机械振动分类

机械振动分类
机械振动分类

机械振动分类

1、振动的分类

工艺系统的振动可分为三种类型:自由振动、受迫振动和自激振动。a自由振动:当系统受到初始干扰力而破坏了其平衡状态后,仅靠弹性恢复力来维持的振动称为自由振动。在切削过程中,由于材料硬度不均或工件表面有缺陷,工艺系统就会发生这种振动,但由于阻尼作用,振动会迅速衰减,因而对机械加工的影响不大。

b强迫振动:是一种在工艺系统内部或外部周期性干扰力持续作用下,系统被迫产生的振动。分为机内振源和机外振源,厂房结构在荷载作用下产生的振动对于工艺设备就是属于由于机外振源引起的强迫振动。

c自激振动:系统在没有受到外界周期性干扰力(激振力)作用下产生的持续振动称为自激振动。维持这种振动的交变力是由振动系统在自身运动中激发出来的。

我们主要讨论机外振源引起的强迫振动。

2、强迫振动的特点

2.1强迫振动本身不能改变干扰力,干扰力一般与切削过程无关(除由切削过程本身所引起的强迫振动外)。干扰力消除,振动停止。如外界振源产生的干扰力,只要振源消除,导致振动的干扰力自然就不

存在。

2.2强迫振动的频率与外界周期干扰力的频率相同,或是它的整倍数2.3干扰力的频率与系统的固有频率的比值等于或接近与1时,产生共振,振幅达到最大值。此时对机床加工过程的影响最大。

2.4强迫振动的振幅与干扰力,系统的刚度及阻尼大小有关。干扰力越大、刚度及阻尼越小,则振幅越大,对机床的加工过程影响也就越大。

2.5强迫振动的位移变化总是比干扰力在相位上滞后一个相位角φ,其值与系统的动态特性及干扰力频率有关。

机械振动的概念

第一章绪论 1-1 机械振动的概念 振动是一种特殊形式的运动,它是指物体在其平衡位置附近所做的往复运动。如果振动物体是机械零件、部件、整个机器或机械结构,这种运动称为机械振动。 振动在大多数情况下是有害的。由于振动,影响了仪器设备的工作性能;降低了机械加工的精度和粗糙度;机器在使用中承受交变载荷而导致构件的疲劳和磨损,以至破坏。此外,由于振动而产生的环境噪声形成令人厌恶的公害,交通运载工具的振动恶化了乘载条件,这些都直接影响了人体的健康等等。但机械振动也有可利用的一面,在很多工艺过程中,随着不同的工艺要求,出现了各种类型利用振动原理工作的机械设备,被用来完成各种工艺过程,如振动输送、振动筛选、振动研磨、振动抛光、振动沉桩等等。这些都在生产实践中为改善劳动条件、提高劳动生产率等方面发挥了积极作用。研究机械振动的目的就是要研究产生振动的原因和它的运动规律,振动对机器及人体的影响,进而防止与限制其危害,同时发挥其有益作用。 任何机器或结构物,由于具有弹性与质量,都可能发生振动。研究振动问题时,通常把振动的机械或结构称为振动系统(简称振系)。实际的振系往往是复杂的,影响振动的因素较多。为了便于分析研究,根据问题的实际情况抓住主要因素,略去次要因素,将复杂的振系简化为一个力学模型,针对力学模型来处理问题。振系的模型可分为两大类:离散系统(或称集中参数系统)与连续系统(或称分布参数系统),离散系统是由集中参数元件组成的,基本的集中参数元件有三种:质量、弹簧与阻尼器。其中质量(包括转动惯量)只具有惯性;弹簧只具有弹性,其本身质量略去不计,弹性力只与变形的一次方成正比的弹簧称为线性弹簧;在振动问题中,各种阻力统称阻尼,阻尼器既不具有惯性,也不具有弹性,它是耗能元件,在有相对运动时产生阻力,其阻力与相对速度的一次方成正比的阻尼器称为线性阻尼器。连续系统是由弹性元件组成的,典型的弹性元件有杆、梁、轴、板、壳等,弹性体的惯性、弹性与阻尼是连续分布的。严格的说,实际系统都是连续系统,所谓离散系统仅是实际连续系统经简化而得的力学模型。例如将质量较大、弹性较小的构件简化为不计弹性的集中质量;将振动过程中产生较大弹性变形而质量较小的构件,简化为不计质量的弹性元件;将构件中阻尼较大而惯性、弹性小的弹性体也可看成刚体。这样就把分布参数的连续系统简化为集中参数的离散系统。 例如图1-1(a)所示的安装在混凝土 基础上的机器,为了隔振的目的,在基础下 面一般还有弹性衬垫,如果仅研究这一系统 在铅垂方向的振动,在振动过程中弹性衬垫 起着弹簧作用,机器与基础可看作一个刚体, 起着质量的作用,衬垫本身的内摩擦以及基 础与周围约束之间的摩擦起着阻尼的作用 (阻尼用阻尼器表示,阻尼器由一个油缸和 活塞、油液组成。活塞上下运动时,油液从 间隙中挤过,从而造成一定的阻尼)。这样图1-1(a)所示的系统可简化为1-1(b)所示的

