(x+ π6),∵x∈[0,π],∴x+ π6∈[ π6,7π6],∴﹣1≤cos(x+ π6)≤ √32,当x=0时,f(x)有最大值,最大值3,当x= 5π6时,f(x)有最小值,最大值﹣2 √3【考点】平面向量共线(平行)的坐标表示,平面向量数量积的运算,三角函数中的恒等变换应用,三角函数的最值,同角三角函数间的基本关系【解析】【分析】(Ⅰ)根据向量的平行即可得到tanx= √3,问题得以解决,(Ⅱ)根据向量的数量积和两角和余弦公式和余弦函数的性质即可求出17.如图,在平面直角坐标系xOy中,椭圆E:x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,离心率为12,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(Ⅰ)求椭圆E 的标准方程;(Ⅱ)若直线l 1 , l 2的交点Q 在椭圆E 上,求点P 的坐标.【答案】 解:(Ⅰ)由题意可知:椭圆的离心率e= c a = 12 ,则a=2c ,①椭圆的准线方程x=±a 2c,由2×a 2c=8,②由①②解得:a=2,c=1, 则b 2=a 2﹣c 2=3, ∴椭圆的标准方程:x 24+y 23=1 ;(Ⅱ)设P (x 0 , y 0),则直线PF 2的斜率 k PF 2 = y 0x 0−1 , 则直线l 2的斜率k 2=﹣x 0−1y 0,直线l 2的方程y=﹣x 0−1y 0(x ﹣1),直线PF 1的斜率 k PF 1 = y 0x 0+1 , 则直线l 2的斜率k 2=﹣x 0+1y 0,直线l 2的方程y=﹣x 0+1y 0(x+1),联立 {y =−x 0−1y 0(x −1)y =−x 0+1y 0(x +1) ,解得: {x =−x 0y =x 02−1y 0,则Q (﹣x 0 , x 02−1y 0 ),由Q 在椭圆上,则y 0=x 02−1y 0,则y 02=x 02﹣1,则 {x 024+y 023=1y 02=x 02−1 ,解得: {x 02=167y 02=97,则 {x 0=±4√77y 0=±3√77, ∵P 在第一象限,所以P 点的坐标为(4√77,3√77)【考点】直线的点斜式方程,两条直线的交点坐标,椭圆的简单性质,直线与圆锥曲线的关系 【解析】【分析】(Ⅰ)由椭圆的离心率公式求得a=2c ,由椭圆的准线方程x=± 2a 2c,则2×2a 2c=8,即可求得a 和c 的值,则b 2=a 2﹣c 2=3,即可求得椭圆方程;(Ⅱ)设P 点坐标,分别求得直线PF 2的斜率及直线PF 1的斜率,则即可求得l 2及l 1的斜率及方程,联立求得Q 点坐标,由Q 在椭圆方程,求得y 02=x 02﹣1,联立即可求得P 点坐标;18.如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm ,容器Ⅰ的底面对角线AC 的长为10 √7 cm ,容器Ⅱ的两底面对角线EG ,E 1G 1的长分别为14cm 和62cm .分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm .现有一根玻璃棒l ,其长度为40cm .(容器厚度、玻璃棒粗细均忽略不计)(Ⅰ)将l 放在容器Ⅰ中,l 的一端置于点A 处,另一端置于侧棱CC 1上,求l 没入水中部分的长度; (Ⅱ)将l 放在容器Ⅱ中,l 的一端置于点E 处,另一端置于侧棱GG 1上,求l 没入水中部分的长度.【答案】解:(Ⅰ)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,在平面ACM中,过N作NP∥MC,交AC于点P,∵ABCD﹣A1B1C1D1为正四棱柱,∴CC1⊥平面ABCD,又∵AC⊂平面ABCD,∴CC1⊥AC,∴NP⊥AC,∴NP=12cm,且AM2=AC2+MC2,解得MC=30cm,∵NP∥MC,∴△ANP∽△AMC,∴ANAM = NPMC,AN40=1230,得AN=16cm.∴玻璃棒l没入水中部分的长度为16cm.(Ⅱ)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,在平面E1EGG1中,过点N作NP⊥EG,交EG于点P,过点E作EQ⊥E1G1,交E1G1于点Q,∵EFGH﹣E1F1G1H1为正四棱台,∴EE1=GG1,EG∥E1G1,EG≠E1G1,∴EE1G1G为等腰梯形,画出平面E1EGG1的平面图,∵E1G1=62cm,EG=14cm,EQ=32cm,NP=12cm,∴E1Q=24cm,由勾股定理得:E1E=40cm,∴sin∠EE1G1= 45,sin∠EGM=sin∠EE1G1= 45,cos ∠EGM=−35,根据正弦定理得:EMsin∠EGM= EGsin∠EMG,∴sin ∠EMG=725,cos ∠EMG=2425,∴sin∠GEM=sin(∠EGM+∠EMG)=sin∠EGMcos∠EMG+cos∠EGMsin∠EMG= 35,∴EN= NPsin∠GEM =1235=20cm.∴玻璃棒l没入水中部分的长度为20cm.【考点】棱柱、棱锥、棱台的体积,直线与平面垂直的判定,直线与平面垂直的性质,正弦定理【解析】【分析】(Ⅰ)设玻璃棒在CC1上的点为M,玻璃棒与水面的交点为N,过N作NP∥MC,交AC 于点P,推导出CC1⊥平面ABCD,CC1⊥AC,NP⊥AC,求出MC=30cm,推导出△ANP∽△AMC,由此能出玻璃棒l没入水中部分的长度.(Ⅱ)设玻璃棒在GG1上的点为M,玻璃棒与水面的交点为N,过点N作NP⊥EG,交EG于点P,过点E 作EQ⊥E1G1,交E1G1于点Q,推导出EE1G1G为等腰梯形,求出E1Q=24cm,E1E=40cm,由正弦定理求,由此能求出玻璃棒l没入水中部分的长度.出sin∠GEM= 3519.对于给定的正整数k,若数列{a n}满足:a n﹣k+a n﹣k+1+…+a n﹣1+a n+1+…a n+k﹣1+a n+k=2ka n对任意正整数n(n>k)总成立,则称数列{a n}是“P(k)数列”.(Ⅰ)证明:等差数列{a n}是“P(3)数列”;(Ⅱ)若数列{a n}既是“P(2)数列”,又是“P(3)数列”,证明:{a n}是等差数列.【答案】解:(Ⅰ)证明:设等差数列{a n}首项为a1,公差为d,则a n=a1+(n﹣1)d,则a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3,=(a n﹣3+a n+3)+(a n﹣2+a n+2)+(a n﹣1+a n+1),=2a n+2a n+2a n,=2×3a n,∴等差数列{a n}是“P(3)数列”;(Ⅱ)证明:由数列{a n}是“P(2)数列”则a n﹣2+a n﹣1+a n+1+a n+2=4a n,①数列{a n}是“P(3)数列”a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,②由①可知:a n﹣3+a n﹣2+a n+a n+1=4a n﹣1,③a n﹣1+a n+a n+2+a n+3=4a n+1,④由②﹣(③+④):﹣2a n=6a n﹣4a n﹣1﹣4a n+1,整理得:2a n=a n﹣1+a n+1,∴数列{a n}是等差数列.【考点】等差数列的通项公式,数列的应用,等差关系的确定,等差数列的性质【解析】【分析】(Ⅰ)由题意可知根据等差数列的性质,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=(a n﹣3+a n+3)+(a n+a n+2)+(a n﹣1+a n+1)═2×3a n,根据“P(k)数列”的定义,可得数列{a n}是“P(3)数列”;﹣2(Ⅱ)由“P(k)数列”的定义,则a n﹣2+a n﹣1+a n+1+a n+2=4a n,a n﹣3+a n﹣2+a n﹣1+a n+1+a n+2+a n+3=6a n,变形整理即可求得2a n=a n﹣1+a n+1,即可证明数列{a n}是等差数列.20.已知函数f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,且导函数f′(x)的极值点是f(x)的零点.(极值点是指函数取极值时对应的自变量的值)(Ⅰ)求b关于a的函数关系式,并写出定义域;(Ⅱ)证明:b2>3a;(Ⅲ)若f(x),f′(x)这两个函数的所有极值之和不小于﹣72,求a的取值范围.【答案】(Ⅰ)解:因为f(x)=x3+ax2+bx+1,所以g(x)=f′(x)=3x2+2ax+b,g′(x)=6x+2a,令g′(x)=0,解得x=﹣a3.由于当x>﹣a3时g′(x)>0,g(x)=f′(x)单调递增;当x<﹣a3时g′(x)<0,g(x)=f′(x)单调递减;所以f′(x)的极小值点为x=﹣a3,由于导函数f′(x)的极值点是原函数f(x)的零点,所以f(﹣a3)=0,即﹣a327+ a39﹣ab3+1=0,所以b= 2a29+ 3a(a>0).因为f(x)=x3+ax2+bx+1(a>0,b∈R)有极值,所以f′(x)=3x2+2ax+b=0有两个不等的实根,所以4a2﹣12b>0,即a2﹣2a23+ 9a>0,解得a>3,所以b= 2a29+ 3a(a>3).(Ⅱ)证明:由(1)可知h(a)=b2﹣3a= 4a481﹣5a3+ 9a2= 181a2(4a3﹣27)(a3﹣27),由于a>3,所以h(a)>0,即b2>3a;(Ⅲ)解:由(1)可知f′(x)的极小值为f′(﹣a3)=b﹣a23,设x1,x2是y=f(x)的两个极值点,则x1+x2= −2a3,x1x2= b3,所以f(x1)+f(x2)= x13+ x23+a(x12+ x22)+b(x1+x2)+2 =(x1+x2)[(x1+x2)2﹣3x1x2]+a[(x1+x2)2﹣2x1x2]+b(x1+x2)+2= 4a327﹣2ab3+2,又因为f(x),f′(x)这两个函数的所有极值之和不小于﹣72,所以b﹣a23+ 4a327﹣2ab3+2= 3a﹣a29≥﹣72,因为a>3,所以2a3﹣63a﹣54≤0,所以2a(a2﹣36)+9(a﹣6)≤0,所以(a﹣6)(2a2+12a+9)≤0,由于a>3时2a2+12a+9>0,所以a﹣6≤0,解得a≤6,所以a的取值范围是(3,6].【考点】导数的运算,利用导数研究函数的单调性,利用导数研究函数的极值,导数在最大值、最小值问题中的应用【解析】【分析】(Ⅰ)通过对f(x)=x3+ax2+bx+1求导可知g(x)=f′(x)=3x2+2ax+b,进而再求导可知g′(x)=6x+2a,通过令g′(x)=0进而可知f′(x)的极小值点为x=﹣a3,从而f(﹣a3)=0,整理可知b= 2a29+ 3a(a>0),结合f(x)=x3+ax2+bx+1(a>0,b∈R)有极值可知f′(x)=0有两个不等的实根,进而可知a>3.(Ⅱ)通过(1)构造函数h(a)=b2﹣3a= 4a481﹣5a3+ 9a2= 181a2(4a3﹣27)(a3﹣27),结合a>3可知h(a)>0,从而可得结论;(Ⅲ)通过(1)可知f′(x)的极小值为f′(﹣a3)=b﹣a23,利用韦达定理及完全平方关系可知y=f(x)的两个极值之和为4a327﹣2ab3+2,进而问题转化为解不等式b﹣a23+ 4a327﹣2ab3+2= 3a﹣a29≥﹣72,因式分解即得结论.21.如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足.求证:(Ⅰ)∠PAC=∠CAB;(Ⅱ)AC2 =AP•AB.【答案】证明:(Ⅰ)∵直线PC切半圆O于点C,∴∠ACP=∠ABC.∵AB为半圆O的直径,∴∠ACB=90°.∵AP⊥PC,∴∠APC=90°.∴∠PAC=90°﹣∠ACP,∠CAB=90°﹣∠ABC,∴∠PAC=∠CAB.(Ⅱ)由(Ⅰ)可得:△APC ∽△ACB , ∴ ACAB = APAC . ∴AC 2 =AP•AB .【考点】相似三角形的判定,相似三角形的性质,弦切角,与圆有关的比例线段【解析】【分析】(Ⅰ)利用弦切角定理可得:∠ACP=∠ABC .利用圆的性质可得∠ACB=90°.再利用三角形内角和定理即可证明.(Ⅱ)由(Ⅰ)可得:△APC ∽△ACB ,即可证明. 22.已知矩阵A= [0110] ,B= [1002] .(Ⅰ)求AB ; (Ⅱ)若曲线C 1:x 28+y 22=1在矩阵AB 对应的变换作用下得到另一曲线C 2 , 求C 2的方程.【答案】 解:(Ⅰ)AB= (0110)(1002) = (0210) ,(Ⅱ)设点P (x ,y )为曲线C 1的任意一点, 点P 在矩阵AB 的变换下得到点P′(x 0 , y 0), 则 (0210)(x y ) = (2yx) ,即x 0=2y ,y 0=x , ∴x=y 0 , y= x 02,∴y 028+x 028=1 ,即x 02+y 02=8,∴曲线C 2的方程为x 2+y 2=8.【考点】矩阵变换的性质,矩阵与矩阵的乘法的意义 【解析】【分析】(Ⅰ)按矩阵乘法规律计算;(Ⅱ)求出变换前后的坐标变换规律,代入曲线C 1的方程化简即可.23.在平面直角坐标系xOy 中,已知直线l 的参数方程为 {x =−8+ty =t 2 (t 为参数),曲线C 的参数方程为{x =2s 2y =2√2s (s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【答案】 解:直线l 的直角坐标方程为x ﹣2y+8=0,∴P到直线l的距离d= 2√2s+8|√5= √2s−2)2√5,∴当s= √2时,d取得最小值√5= 4√55.【考点】二次函数在闭区间上的最值,点到直线的距离公式,参数方程化成普通方程,函数最值的应用【解析】【分析】求出直线l的直角坐标方程,代入距离公式化简得出距离d关于参数s的函数,从而得出最短距离.24.已知a,b,c,d为实数,且a2+b2=4,c2+d2=16,证明ac+bd≤8.【答案】证明:∵a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.当且仅当cos(α﹣β)=1时取等号.因此ac+bd≤8.【考点】两角和与差的余弦公式,三角函数的最值,圆的参数方程,不等式的证明,同角三角函数基本关系的运用【解析】【分析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd化简,利用三角函数的单调性即可证明.25.如图,在平行六面体ABCD﹣A1B1C1D1中,AA1⊥平面ABCD,且AB=AD=2,AA1= √3,∠BAD=120°.(Ⅰ)求异面直线A1B与AC1所成角的余弦值;(Ⅱ)求二面角B﹣A1D﹣A的正弦值.【答案】解:在平面ABCD内,过A作Ax⊥AD,∵AA1⊥平面ABCD,AD、Ax⊂平面ABCD,∴AA1⊥Ax,AA1⊥AD,以A为坐标原点,分别以Ax、AD、AA1所在直线为x、y、z轴建立空间直角坐标系.∵AB=AD=2,AA1= √3,∠BAD=120°,∴A(0,0,0),B(√3,−1,0),C(√3,1,0),D(0,2,0),A1(0,0,√3),C1(√3,1,√3).A 1B ⃗⃗⃗⃗⃗⃗⃗ =( √3,−1,−√3 ), AC 1⃗⃗⃗⃗⃗⃗⃗ =( √3,1,√3 ), DB ⃗⃗⃗⃗⃗⃗ =(√3,−3,0) , DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(0,−2,√3) .(Ⅰ)∵cos < A 1B ⃗⃗⃗⃗⃗⃗⃗ ,AC 1⃗⃗⃗⃗⃗⃗⃗ >= A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅AC 1⃗⃗⃗⃗⃗⃗⃗⃗ |A 1B ⃗⃗⃗⃗⃗⃗⃗⃗ ||AC1⃗⃗⃗⃗⃗⃗⃗⃗ | = √7×√7=−17 . ∴异面直线A 1B 与AC 1所成角的余弦值为 17 ; (Ⅱ)设平面BA 1D 的一个法向量为 n ⃗ =(x ,y ,z) ,由 {n ⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0n ⃗ ⋅DA 1⃗⃗⃗⃗⃗⃗⃗⃗ =0 ,得 {√3x −3y =0−2y +√3z =0 ,取x= √3 ,得 n ⃗ =(√3,1,2√33) ; 取平面A 1AD 的一个法向量为 m ⃗⃗ =(1,0,0) . ∴cos < m ⃗⃗ ,n ⃗ >= m⃗⃗⃗ ⋅n ⃗ |m⃗⃗⃗ ||n ⃗ |= √31×√3+1+43=34 . ∴二面角B ﹣A 1D ﹣A 的正弦值为 34 ,则二面角B ﹣A 1D ﹣A 的正弦值为 √1−(34)2=√74.【考点】异面直线及其所成的角,直线与平面垂直的性质,用空间向量求直线间的夹角、距离,二面角的平面角及求法【解析】【分析】在平面ABCD 内,过A 作Ax ⊥AD ,由AA 1⊥平面ABCD ,可得AA 1⊥Ax ,AA 1⊥AD ,以A 为坐标原点,分别以Ax 、AD 、AA 1所在直线为x 、y 、z 轴建立空间直角坐标系.结合已知求出A ,B ,C ,D ,A 1 , C 1 的坐标,进一步求出 A 1B ⃗⃗⃗⃗⃗⃗⃗ , AC 1⃗⃗⃗⃗⃗⃗⃗ , DB ⃗⃗⃗⃗⃗⃗ , DA 1⃗⃗⃗⃗⃗⃗⃗⃗ 的坐标.(Ⅰ)直接利用两法向量所成角的余弦值可得异面直线A 1B 与AC 1所成角的余弦值;(Ⅱ)求出平面BA 1D 与平面A 1AD 的一个法向量,再由两法向量所成角的余弦值求得二面角B ﹣A 1D ﹣A 的余弦值,进一步得到正弦值.26.已知一个口袋有m 个白球,n 个黑球(m ,n ∈N * , n≥2),这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,…,m+n 的抽屉内,其中第k 次取出的球放入编号为k 的抽屉(k=1,2,3,…,m+n ).(Ⅰ)试求编号为2的抽屉内放的是黑球的概率p ;(Ⅱ)随机变量x 表示最后一个取出的黑球所在抽屉编号的倒数,E (X )是X 的数学期望,证明E (X )<n (m+n)(n−1).【答案】 解:(Ⅰ)设事件A i 表示编号为i 的抽屉里放的是黑球,则p=p (A 2)=P (A 2|A 1)P (A 1)+P (A 2| A 1̅̅̅ )P ( A 1̅̅̅ ) = n−1m+n−1×n m+n ×n m+n−1×mm+n = n 2−n+mn (m+n)(m+n−1) = nm+n .证明:(Ⅱ)∵X 的所有可能取值为 1n ,1n+1 ,…, 1n+m , P (x= 1k )= C k−1n−1C m+nn,k=n ,n+1,n+2,…,n+m ,∴E (X )= ∑n+m k=1( 1k ⋅C k−1n−1C n+mn )= 1C n+mn⋅∑n+m k=nC k−1n−1k= 1C n+mn⋅∑n+m k=nC k−1n−1k< 1C n+mn⋅∑n+m k=nC k−1n−1k−1= 1C n+mn ⋅∑n+m k=nC k−2n−2n−1= 1(n−1)C n+mn •( C n−2n−2+C n−1n−2+⋯+C n+m−2n−2 ) = 1(n−1)C m+nn⋅C m+n−1n−1= n(m+n)(n−1) ,∴E (X )< n(m+n)(n−1) .【考点】离散型随机变量的期望与方差,条件概率与独立事件【解析】【分析】(Ⅰ)设事件A i 表示编号为i 的抽屉里放的是黑球,则p=p (A 2)=P (A 2|A 1)P (A 1)+P (A 2| A 1̅̅̅ )P ( A 1̅̅̅ ),由此能求出编号为2的抽屉内放的是黑球的概率.(Ⅱ)X 的所有可能取值为 1n ,1n+1 ,…, 1n+m ,P (x= 1k )= C k−1n−1C m+nn,k=n ,n+1,n+2,…,n+m ,从而E (X )= ∑n+m k=1( 1k⋅C k−1n−1C n+mn)=1C n+mn ⋅∑n+m k=nC k−1n−1k,由此能证明E (X )< n(m+n)(n−1) .。