(完整版)机械振动习题答案

机械振动测验 一、 填空题 1、 所谓振动,广义地讲,指一个物理量在它的①平均值附近不停地经过②极大 值和③极小值而往复变化。 2、 一般来说,任何具有④弹性和⑤惯性的力学系统均可能产生机械振动。 3、 XXXX 在机械振动中,把外界对振动系统的激励或作用,①激励或输入;而 系统对外界影响的反应,称为振动系统的⑦响应或输出。 4、 常见的振动问题可以分成下面几种基本课题:1、振动设计2、系统识别3、 环境预测 5、 按激励情况分类,振动分为:①自由振动和②强迫振动;按响应情况分类, 振动分为:③简谐振动、④周期振动和⑤瞬态振动。 6、 ①惯性元件、②弹性元件和③阻尼元件是离散振动系统三个最基本的元件。 7、 在系统振动过程中惯性元件储存和释放①动能,弹性元件储存和释放②势 能,阻尼元件③耗散振动能量。 8、 如果振动时系统的物理量随时间的变化为简谐函数,称此振动为①简谐振动。 9、 常用的度量振动幅值的参数有:1、峰值2、平均值3、均方值4、均方根值。 10、 系统的固有频率只与系统的①质量和②刚度有关,与系统受到的激励无 关。 二、 试证明:对数衰减率也可以用下式表示,式中n x 是经过n 个循环后的振幅。 1 ln n x x n δ=

三、 求图示振动系统的固有频率和振型。已知12m m m ==,123k k k k ===。

北京理工大学1996年研究生入学考试理论力学(含振动理论基础)试题 自己去查双(二)自由度振动 J,在平面上在弹簧k的限制下作纯滚动,如图所示,四、圆筒质量m。质量惯性矩 o 求其固有频率。

五、物块M质量为m1。滑轮A与滚子B的半径相等,可看作质量均为m2、半径均 为r的匀质圆盘。斜面和弹簧的轴线均与水平面夹角为β,弹簧的刚度系数为k。 又m1 g>m2 g sinβ , 滚子B作纯滚动。试用能量法求:(1)系统的微分方程;(2)系统的振动周期。

机械振动发展史

公元前1000多年,中国商代铜铙已有十二音律中的九律,并有五度谐和音程的概念。在战国时期,《庄子·徐无鬼》中就记载了同频率共振现象。人们对与振动相关问题的研究起源于公元前6世纪毕达哥拉斯(Pythagoras)的工作,他通过试验观测得到弦线振动发出的声音与弦线的长度、直径和张力的关系。意大利天文学家、力学家、哲学家伽利略(Galileo Galilei)经过实验观察和数学推算,于 1 5 8 2年得到了单摆等时性定律。荷兰数学家、天文学家、物理学家惠更斯(c.Huygens)于1 6 7 3年著《关于钟摆的运动》,提出单摆大幅度摆动时并不具有等时性这一非线性现象,并研究了一种周期与振幅无关的等时摆。法国自然哲学家和科学家梅森(M.Mersenne)于1623年建立了弦振动的频率公式,梅森还比伽利略早一年发现单摆频率与摆长平方成反比的关系。英国物理学家胡克(R. Hooke)于1 6 7 8年发表的弹性定律和英国伟大的物理学家、数学家、天文学家牛顿(I. Newton)于1 6 8 7年发表的运动定律为振动力学的发 展奠定了基础。 在下面对振动发展史的简述中,主要是针对线性振动、非线性振动、随机振动以及振动信号采集和处理这三个方面进行的。而关于线性振动和非线性振动发展史的简介中,又分为理论研究和近似分析方法两个方面。