2002年江苏高考数学试题及答案(无错版)

O 21 x O 21 xO 21 x O 21 xA B C D PB AC D 2002年普通高等学校招生全国统一考试(江苏卷)数学一、选择题:本大题共12小题,每小题5分,共60分。

(1)函数xx x f cos 2sin )(=的最小正周期是( )。

A.2πB. πC. π2D. π4(2)圆1)1(22=+-y x 的圆心到直线x y 33=的距离是( )。

A.21 B.23C. 1D. 3(3)不等式0|)|1)(1(>-+x x 的解集是( )A. }10|{<≤x xB. }10|{-≠<x x x 且C. }11|{<<-x xD. }11|{-≠<x x x 且 (4)在)2,0(π内,使x x cos sin >成立的x 取值范围为( ) A. )45,()2,4(ππππ⋃ B. ),4(ππC. )45,4(ππ D. )23,45(),4(ππππ⋃(5)设集合},214|{},,412|{Z k kx x N Z k k x x M ∈+==∈+==,则( )A. N M =B. N M ⊂C. N M ⊃D. φ=N M(6)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )。

A.43 B.54C.53D. 53-(7)函数b a x x x f ++=||)(是奇函数的充要条件是( )A.ab=0B. a+b=0C. a=bD. 022=+b a (8)已知10<<<<a y x ,则有( )。

A. 0)(log <xy aB. 1)(log 0<<xy aC. 2)(log 1<<xy aD.2)(log >xy a (9)函数111--=x yA. 在(+∞-,1)内单调递增B. 在(+∞-,1)内单调递减C. 在(+∞,1)内单调递增D. 在(+∞,1)内单调递减(10) 极坐标方程θρcos =与21cos =θρ的图形是( )。

2016年江苏高考数学真题及解析

2016年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式: 样本数据12,,,n x x x 的方差()2211ni i s x xn ==-∑,其中11ni i x x n ==∑.棱柱的体积V Sh =,其中S 是棱柱的底面积,h 是高.棱锥的体积13V Sh =,其中S 是棱锥的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合{}1,2,3,6A =-,{}|23B x x =-<<,则AB = .【答案】{}1,2-;【解析】由交集的定义可得{}1,2AB =-.2. 复数()()12i 3i z =+-,其中i 为虚数单位,则z 的实部是 .【答案】5;【解析】由复数乘法可得55i z =+,则则z 的实部是5.3. 在平面直角坐标系xOy 中,双曲线22173x y -=的焦距是 .【答案】【解析】c =2c =4. 已知一组数据4.7,4.8,5.1,5.4,5.5,则该组数据的方差是 .【答案】0.1; 【解析】 5.1x =,()22222210.40.300.30.40.15s =++++=. 5.函数y 的定义域是 .【答案】[]3,1-;【解析】2320x x --≥,解得31x -≤≤,因此定义域为[]3,1-.6. 如图是一个算法的流程图,则输出a 的值是 .【答案】9;【解析】,a b 的变化如下表:则输出时9a =.7. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点为正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是 .【答案】56; 【解析】将先后两次点数记为(),x y ,则共有6636⨯=个等可能基本事件,其中点数之和大于等于10有()()()()()()4,6,5,5,5,6,6,4,6,5,6,6六种,则点数之和小于10共有30种,概率为305366=. 8. 已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 . 【答案】20;【解析】设公差为d ,则由题意可得()2113a a d ++=-,151010a d +=, 解得14a =-,3d =,则948320a =-+⨯=.9. 定义在区间[]0,3π上的函数sin 2y x =的图象与cos y x =的图象的交点个数是 .【答案】7;【解析】画出函数图象草图,共7个交点.10. 如图,在平面直角坐标系xOy 中,F 是椭圆()222210x y a b a b +=>>的右焦点,直线2by =与椭圆交于,B C两点,且90BFC ∠=︒,则该椭圆的离心率是.【解析】由题意得(),0F c ,直线2by =与椭圆方程联立可得2b B ⎛⎫ ⎪ ⎪⎝⎭,2b C ⎫⎪⎪⎝⎭, 由90BFC ∠=︒可得0BF CF ⋅=,2b BFc ⎛⎫=+- ⎪ ⎪⎝⎭,2b CF c ⎛⎫=-- ⎪ ⎪⎝⎭, 则22231044c a b -+=,由222b a c =-可得223142c a =,则c e a ===. 11. 设()f x 是定义在R 上且周期为2的函数,在区间[)1,1-上(),10,2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中a ∈R ,若5922f f⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,则()5f a 的值是 . 【答案】25-;【解析】由题意得511222f f a ⎛⎫⎛⎫-=-=-+ ⎪ ⎪⎝⎭⎝⎭,91211225210f f ⎛⎫⎛⎫==-= ⎪ ⎪⎝⎭⎝⎭, 由5922f f ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭可得11210a -+=,则35a =,则()()()325311155f a f f a ==-=-+=-+=-.12.已知实数,x y满足240,220,330,x yx yx y-+≥⎧⎪+-≥⎨⎪--≤⎩则22x y+的取值范围是.【答案】4,135⎡⎤⎢⎥⎣⎦;【解析】在平面直角坐标系中画出可行域如下22x y+为可行域内的点到原点距离的平方.可以看出图中A点距离原点最近,此时距离为原点A到直线220x y+-=的距离,d==,则()22min45x y+=,图中B 点距离原点最远,B点为240x y-+=与330x y--=交点,则()2,3B,则()22max13x y+=.13.如图,在ABC△中,D 是BC的中点,,E F 是AD上两个三等分点,4BA CA⋅=,1BF CF⋅=-,则BE CE⋅的值是.【答案】78;【解析】令DF a=,DB b=,则DC b=-,2DE a=,3DA a=,则3BA a b=-,3CA a b=+,2BE a b=-,2CE a b=+,BF a b=-,CF a b=+,则229BA CA a b⋅=-,22BF CF a b⋅=-,224BE CE a b⋅=-,由4BA CA⋅=,1BF CF⋅=-可得2294a b-=,221a b-=-,因此22513,88a b==,因此22451374888BE CE a b⨯⋅=-=-=.14. 在锐角三角形ABC 中,sin 2sin sin A B C =,则tan tan tan A B C 的最小值是 .【答案】8;【解析】由()()sin sin πsin sin cos cos sin A A B C B C B C =-=+=+,sin 2sin sin A B C =, 可得sin cos cos sin 2sin sin B C B C B C +=(*), 由三角形ABC 为锐角三角形,则cos 0,cos 0B C >>,在(*)式两侧同时除以cos cos B C 可得tan tan 2tan tan B C B C +=, 又()()tan tan tan tan πtan 1tan tan B CA ABC B C+=--=-+=--(#),则tan tan tan tan tan tan tan 1tan tan B CA B C B C B C+=-⨯-,由tan tan 2tan tan B C B C +=可得()22tan tan tan tan tan 1tan tan B C A B C B C=--,令tan tan B C t =,由,,A B C 为锐角可得tan 0,tan 0,tan 0A B C >>>, 由(#)得1tan tan 0B C -<,解得1t >2222tan tan tan 111t A B C t t t=-=---,221111124t t t ⎛⎫-=-- ⎪⎝⎭,由1t >则211104t t >-≥-,因此tan tan tan A B C 最小值为8, 当且仅当2t =时取到等号,此时tan tan 4B C +=,tan tan 2B C =,解得tan 224B C A ===(或tan ,tan B C 互换),此时,,A B C 均为锐角.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明,证明过程或演算步骤. 15. (本小题满分14分)在ABC △中,6AC =,4cos 5B =,π4C =. ⑴ 求AB 的长; ⑵ 求πcos 6A ⎛⎫- ⎪⎝⎭的值.【答案】⑴. 【解析】⑴ 4cos 5B =,B 为三角形的内角 3sin 5B ∴=sinC sin AB ACB=635=,即:AB=⑵()cos cos sin sin cos cosA CB BC B C=-+=-cos A∴=又A为三角形的内角sin10A∴=π1cos sin62A A A⎛⎫∴-=+⎪⎝⎭16.(本小题满分14分)如图,在直三棱柱111ABC A B C-中,,D E分别为,AB BC的中点,点F在侧棱1B B上,且11B D A F⊥,1111AC A B⊥.求证:⑴直线//DE平面11AC F;⑵平面1B DE⊥平面11AC F.【答案】见解析;【解析】⑴,D E为中点,DE∴为ABC∆的中位线//DE AC∴又111ABC A B C-为棱柱,11//AC AC∴11//DE AC∴,又11AC ⊂平面11AC F,且11DE AC F⊄//DE∴平面11AC F;⑵111ABC A B C-为直棱柱,1AA∴⊥平面111A B C111AA AC∴⊥,又1111AC A B⊥且1111AA A B A=,111,AA A B⊂平面11AA B B11AC∴⊥平面11AA B B,又11//DE AC,DE∴⊥平面11AA B B又1A F ⊂平面11AA B B,1DE A F∴⊥又11A FB D⊥,1DE B D D=,且1,DE B D⊂平面1B DE1A F∴⊥平面1B DE,又111A F AC F⊂∴平面1B DE⊥平面11AC F.FECBAC1B1A117. (本小题满分14分)现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥1111P A B C D -,下部分的形状是正四棱柱1111ABCD A B C D -(如图所示),并要求正四棱柱的高1O O 是正四棱锥的高1PO 的4倍. ⑴ 若6m AB =,12m PO =,则仓库的容积是多少;⑵ 若正四棱锥的侧棱长为6m ,当1PO 为多少时,仓库的容积最大?【答案】⑴3312m;⑵m ;【解析】⑴12m PO =,则18m OO =,1111231116224m 33P A B C D ABCD V S PO -⋅=⨯⨯==,111123168288m ABCD A B C D ABCD V S OO -⋅=⨯==,111111113312m =P A B C D ABCD A B C D V V V --+=,故仓库的容积为3312m ;⑵设1m PO x =,仓库的容积为()V x则14m OO x =,11m AO =,11m A B =,()111123331111272224m 3333P A B C D ABCD V S PO x x x x x -⋅=⨯⨯=-=-=,1111233142888m ABCD A B C D ABCD V S OO x x x-⋅=⨯=-=,()()111111113332262428883120633=P A B C D ABCD A B C D V x V V x x x x x x x --+=-+-=-+<<, ()()22'263122612V x x x =-+=--()06x <<,当(x ∈时,()'0V x >,()V x 单调递增,当()x ∈时,()'0V x <,()V x 单调递减,因此,当x =()V x 取到最大值,即1m PO =时,仓库的容积最大.18. (本小题满分14分)如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :221214600x y x y +--+= 及其上一点()2,4A .1A⑴ 设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线6x =上,求圆N 的标准方程; ⑵ 设平行于OA 的直线l 与圆M 相交于,B C 两点,且BC OA =,求直线l 的方程;⑶ 设点(),0T t 满足:存在圆M 上的两点P 和Q ,使得TA TP TQ +=,求实数t 的取值范围.