线性振动理论在1 8世纪迅速发展并趋于成熟。瑞士数学家、力学家欧拉(L. Euler)于1728年建立并求解了单摆在有阻尼介质中运动的微分方程;1 7 3 9年研究了无阻尼简谐受迫振动,并从理论上解释了共振现象;1 7 4 7年对九个等质量质点由等刚度弹簧连接的系统列出微分方程组并求出精确解,从而发现线性系统的振动是各阶简谐振动的叠加。法国数学家、力学家拉格朗日.Lagrange)于1 7 6 2年建立了离散系统振动的一般理论。最早被研究的连续系统是弦线,法国数学家、力学家、哲学家达朗伯(J. le R.d,Alembert)于1 7 4 6年发表的《弦振系统是弦线,法国数学家、力学家、哲学家达朗伯(J.1e R.d,Alem bert)于1 7 4 6年发表的《弦振动研究》将他发展的偏微分方程用于弦振动研究,得到了弦的波动方程并求出行波解。瑞士数 学家约翰第一·伯努利(J.Bernoulli)于1 7 2 8年对弦的振动进行了研究,认为弦的基本振型是正弦型的,但还不知道高阶振型的性质。与约翰第一·伯努利为同一家族的瑞士数学家、力学家丹尼尔第一·伯努利.Bernoulli)于1 7 3 5年得到了悬臂梁的振动方程,1 7 4 2年提出了弹性振动理论中的叠加原理,并用具体的振动实验进行验证。

机械振动习题及答案

机械振动 一、选择题 1. 下列4种运动(忽略阻力)中哪一种是简谐运动 ( C ) ()A 小球在地面上作完全弹性的上下运动 ()B 细线悬挂一小球在竖直平面上做大角度的来回摆动 ()C 浮在水里的一均匀矩形木块,把它部分按入水中,然后松开,使木块上下浮动 ()D 浮在水里的一均匀球形木块,把它部分按入水中,然后松开,使木块上下浮动 解析:A 小球不是做往复运动,故A 不是简谐振动。B 做大角度的来回摆动显然错误。D 由于球形是非线性形体,故D 错误。 2.如图1所示,以向右为正方向,用向左的力压缩一弹簧,然后松手任其振动。若从松手时开始计时,则该弹簧振子的初相位应为 图 一 ( D ) ()0A ()2 πB

()2 π-C ()πD 解析: 3.一质量为m 的物体挂在劲度系数为k 的轻质弹簧下面,其振动周期为T 。若将此轻质弹簧分割成3等份,将一质量为2m 的物体挂在分割后的一根弹簧上,则此弹簧振子的周期为 ( B ) ()63T A ()36T B ()T C 2 ()T D 6 解析:有题可知:分割后的弹簧的劲度系数变为k 3,且分割后的物体质量变为m 2。故由公式k m T π2=,可得此弹簧振子的周期为3 6T 4.两相同的轻质弹簧各系一物体(质量分别为21,m m )做简谐运动(振 幅分别为21,A A ),问下列哪一种情况两振动周期不同 ( B ) ()21m m A =,21A A =,一个在光滑水平面上振动,另一个在竖直方向上 振动 ()B 212m m =,212A A =,两个都在光滑的水平面上作水平振动 ()C 21m m =,212A A =,两个都在光滑的水平面上作水平振动 ()D 21m m =,21A A =,一个在地球上作竖直振动,另一个在月球上作 竖直振动