【答案】⑴()()22611x y -+-=⑵25y x =+或215y x =-⑶2⎡-+⎣; 【解析】⑴ 因为N 在直线6x =上,设()6,N n ,因为与x 轴相切,则圆N 为()()2226x y n n -+-=,0n >又圆N 与圆M 外切,圆M :()()226725x x -+-=,则75n n -=+,解得1n =,即圆N 的标准方程为()()22611x y -+-=;⑵由题意得OA =2OA k = 设:2l y x b =+,则圆心M 到直线l 的距离d ==则BC ==BC =解得5b =或15b =-,即l :25y x =+或215y x =-;⑶TA TP TQ +=,即TA TQ TP PQ =-=,即TA PQ =,(TA t =又10PQ ≤,10,解得2t ⎡∈-+⎣,对于任意2t ⎡∈-+⎣,欲使TA PQ =,此时10TA ≤,只需要作直线TA 2TA必然与圆交于P Q 、两点,此时TA PQ =,即TA PQ =,因此对于任意2t ⎡∈-+⎣,均满足题意,综上2t ⎡∈-+⎣.19. (本小题满分14分)已知函数()()0,0,1,1x x f x a b a b a b =+>>≠≠. ⑴ 设2a =,12b =. ① 求方程()2f x =的根;② 若对于任意x ∈R ,不等式()()26f x mf x -≥恒成立,求实数m 的最大值; ⑵ 若01a <<,1b >,函数()()2g x f x =-有且只有1个零点,求ab 的值.【答案】⑴ ①0x =;②4;⑵1;【解析】⑴ ① ()122xxf x ⎛⎫=+ ⎪⎝⎭,由()2f x =可得1222x x +=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =;② 由题意得221122622x x x x m ⎛⎫++- ⎪⎝⎭≥恒成立, 令122x x t =+,则由20x >可得2t =≥, 此时226t mt --≥恒成立,即244t m t t t +=+≤恒成立 ∵2t ≥时44t t +≥,当且仅当2t =时等号成立,因此实数m 的最大值为4.()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x xxxa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,由01a <<,1b >可得1b a >,令()ln ln xb ah x a b⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b a a x b ⎛⎫=- ⎪⎝⎭时()00h x =,因此()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <;()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;则()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22a x a a >=,0x b >,则()0g x >; x >log b 2时,0x a >,log 22b x b b >=,则()0g x >;因此1log 2a x <且10x x <时,()10g x >,因此()g x 在()10,x x 有零点,2log 2b x >且20x x >时,()20g x >,因此()g x 在()02,x x 有零点, 则()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x , 可得()00g x =, 由()00020g a b =+-=, 因此00x =,因此ln log 0ln b a a b ⎛⎫-= ⎪⎝⎭,即ln 1ln a b -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.20. (本小题满分14分) 记{}1,2,,100U =.对数列{}n a (*n ∈N )和U 的子集T ,若T =∅,定义0T S =;若{}12,,,k T t t t =,定义12k T t t t S a a a =+++.例如:{}1,3,66T =时,1366T S a a a =++.现设{}n a (*n ∈N )是公比为3的等比数列,且当{}2,4T =时,30T S =. ⑴ 求数列{}n a 的通项公式;⑵ 对任意正整数k (1100k ≤≤),若{}1,2,,T k ⊆,求证:1T k S a +<;⑶ 设C U ⊆,D U ⊆,C D S S ≥,求证:2C CDD S S S +≥.【答案】⑴13n n a -=;⑵⑶详见解析;【解析】⑴ 当{}2,4T =时,2422930T S a a a a =+=+=,因此23a =,从而2113a a ==,13n n a -=;⑵ 2112131133332k k k T k k S a a a a -+-++=++++=<=≤;⑶设()C A CD =ð,()D B C D =ð,则A B =∅,C A CDS S S =+,D B CDS S S =+,22C C DD A B S S S S S +-=-,因此原题就等价于证明2A B S S ≥.由条件C D S S ≥可知A B S S ≥.① 若B =∅,则0B S =,所以2A B S S ≥.② 若B ≠∅,由A B S S ≥可知A ≠∅,设A 中最大元素为l ,B 中最大元素为m , 若1m l +≥,则由第⑵小题,1A l m B S a a S +<≤≤,矛盾. 因为A B =∅,所以l m ≠,所以1l m +≥,211123113332222m m m lA B m a a S S a a a -+-+++=++++=<≤≤≤,即2A B S S >.综上所述,2A B S S ≥,因此2C C DD S S S +≥.数学Ⅱ(附加题)21. [选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答,若多做,则按作答的前两小题评分,解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,在ABC △中,90ABC ∠=︒,BD AC ⊥,D 为垂足,E 是BC 中点. 求证:EDC ABD ∠=∠.【答案】详见解析;【解析】由BD AC ⊥可得90BDC ∠=︒, 由E 是BC 中点可得12DE CE BC ==, 则EDC C ∠=∠,由90BDC ∠=︒可得90C DBC ∠+∠=︒, 由90ABC ∠=︒可得90ABD DBC ∠+∠=︒, 因此ABD C ∠=∠,又EDC C ∠=∠可得EDC ABD ∠=∠.B .[选修4-2:矩阵与变换](本小题满分10分)已知矩阵1202⎡⎤=⎢⎥-⎣⎦A ,矩阵B 的逆矩阵111202-⎡⎤-⎢⎥=⎢⎥⎣⎦B ,求矩阵AB . 【答案】51401⎡⎤⎢⎥⎢⎥-⎣⎦;【解析】()11112124221010222--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦B B ,因此151121440210102⎡⎤⎡⎤⎢⎥⎡⎤⎢⎥==⎢⎥⎢⎥⎢⎥-⎣⎦⎢⎥-⎣⎦⎢⎥⎣⎦AB .C .[选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy 中,已知直线l 的参数方程为()11,2,x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长. EDCBA【答案】167; 【解析】直线l0y -=,椭圆C 方程化为普通方程为2214y x +=,联立得22014y y x --=⎨+=⎪⎩,解得10x y =⎧⎨=⎩或17x y ⎧=-⎪⎪⎨⎪=⎪⎩,因此167AB ==.D .[选修4-5:不等式选讲](本小题满分10分)设0a >,13a x -<,23ay -<,求证:24x y a +-<.【答案】详见解析;【解析】由13a x -<可得2223a x -<, 22422233a ax y x y a +--+-<+=≤.[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时写出文字说明、证明过程或演算步骤. 22. (本小题满分10分)如图,在平面直角坐标系xOy 中,已知直线:20l x y --=,抛物线()2:20C y px p =>. ⑴ 若直线l 过抛物线C 的焦点,求抛物线C 的方程; ⑵ 已知抛物线C 上存在关于直线l 对称的相异两点P 和Q . ①求证:线段PQ 上的中点坐标为()2,p p --; ②求p 的取值范围.【答案】⑴28y x =;⑵①见解析;②40,3⎛⎫⎪⎝⎭【解析】⑴:20l x y --=,∴l 与x 轴的交点坐标为()2,0即抛物线的焦点为()2,0,22p∴= 28y x ∴=;⑵① 设点()11,P x y ,()22,Q x y则:21122222y px y px ⎧=⎪⎨=⎪⎩,即21122222y x p y x p ⎧=⎪⎪⎨⎪=⎪⎩,12221212222PQ y y p k y y y y p p -==+- 又,P Q 关于直线l 对称,1PQ k ∴=-即122y y p +=-,122y y p +∴=- 又PQ 中点一定在直线l 上 12122222x x y y p ++∴=+=- ∴线段PQ 上的中点坐标为()2,p p --;②中点坐标为()2,p p --122212122422y y p y y x x p p +=-⎧⎪∴+⎨+==-⎪⎩即1222212284y y p y y p p +=-⎧⎨+=-⎩ 12212244y y py y p p+=-⎧∴⎨=-⎩,即关于222440y py p p ++-=有两个不等根 0∴∆>,()()2224440p p p -->,40,3p ⎛⎫∴∈ ⎪⎝⎭.23. (本小题满分10分)⑴ 求34677C 4C -的值;⑵ 设*,m n ∈N ,n m ≥,求证:()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m n n n m m m n n m +++-++++++++++=+.【答案】⑴0;⑵详见解析;【解析】⑴ 34677C 4C 7204350-=⨯-⨯=;⑵对任意的*m ∈N ,① 当n m =时,左边()1C 1m m m m =+=+,右边()221C 1m m m m ++=+=+,等式成立,② 假设()n k k m =≥时命题成立,即()()()()()212121C 2C 3C C 1C 1C m m m m m m m m m k k k m m m k k m +++-++++++++++=+,当1n k =+时,左边=()()()()()12111C 2C 3C C 1C 2C m m mm m mm m m k k k m m m k k k ++-++++++++++++()()2211C 2C m m k k m k +++=+++,右边()231C m k m ++=+,而()()22321C 1C m m k k m m +++++-+,()()()()()()()()()()()()()()()()13!2!12!1!2!!2!1312!1!1!2!1!2C m k k k m m k m m k m k m k k m m k m k k m k m k +⎡⎤++=+-⎢⎥+-++-⎢⎥⎣⎦+=+⨯+--+⎡⎤⎣⎦+-++=+-+=+因此()()()222131C 2C 1C m m m k k k m k m ++++++++=+,因此左边=右边,因此1n k =+时命题也成立,综合①②可得命题对任意n m ≥均成立.另解:因为()()111C 1C m m k k k m +++=+,所以 左边()()()1111211C 1C 1C m m m m m n m m m ++++++=++++++()()1111211C C C m m m m m n m ++++++=++++又由111C C C k k k n n n ---=+,知2212112111112111221121C C C C C C C C C C C C m m m m m m m m m m m m n n n n n n m m n m m n ++++++++++++++++++++++=+=++==+++=+++,所以,左边=右边.。

2008江苏高考数学试卷含答案(校正精确版)

2008年普通高等学校招生全国统一考试(江苏卷)一、填空题1.若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= ▲ . 【解析】2105T ππωω==⇒=2.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),先后抛掷两次,则出现向上的点数之和为4的概率是 ▲ .【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)共3个,故316612P ==⨯ 3.若将复数11ii+-表示为(,,a bi a b R i +∈是虚数单位)的形式,则a b += ▲ .【解析】因()21112i i i i ++==-,故a =0,b =1,因此1a b += 4.若集合2{|(1)37,}A x x x x R =-<+∈,则A Z I 中有 ▲ 个元素【解析】由2(1)37x x -<+得2560x x --<,(1,6)A =-∴,因此}{0,1,2,3,4,5A Z =I ,共有6个元素.5.已知向量a r 和b r 的夹角为0120,||1,||3a b ==r r ,则|5|a b -=r r ▲ . 【解析】22222|5|(5)25||10||251a b a b a a b b -=-=-⋅+=⨯-r r r r r r r r 211013()3492⨯⨯⨯-+=,故|5|7a b -=r r .6.在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投点在E 中的概率是 ▲【解析】如图:区域D 表示边长为4 的正方形的内部(含边界),区域E 表示单位圆及其内部,因此214416P ππ⨯==⨯7.某地区为了解7080-岁的老人的日平均睡眠时间(单位:h ),随机选择了50位老人进行调查,下表是这50位老人睡眠时间的频率分布表:在上述统序号i 分组 (睡眠时间) 组中值(i G ) 频数 (人数) 频率(i F ) 1 [4,5) 4.5 6 0.12 2 [5,6) 5.510 0.20 3 [6,7) 6.520 0.40 4 [7,8) 7.510 0.20 5 [8,9] 8.54 0.08 开始 S ←0 输入G i ,F ii ←1 S ← S +G i ·F ii ≥5 i ← i +1NY计数据的分析中一部分计算见算法流程图,则输出的S 的值为 ▲ 【解析】由流程图1122334455S G F G F G F G F G F =++++4.50.125.50.206.50.407.50.28.50.08=⨯+⨯+⨯+⨯+⨯ 6.42=8.设直线b x y +=21是曲线)0(ln >=x x y 的一条切线,则实数b 的值是 ▲【解析】'1y x =,令112x =得2x =,故切点(2,ln2),代入直线方程,得,故b =ln2-1.9.如图,在平面直角坐标系xoy 中,设三角形ABC 的顶点分别为)0,(),0,(),,0(c C b B a A ,点(0,)P p 在线段AO 上的一点(异于端点),这里p c b a ,,,均为非零实数,设直线CP BP ,分别与边AB AC ,交于点F E ,,某同学已正确求得直线OE 的方程为1111()()0x y b c p a -+-=,请你完成直线OF 的方程:( ▲ )11()0x y p a+-=. 【解析】画草图,由对称性可猜想填11c b-.事实上,由截距式可得直线AB :1x yb a+=,直线CP :1x y c p += ,两式相减得1111()()0x y b c p a -+-=,显然直线AB 与CP 的交点F 满足此方程,又原点O 也满足此方程,故为所求直线OF 的方程.10.将全体正整数排成一个三角形数阵:按照以上排列的规律,第n 行(3≥n )从左向右的第3个数为 ▲【解析】前n -1 行共有正整数1+2+…+(n -1)个,即22n n-个,因此第n 行第3 个数是全体正整数中第22n n -+3个,即为262n n -+.11.设,,x y z 为正实数,满足230x y z -+=,则2y xz的最小值是 ▲【解析】由230x y z -+=得32x zy +=,代入2y xz 得229666344x z xz xz xz xz xz +++≥=,当且仅当x =3z 时取“=”.12 34 5 67 8 9 1011 12 13 14 15………………12.在平面直角坐标系xOy 中,椭圆)0(12222>>=+b a b y a x 的焦距为2c ,以O 为圆心,a 为半径作圆M ,若过2(0)a P c,作圆M 的两条切线相互垂直,则椭圆的离心率为 ▲【解析】设切线PA 、PB 互相垂直,又半径OA 垂直于PA ,故△OAP 是等腰直角三角形,故22a a c=,解得22c e a ==.13.若AB =2,AC =2BC ,则S △ABC 的最大值为解析 设BC =x ,则AC =2x .根据三角形的面积公式, 得S △ABC =12·AB ·BC sin B =x 1-cos 2B .①根据余弦定理,得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-2x 24x =4-x 24x .②将②代入①,得 S △ABC =x1-⎝⎛⎭⎫4-x 24x 2=128-x 2-12216.由三角形的三边关系,得⎩⎨⎧2x +x >2,x +2>2x ,解得22-2<x <22+2,故当x =23时,S △ABC 取得最大值22,故选A.14.f (x )=ax 3-3x +1对于x ∈[-1,1],总有f (x )≥0成立,则a =【解】若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x 3.设g (x )=3x 2-1x3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间(0,12]上单调递增,在区间[12,1]上单调递减,因此g (x )max =g (12)=4,从而a ≥4.当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3,设g (x )=3x 2-1x 3,且g (x )在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而a ≤4,综上a =4.二如图,在平面直角坐标系xOy 中,以Ox 轴为始边作两个锐角α,β,它们的终边分别交单位圆于A ,B 两点.已知A ,B 两点的横坐标分别是210,255. ⑴.求tan(α+β)的值; ⑵.求α+2β的值.【解】⑴.由已知条件即三角函数的定义可知225cos ,cos αβ==,因α为锐角,故ABC DEF Bsin 0α>,从而sin 10α==,同理可得sin 5β==,故1tan 7,tan 2αβ==.故tan()αβ+=17tan tan 2311tan tan 172αβαβ++==---⨯g ; ⑵.132tan(2)tan[()]111(3)2αβαββ-++=++==---⨯,又0,022ππαβ<<<<,故3022παβ<+<,从而由 tan(2)1αβ+=-得,324παβ+=. 16.如图,在四面体ABCD 中,CB CD AD BD =⊥,,点E F ,分别是AB BD ,的中点.求证: ⑴.直线//EF 面ACD ; ⑵.平面EFC ⊥面BCD .【标准答案】证明:⑴.因E ,F 分别是AB BD ,的中点.故EF 是△ABD的中位线,故EF ∥AD ,因EF ∥⊄面ACD ,AD ⊂面ACD ,故直线EF ∥面ACD ;⑵.因AD ⊥BD ,EF ∥AD ,故EF ⊥BD ,因CB=CD ,F 是BD的中点,故CF ⊥BD ,又EF∩CF=F ,故BD ⊥面EFC ,因BD ⊂面BCD ,故面EFC ⊥面BCD 17.如图,某地有三家工厂,分别位于矩形ABCD 的两个顶点A ,B 及CD 的中点P 处.AB =20km ,BC =10km .为了处理这三家工厂的污水,现要在该矩形区域上(含边界)且与A ,B 等距的一点O 处,建造一个污水处理厂,并铺设三条排污管道AO ,BO ,PO .记铺设管道的总长度为y km . ⑴.按下列要求建立函数关系式:(i )设BAO θ∠=(rad ),将y 表示成θ的函数; (ii )设OP x =(km ),将y 表示成x 的函数;⑵.请你选用⑴中的一个函数关系确定污水处理厂的位置,使铺设的污水管道的总长度最短. 【解】⑴.①.由条件知PQ 垂直平分AB ,若∠BAO=θ(rad),则10cos cos AQ OA θθ==, 故10cos OB θ=,又OP =1010tan θ-,故10101010tan cos cos y OA OB OP θθθ=++=++-,所求函数关系式为2010sin 10(0)cos 4y θπθθ-=+≤≤;②.若OP=x (km),则OQ =10-x,故OA OB ===数关系式为10)y x x =+≤≤.⑵.选择函数模型①,'2210cos cos (2010)(sin )10(2sin 1)cos cos sin y θθθθθθθ-⋅----==,令'y =0 得sin 12θ=,因04πθ<<,故θ=6π,当(0,)6πθ∈时,'0y <,y 是θ的减函数;当(,)64ππθ∈时,'0y >,y 是θ的增函数,故当θ=6π时,min 10y =+.这时点P 位于线段AB 的中垂线上,在矩形区域内且距离ABkm 处. 18.在平面直角坐标系xOy 中,记二次函数2()2f x x x b =++(x ∈R )与两坐标轴有三个交点.经过三个交点的圆记为C .⑴.求实数b 的取值范围; ⑵.求圆C 的方程;⑶.问圆C 是否经过定点(其坐标与b 的无关)?请证明你的结论.【解】⑴.令0x =,得抛物线与y 轴交点是(0,b );令2()20f x x x b =++=,由题意b ≠0且Δ>0,解得b <1 且b ≠0.⑵.设所求圆的一般方程为2x 20y Dx Ey F ++++=,令y =0得,20x Dx F ++=这与22x x b ++=0是同一个方程,故D =2,F =b .令x =0 得2y Ey +=0,此方程有一个根为b ,代入得出E =―b ―1.故圆C 的方程为222(1)0x y x b y b ++-++=. ⑶.圆C 必过定点,证明如下:假设圆C 过定点0000(,)(,)x y x y b 不依赖于,将该点的坐标代入圆C 的方程,并变形为22000002(1)0x y x y b y ++-+-=(*),为使(*)式对所有满足1(0)b b <≠的b 都成立,必须有010y -=,结合(*)式得,2200020x y x y ++-=,解得000002 11x x y y ==⎧⎧⎨⎨==⎩⎩,-,或,,,经 检验知,点(0,1),(2,1)-均在圆C 上,因此圆C 过定点.19.⑴.设12,,,n a a a L 是各项均不为零的等差数列(4n ≥),且公差0d ≠,若将此数列删去某一项得到的数列(按原来的顺序)是等比数列: ①.当4n =时,求1a d的数值;②.求n 的所有可能值; ⑵.求证:对于一个给定的正整数(4)n n ≥,存在一个各项及公差都不为零的等差数列12,,,n b b b L ,其中任意三项(按原来的顺序)都不能组成等比数列.