高中物理《机械振动》知识梳理

《机械振动》知识梳理 【简谐振动】 1.机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。 机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。 回复力:使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2.简谐振动: 在机械振动中最简单的一种理想化的振动。 对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 (2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 【简谐运动的描述】 位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。 周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 频率f:振动物体单位时间内完成全振动的次数。 角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。【简谐运动的处理】 用动力学方法研究,受力特征:回复力F =- Kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 【单摆】 单摆周期公式简谐振动物体的周期和频率是由振动系统本身的条件决定的。 单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。【外力作用下的振动】 物体在周期性外力作用下的振动叫受迫振动。受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。 当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。共振是受迫振动的一种特殊情况。 1

机械振动知识点

简谐运动及其图象 知识点一:弹簧振子 (一)弹簧振子 如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。小球滑动时的摩擦力可以,弹簧的质量比小球的质量得多,也可忽略。这样就成了一个弹簧振子。 注意: (1)小球原来的位置就是平衡位置。小球在平衡位置附近所做的往复运动,是一种机械振动。 (2)小球的运动是平动,可以看作质点。 (3)弹簧振子是一个不考虑阻力,不考虑弹簧的,不考虑振子(金属小球)的的化的物理模型。 (二)弹簧振子的位移——时间图象 (1)振动物体的位移是指由位置指向_的有向线段,可以说某时刻的位移。 说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于位置而言的,即初位置是位置,末位置是振子所在的位置。 (2)振子位移的变化规律 曲线。 知识点二:简谐运动 (一)简谐运动 如果质点的位移与时间的关系遵从函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。 简谐运动是机械振动中最简单、最基本的振动。弹簧振子的运动就是简谐运动。 (二)描述简谐运动的物理量 (1)振幅(A) 振幅是指振动物体离开位置的距离,是表征振动强弱的物理量。 一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是变的,而位移是时刻在变的。 (2)周期(T)和频率(f) 振动物体完成一次所需的时间称为周期,单位是秒(s);单位时间内完成的次数称为频率,单位是赫兹(H Z)。 周期和频率都是描述振动快慢的物理量。周期越小,频率越大,表示振动得越快。 周期和频率的关系是:

(3)相位(φ) 相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。 (三)固有周期、固有频率 任何简谐运动都有共同的周期公式:2 T=m是振动物体的,k是回复力系数,对弹簧振子来说k为弹簧的系数。 对一个确定的简谐运动系统来说,m和k都是恒量,所以T和f也是恒量,也就是说简谐运动的周期只由本身的特性决定,与振幅关,只由振子质量和回复力系数决定。T叫系统的周期,f叫频率。 可以证明,竖直放置的弹簧振子的振动也是简谐运动,周期公式也是2 T=。这个结论可以直接使用。 (四)简谐运动的表达式 y=Asin(ωt+φ),其中A是,f ω==,φ是t=0时的相位,即初相位或初相。 T 知识点三:简谐运动的回复力和能量 (一)回复力:使振动物体回到平衡位置的力。 (1)回复力是以命名的力。性质上回复力可以是重力、弹力、摩擦力、电场力、磁场力等,它可能是几个力的合力,也可能是某个力或某个力的分力。 如在水平方向上振动的弹簧振子的回复力是弹簧在伸长和压缩时产生的 力;在竖直方向上振动的弹簧振子的回复力是弹簧力和力的合力。 (2)回复力的作用是使振动物体回到平衡位置。回复力的方向总是“平衡位置”。 (3)回复力是是振动物体在方向上的合外力,但不一定是物体受到的合外力。 (二)对平衡位置的理解 (1)平衡位置是振动物体最终振动后振子所在的位置。 (2)平衡位置是回复力为的位置,但平衡位置是合力为零的位置。 (3)不同振动系统平衡位置不同。竖直方向的弹簧振子,平衡位置是其弹力 于重力的位置;水平匀强电场和重力场共同作用的单摆,平衡位置在电场力与重力的合力方向上。(三)简谐运动的动力学特征 F回=,a回=-kx/m,其中k为比例系数,对于弹簧振子来说,就等于弹簧的系数。负号表示回复力的方向与位移的方向。 也就是说简谐运动是在跟对平衡位置的位移大小成正比、方向总是指向平衡位置的力作用下的振动。 = 。当振子振动过程中,位移为x时,由胡克定律(弹簧不超出弹簧振子在平衡位置时F 回 = ,k为弹簧的劲度系数,所以弹弹性限度),考虑到回复力的方向跟位移的方向相反,有F 回 簧振子做简谐运动。 (四)简谐运动的能量特征 振动过程是一个动能和势能不断转化的过程,总的机械能。 振动物体总的机械能的大小与振幅有关,振幅越大,振动的能量越。 知识点四:简谐运动过程中各物理量大小、方向变化情况 (一)全振动 振动物体连续两次运动状态(位移和速度)完全相同所经历的的过程,即物体运动完成一次规律性变化。 (二)弹簧振子振动过程中各物理量大小、方向变化情况 过程:物体从A由静止释放,从A→O→B→O→,经历一次全振动, 图中O为平衡位置,A、B为最大位移处: 取OB方向为正:

机械振动的各种应用

机械振动的利用 机械振动,也简称为振动,物理学上是这样给它定义的:物体在平衡位置附近做往复运动的运动。在现实生活中我们能看到很多机械都是运用机械振动这一学说理论来建造出来的。比如筛分设备、输送设备、给料设备、粉碎设备等等机械设备都是将理论运用到现实生活中的结果。以下我就举些例子来加以说明机械振动具体得在哪些产品中运用到了。 先说说筛分设备,筛分设备是机械振动在现实生活中运用的最多的产品。比如热矿筛、旋振筛、脱水筛等各种各样的筛分设备。顾名思义,筛分设备就是运用振动的知识和筛分部件将不同大小不同类型的物品区分开来,以减少劳动力和提到生产效率。例如:热矿筛采用带偏心块的双轴激振器,双轴振动器两根轴上的偏心块由两台电动机分别带动做反向自同步旋转,使筛箱产生直线振动,筛体沿直线方向作周期性往复运动,从而达到筛分目的。又如南方用的小型水稻落谷机,机箱里有一块筛网,由发动机带动连杆做往复运动,当水稻连同稻草落入筛网的时候,不停的振动会让稻谷通过筛网落入机箱存谷槽,以实现稻谷与稻草的分离,减少人力资源,提高了农业效率。 输送设备运用到机械振动也是很多的。比如:螺旋输送机、往复式给料机、振动输送机、买刮板输送机等输送设备。输送设备就是将物体从一个地方通过输送管道输送到另一个地方的设备,以节约人力资源,提高生产效率。例如:广泛用于冶金、煤炭、建材、化工等行业中粉末状及颗粒状物料输送的振动输送机,采用电动机作为优质动源,使物料被抛起的同时通过输送管道做向前运动,达到输送的目的。 给料设备在某种程度上与输送设备有共同之处,例如:振动给料机、单管螺旋喂料机、振动料斗等设备。就拿振动料斗来说吧,振动料斗是一种新型给料设备,安装在各种料仓下部,通过振动使物料活化,能够有效消除物料的起拱,堵塞和粘仓现象,解决料仓排料难的问题。以下我就举例来说明下。 一、机械震动在铸造生产中的利用 1)分选及混合振动机 由于振动筛分在筛分过程中各个物料颗粒均处于运动状态,且在筛面上作抛掷运动,因而筛分效率高,故在砂处理系统中基本上都采用振动筛。但目前所用的振动筛基本上只有直线振动筛和单轴圆振动两种机型,这两种筛子适用于新砂和水分不高的旧砂筛分。振动筛是一种多行业、用途广泛的筛分设备,在一定的条件下它在砂处理中的应用更显示出其优越性。目前国内砂处理线上应用的多是中小型振动筛,国外已有每小时处理旧砂能力达700吨的直线振动筛。 2)冷却及烘干振动机 以对流传热方式为主的冷却和烘干机的工作原理是相同的,即促进物料与气流的充分接触而进行热交换。仅以热交换的条件来看,搅拌式冷却器内运转时只有部分物料处于动态,且搅拌摩擦所产生的部分热量又会传给物料。且在振动过