【解】⑴.①.当4n =时, 1234,,,a a a a 中不可能删去首项或末项,否则等差数列中连续三项成等比数列,则推出0d =.若删去2a ,则2314a a a =⋅,即2111(2)(3)a d a a d +=⋅+化简得140a d +=,得14a d=-; 若删去3a ,则2214a a a =⋅,即2111()(3)a d a a d +=⋅+化简得10a d -=,得11a d=; 综上,得14a d =-或11ad=.②.当5n =时,12345,,,,a a a a a 中同样不可能删去1245,,,a a a a ,否则出现连续三项.若删去3a ,则1524a a a a ⋅=⋅,即1111(4)()(3)a a d a d a d +=+⋅+化简得230d =,因0≠d ,故3a 不能删去;当6n ≥时,不存在这样的等差数列.事实上,在数列12321,,,,,,n n n a a a a a a --L 中,由于不能删去首项或末项,若删去2a ,则必有132n n a a a a -⋅=⋅,这与0≠d 矛盾;同样若删去1n a -也有132n n a a a a -⋅=⋅,这与0≠d 矛盾;若删去32,,n a a -L 中任意一个,则必有121n n a a a a -⋅=⋅,这与0≠d 矛盾.(或者说:当n ≥6时,无论删去哪一项,剩余的项中必有连续的三项)综上所述,4n =.⑵假设对于某个正整数n ,存在一个公差为d 的n 项等差数列12,,...,n b b b ,其中111,,x y z b b b +++(01x y z n ≤<<≤-)为任意三项成等比数列,则2111yx z b b b +++=⋅,即2111()()()b yd b xd b zd +=+⋅+,化简得221()(2)y xz d x z y b d -=+-(*),由10b d ≠知,2y xz-与2x z y +-同时为0或同时不为0;当2y xz -与2x z y +-同时为0时,有x y z ==与题设矛盾.故2y xz -与2x z y +-同时不为0,故由(*)得212b y xz d x z y-=+-,因01x y z n ≤<<≤-,且x 、y 、z为整数,故上式右边为有理数,从而1b d 为有理数.于是,对于任意的正整数)4(≥n n ,只要1bd为无理数,相应的数列就是满足题意要求的数列.例如n 项数列1,11+……,1(n +-满足要求.20.已知函数11()3x p f x -=,22()23x p f x -=⋅(12,,x R p p ∈为常数).函数()f x 定义为:对每个给定的实数x ,112212(),()()()(),()()f x f x f x f x f x f x f x ≤⎧=⎨>⎩若若⑴.求1()()f x f x =对所有实数x 成立的充分必要条件(用12,p p 表示);⑵.设,a b 是两个实数,满足a b <,且12,(,)p p a b ∈.若()()f a f b =,求证:函数()f x 在区间[,]a b 上的单调增区间的长度之和为2b a-(闭区间[,]m n 的长度定义为n m -) 【解】⑴.由()f x 的定义可知,1()()f x f x =(对所有实数x )等价于12()()f x f x ≤(对所有实数x )这又等价于12||||323x p x p --≤⋅,即312log 2||||332x p x p ---≤=对所有实数x 均成立.(*)由于121212|||||()()|||()x p x p x p x p p p x R ---≤---=-∈的最大值为12||p p -,故(*)等价于12||32p p -≤,即123||log 2p p -≤,这就是所求的充分必要条件⑵.分两种情形讨论(i )当123||log 2p p -≤时,由⑴知,1()()f x f x =(对所有实数[,]x a b ∈)则由()()f a f b =及1a p b <<易知12a bp +=,再111113,()3,p x x px p f x x p --⎧<⎪=⎨≥⎪⎩的单调性可知,函数()f x 在区间[,]a b 上的单调增区间的长度为22a b b ab +--=(参见示意图1) (ii )123||log 2p p ->时,不妨设12,p p <,是当1x p ≤时,有1212()33()p xp x f x f x --=<<,从1()()f x f x =;当2x p ≥时,312122122log 212()333333(x p p p x p p p x p x p f x f --+----===>=g g 2当12p x p <<时,11()3x p f x -=,及22()23p xf x -=⋅,由方程12323x p p x --=⋅,解得12()()f x f x 与图象交点的横坐标为12031log 222p p x +=+⑴,显然10221321[()log 2]2p x p p p p <=---<,这表明0x 在1p 与2p 之间.由⑴知,101022(),()(),p x x f x f x x x p f x ≤≤⎧=⎨<≤⎩综上可知,在区间[,]a b 上,0102(),()(),a x x f x f x x x bf x ≤≤⎧=⎨<≤⎩ (参见示意图2),故由函数1()f x 及2()f x 的单调性可知,()f x 在区间[,]a b 上的单调增区间的长度之和为012()()x p b p -+-,由于()()f a f b =,即12323p a b p --=⋅,得123log 2p p a b +=++⑵,故由⑴、⑵得0121231()()[log 2]22b ax p b p b p p --+-=-+-=综合(i )(ii )可知,()f x 在区间[,]a b 上的单调增区间的长度和为2ab -.2008年普通高等学校招生全国统一考试(江苏卷)B .选修4—2 矩阵与变换在平面直角坐标系xOy 中,设椭圆2241x y +=在矩阵⎣⎡⎦⎤2 00 1对应的变换作用下得到曲线F ,求F的方程.解:设00(,)P x y 是椭圆上任意一点,点00(,)P x y 在矩阵A 对应的变换下变为点,'''00(,)P x y 则有'0'0020 01x x y y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即'00'002x x y y ⎧=⎪⎨=⎪⎩,故'0'002x x y y ⎧=⎪⎨⎪=⎩又因为点P 在椭圆上,故220041x y +=,从而'2'200()()1x y +=,故曲线F 的方程是 221x y +=C .选修4—4 参数方程与极坐标在平面直角坐标系xOy 中,点()P x y ,是椭圆2213x y +=上的一个动点,求S x y =+的最大值. 解:因椭圆2213x y +=的参数方程为 (sin x y φφφ⎧=⎪⎨=⎪⎩为参数),故可设动点P的坐标为,sin φφ),其中02φπ≤<,故1sin 2(cos sin )2sin()223S x y πφφφφφ=+=+=+=+,故当6πφ=时,S 取最大值222.【必做题】记动点P 是棱长为1的正方体1111-ABCD A B C D 的对角线1BD 上一点,记11D PD Bλ=.当APC ∠为钝角时,求λ的取值范围.解:由题设可知,以DA u u u r 、DC u u ur 、1DD u u u u r 为单位正交基底,建立如图所示的空间直角坐标系D xyz -,则有(1,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)D ,由1(1,1,1)D B =-u u u u r,得11(,,)D P D B λλλλ==-u u u u r u u u u r ,故11(,,)(1,0,1)(1,,1)PA PD D A λλλλλλ=+=--+-=---u u u r u u u u r u u u u r11(,,)(0,1,1)(,1,1)PC PD DC λλλλλλ=+=--+-=---u u u r u u u u r u u u u r ,显然APC ∠不是平角,故APC ∠为钝角等价于cos cos ,0||||PA PCAPC PA PC PA PC ∠=<>=<⋅u u u r u u u ru u u r u u u r g u u u r u u u r ,则等价于0PA PC <u u u r u u u r g ,即2(1)()()(1)(1)(1)(31)0λλλλλλλ--+--+-=--<,得113λ<<,故λ的取值范围是1(,1)323.在等式2cos 22cos 1x x =-(x ∈R )的两边求导,得:2(cos 2)(2cos 1)x x ''=-,由求导法则,得(sin 2)24cos (sin )x x x -=-g g ,化简得等式:sin 22cos sin x x x =g .⑴.利用上题的想法(或其他方法),结合等式0122(1)C C C C n n n n n n n x x x x +=++++L (x ∈R ,正整数2n ≥),证明:112[(1)1]C nn k k n k n x k x --=+-=∑.⑵.对于正整数3n ≥,求证:①.1(1)C 0nkknk k =-=∑; ②.21(1)C 0nkk nk k =-=∑; ③.11121C 11n nkn k k n +=-=++∑.【解】⑴.在等式0122(1+x)=C C C C n n nn n n n x x x ++++L 两边对x 求导得112121(1)2(1)n n n n n n n nnn x C C x n Cx nC x----+=+++-+L 移项得112[(1)1]nn k k n k n x kC x --=+-=∑(*)⑵.①.在(*)式中,令1x =-,整理得,11(1)0nk knk kC -=-=∑故1(1)0nk kn k kC =-=∑ ②.由⑴知,112121(1)2(1),3n n n n n n n n n n x C C x n C x nC x n ----+=+++-+≥L 两边对x 求导,得2232(1)(1)232(1)n n n n n n n n x C C x n n C x---+=+++-g L 在上式中,令1x =-23220232(1)(1)(1)n n n nC C n n C -=+-++--g L 即22(1)(1)0nkk nk k k C-=--=∑,亦即22(1)()0nkknk k k C =--=∑(1)又由(i )知1(1)0nkknk kC =-=∑(2)由(1)+(2)得21(1)C 0nk kn k k =-=∑ ③.将等式0122(1+x)=C C C C n n nn n n n x x x ++++L 两边在[0,1]上对x 积分1101220(1)(C C C C )n n nn n n n x dx x x x dx+=++++⎰⎰L 由微积分基本定理,得11110011(1)()11nn k k n k x C x n k ++=+=++∑,故1012111n nk n k C k n +=-=++∑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018江苏数学高考真题及答案 1 / 10 2018年普通高等学校招生全国统一考试(江苏卷)