第43讲机械振动简谐运动的基本概念

第43讲:机械振动 简谐运动的基本概念 内容:§ 14- 1,§ 14-2 1 .简谐运动 要求: 1 ?掌握描述简谐运动的特征量 一一振幅、周期、频率、相位的物理意义, 并能熟 练地确定振动系统的特征量,从而建立简谐运动方程; 2. 掌握描述简谐运动的旋转矢量方法与图示法的特点, 并会应用于简谐 运动规律的讨论与分析。 重点与难点: 1 ?简谐运动的动力学方程和运动学方程; 2 .振幅与初相位的确定; 作业: (50分 钟) 2 ?描述简谐运动的物理量

问题习题预习P35: 1, 2, P37: 2, 5, § 14-3,§ ,7, 8 ,8, 11 § 14-4, § 14-5

第十四章机械振动 引言: 1什么是振动(Vibration) 振动是自然界和工程技术领域常见的一种运动,广泛存在于机械运动、电磁运动、热运动、原子运动等运动形式之中。从狭义上说,通常把具有时间周期性的运动称为振动。如钟摆、发声体、开动的机器、行驶中的交通工具都有机械振动。广义地说,任何一个物理量在某一数值附近作周期性的变化,都称为振动。变化的物理量称为振动量,它可以是力学量,电学量或其它物理量。例如:交流电压、电流的变化、无线电波电磁场的变化等等。 2. 什么是机械振动(Mecha nical Vibrati on) 机械振动是最直观的振动,它是物体在一定位置附近的来回往复的运动,如活塞的运动,钟摆的摆动等都是机械振动。 3. 研究机械振动的意义 不同类型的振动虽然有本质的区别,但是仅就振动过程而言,振动量随时间的 变化关系,往往遵循相同的数学规律,从而使得不同本质的振动具有相同的描 述方法。 振动是自然界及人类生产实践中经常发生的一种普遍运动形式,研究机械振动 的规律也是学习和研究其它形式的振动以及波动、无线电技术、波动光学的基 础。 4. 机械振动的特点 (1)有平衡点。 (2)且具有重复性,即具有周期性。 5. 机械振动的分类 (1)按振动规律分:简谐、非简谐、随机振动。 (2)按产生振动原因分:自由、受迫、自激、参变振动。 (3)按自由度分:单自由度系统、多自由度系统振动。 (4 )按振动位移分:角振动、线振动。 (5)按系统参数特征分:线性、非线性振动。 简谐振动是最基本的振动,存在于许多物理现象中。本章主要研究简谐振动的规律,也简单介绍阻尼振动、受迫振动、共振等。 本早内容有: § 14- 1简谐运动 § 14-2简谐运动的振幅、周期(频率)与相位 § 14-3旋转矢量 § 14-4单摆与复摆 § 14-5简谐运动的能量 § 14—6简谐运动的合成 § 14—7阻尼振动、受迫振动、共振

机械振动与机械波20个题型分类

机械振动和机械波考点例析 一、夯实基础知识 1、深刻理解简谐运动、振幅、周期和频率的概念 (1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。 特征是:F=-kx,a=-kx/m (2)简谐运动的规律: ○ 1在平衡位置: 速度最大、动能最大、动量最大; 位移最小、回复力最小、加速度最小。 ○ 2在离开平衡位置最远时: 速度最小、动能最小、动量最小; 位移最大、回复力最大、加速度最大。 ○3振动中的位移x 都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。 加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。 (3)振幅A : 振动物体离开平衡位置的最大距离称为振幅。 它是描述振动强弱的物理量。 它是标量。 (4)周期T 和频率f : 振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒; 单位时间内完成的全振动的次数称为振动频率,单位是赫兹(Hz )。 周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f. 2、深刻理解单摆的概念 (1)单摆的概念: 在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。 (2)单摆的特点: ○ 1单摆是实际摆的理想化,是一个理想模型; ○ 2单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关; ○ 3单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角α<100时,单摆的振动是简谐运动,其振动周期T=g L 2。