数学Ⅰ 参考公式:锥体的体积13VSh,其中S是锥体的底面积,h是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{0,1,2,8}A,{1,1,6,8}B,那么AB ▲ . 2.若复数z满足i12iz,其中i是虚数单位,则z的实部为 ▲ . 3.已知5位裁判给某运动员打出的分数的茎叶图如图所示, 那么这5位裁判打出的分数的平均数为 ▲ . 4.一个算法的伪代码如图所示,执行此算法,最后输出的S的值为 ▲ . 5.函数2()log1fxx的定义域为 ▲ . 6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ . 7.已知函数sin(2)()22yx的图象关于直线3x对称,则的值是 ▲ .

8.在平面直角坐标系xOy中,若双曲线22221(0,0)xyabab的右焦点(,0)Fc到一条渐近线的距离为32c,则其离心率的值是 ▲ .

9.函数()fx满足(4)()()fxfxxR,且在区间(2,2]上,cos,02,2()1||,20,2xxfxxx- 则((15))ff的值为 ▲ . 10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ . 11.若函数32()21()fxxaxaR在(0,)内有且只有一个零点,则()fx在[1,1]上的最大值与最小值的和为 ▲ . 12.在平面直角坐标系xOy中,A为直线:2lyx上在第一象限内的点,(5,0)B,以AB为直径的圆C与直线l交于另一点D.若0ABCD,则点A的横坐标为 ▲ . 13.在ABC△中,角,,ABC所对的边分别为,,abc,120ABC,ABC的平分线交AC于点D,且1BD,则4ac

的最小值为 ▲ . 14.已知集合*{|21,}AxxnnN,*{|2,}nBxxnN.将AB的所有元素从小到大依次排列构成一个数列{}na.记nS为数列{}na的前n项和,则使得112nnSa成立的n的最小值为 ▲ . 二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 2018江苏数学高考真题及答案 2 / 10 在平行六面体1111ABCDABCD中,1111,AAABABBC.

求证:(1)11ABABC平面∥;(2)111ABBAABC平面平面. 16.(本小题满分14分) 已知,为锐角,4tan3,5cos()5. (1)求cos2的值;(2)求tan()的值. 17.(本小题满分14分) 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧MPN(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为CDP△,要求,AB均在线段MN上,,CD均在圆弧上.设OC与MN所成的角为. (1)用分别表示矩形ABCD和CDP△的面积,并确定sin的取值范围; (2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.

18.(本小题满分16分) 如图,在平面直角坐标系xOy中,椭圆C过点1(3,)2,焦点

12(3,0),(3,0)FF,圆O的直径为12FF. (1)求椭圆C及圆O的方程; (2)设直线l与圆O相切于第一象限内的点P. ①若直线l与椭圆C有且只有一个公共点,求点P的坐标; ②直线l与椭圆C交于,AB两点.若OAB△的面积为267, 求直线l的方程. 19.(本小题满分16分) 记(),()fxgx分别为函数(),()fxgx的导函数.若存在0xR,满足00()()fxgx且00()()fxgx,则称0x为函数()fx与()gx的一个“S点”. 2018江苏数学高考真题及答案 3 / 10 (1)证明:函数()fxx与2()22gxxx不存在“S点”;(2)若函数2()1fxax与()lngxx存在“S点”,

求实数a的值; (3)已知函数2()fxxa,e()xbgxx.对任意0a,判断是否存在0b,使函数()fx与()gx在区间(0,)

内存在“S点”,并说明理由.

20.(本小题满分16分) 设{}na是首项为1a,公差为d的等差数列,{}nb是首项为1b,公比为q的等比数列. (1)设110,1,2abq,若1||nnabb对1,2,3,4n均成立,求d的取值范围; (2)若*110,,(1,2]mabmqN,证明:存在dR,使得1||nnabb对2,3,,1nm均成立,并求d的取值范围(用1,,bmq表示).

数学Ⅰ试题参考答案 一、填空题:本题考查基础知识、基本运算和基本思想方法.每小题5分,共计70分. 1.{1,8} 2.2 3.90 4.8 5.[2,+∞) 6.310 7.π6 8.2

9.22 10.43 11.–3 12.3 13.9 14.27 二、解答题 15.本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.满分14分. 证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1. 因为AB平面A1B1C,A1B1平面A1B1C, 所以AB∥平面A1B1C. (2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形. 又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B. 又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B平面A1BC,BC平面A1BC, 所以AB1⊥平面A1BC.因为AB1平面ABB1A1,所以平面ABB1A1⊥平面A1BC. 16.本小题主要考查同角三角函数关系、两角和(差)及二倍角的三角函数,考查运算求解能力.满分14分. 2018江苏数学高考真题及答案 4 / 10 解:(1)因为,,所以.

因为,所以,因此,. (2)因为为锐角,所以. 又因为,所以, 因此.因为,所以, 因此,. 17.本小题主要考查三角函数的应用、用导数求最值等基础知识,考查直观想象和数学建模及运用数学知识分析和解决实际问题的能力.满分14分. 解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10. 过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ, 故OE=40cosθ,EC=40sinθ, 则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ), △CDP的面积为12×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ). 过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10. 令∠GOK=θ0,则sinθ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[14,1). 答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为 1600(cosθ–sinθcosθ),sinθ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3, 设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0), 则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ) =8000k(sinθcosθ+cosθ),θ∈[θ0,π2).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,π2),

则222()cossinsin(2sinsin1)(2sin1)(sin1)f′. 令()=0f′,得θ=π6, 当θ∈(θ0,π6)时,()>0f′,所以f(θ)为增函数; 当θ∈(π6,π2)时,()<0f′,所以f(θ)为减函数,

4tan3sintancos4sincos3

22sincos1

29cos252

7cos22cos125

,(0,π)5cos()5225sin()1cos()5

tan()24tan322tan24tan21tan7

tan2tan()2tan()tan[2()]1+tan2tan()11

2018江苏数学高考真题及答案

5 / 10 因此,当θ=π6时,f(θ)取到最大值.答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大.

18.本小题主要考查直线方程、圆的方程、圆的几何性质、椭圆方程、椭圆的几何性质、直线与圆及椭圆的位置关系等知识,考查分析问题能力和运算求解能力.满分16分. 解:(1)因为椭圆C的焦点为12() 3,0,(3,0)FF, 可设椭圆C的方程为22221(0)xyabab.又点1(3,)2在椭圆C上,

所以2222311,43,abab,解得224,1,ab 因此,椭圆C的方程为2214xy. 因为圆O的直径为12FF,所以其方程为223xy. (2)①设直线l与圆O相切于0000(),,(00)Pxyxy,则22003xy, 所以直线l的方程为0000()xyxxyy,即0003xyxyy.

由220001,43,xyxyxyy,消去y,得222200004243640()xyxxxy.(*) 因为直线l与椭圆C有且只有一个公共点, 所以222222000000()()( 24)(44364820)4xxyyyx. 因为00,0xy,所以002,1xy.因此,点P的坐标为(2,1). ②因为三角形OAB的面积为267,所以21 267ABOP,从而427AB.

设1122,,()(),AxyBxy,由(*)得2200022001,22448(2)2(4)xyxxxy, 所以2222121()()xByyxA 222000222200048(2)(1)(4)xyxyxy. 因为22003xy,所以22022016(2)32(1)49xABx,即42002451000xx, 解得22005(202xx舍去),则2012y,因此P的坐标为102(,)22. 综上,直线l的方程为532yx. 19.解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.

相关文档
最新文档