(3)单摆的应用:○1计时器;○2测定重力加速度g=224T L π. 3、深刻理解受迫振动和共振 (1)受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。 (2)共振:○ 1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。○ 2产生共振的条件:驱动力频率等于物体固有频率。○3共振的应用:转速计、共振筛。 4、熟练掌握波速、波长、周期和频率之间的关系 (1)波长:在波动中,对平衡位置的位移总是相等的两个相邻质点间的距离。 波长通常用λ表示。 (2)周期:波在介质中传播一个波长所用的时间。 波的周期与传播的介质无关,取决于波源,波从一种介质进入另一种介质,周期不会改变。周期用T 表示。 (3)频率:单位时间内所传播的完整波(即波长)的个数。 周期的倒数为波的频率。波的频率就是质点的振动频率。频率用f 表示。 (4)波速:波在单位时间传播的距离。 机械波的波速取决于介质,一般与频率无关。波速用V 表示。 (5)波速和波长、频率、周期的关系: ① 经过一个周期T ,振动在介质中传播的距离等于一个波长λ,所以波速为T V λ= ② 由于周期T 和频率f 互为倒数(即f =1/T ),所以上式可写成f V λ= 此式表示波速等于波长和频率的乘积。 5、深刻理解简谐运动的图像和波动图像的意义 (1)简谐运动的图象: ○1定义:振动物体离开平衡位置的位移X 随时间t 变化的函数图象。不是运动轨迹,它只是反映质点的位移随时间的变化规律。 ○ 2作法:以横轴表示时间,纵轴表示位移,根据实际数据取单位,定标度,描点,用平滑线连接各点便得图线。 ○ 3图象特点:用演示实验证明简谐运动的图象是一条正弦(或余弦)曲线。 (2)简谐运动图象的应用: ○ 1可求出任一时刻振动质点的位移。 ○ 2可求振幅A :位移的正负最大值。 ○ 3可求周期T :两相邻的位移和速度完全相同的状态的时间间隔。 ○ 4可确定任一时刻加速度的方向。 ○ 5可求任一时刻速度的方向。

机械振动及其在机械工程中的应用

机械振动及其在机械工程中的应用 杨杰 (江苏师范大学海洋港口学院江苏连云港 222000) 摘要:本文主要讲的是机械振动在机械工程中的应用.首先讲述机械振动的发展史;然后对机械振动的种类进行了详细的叙述;接着写了机械振动的危害和应用;最后对机械振动在机械工程中的应用进行了阐述,如振动筛,冷却及烘干振动机和振动清理及时效处理,并对它的发展加入个人看法。 关键词:机械振动,机械振动的应用,机械工程 Mechanical vibration and Application in Mechanical Engineering Yang Jie (Jiangsu Normal University ,Jiangsu, Lianyungang 222000) Abstract:This article is primarily concerned with mechanical vibration applications in mechanical engineering starts by describing the history of mechanical vibration; then on the type of mechanical vibration were described in detail; then write a hazard and the application of mechanical vibrations; Finally, the mechanical vibration in machinery Engineering are described, such as vibrating screen, cooling and drying machine vibration and vibration cleaning and aging treatment, and added personal views of its development. Keywords: Mechanical vibration, application of mechanical vibrations, mechanical engineering 1.引言 随着机械工业和科学技术的发展,产品愈加复杂化,精度要求更高,性能要求更加稳定与高效,因此,振动问题已经成为必须解决的重要课题。振动是在日常生活和工程实际中普遍存在的一中现象,也是整个力学中

机械设备振动标准

机械设备振动标准 它是指导我们的状态监测行为的规范 最终目标:我们要建立起自己的每台设备的标准(除了新安装的设备)。 监测点选择、图形标注、现场标注。 振动监测参数的选择:做一些调整:长度、频率范围 状态判断标准和报警的设置 1 设备振动测点的选择与标注 监测点选择 测点最好选在振动能量向弹性基础或系统其他部分进行传递的地方。对包括回转质量的设备来说,建议把测点选在轴承处或机器的安装点处。也可以选择其他的测点,但要能够反映设备的运行状态。在轴承处测量时,一般建议测量三个方向的振动。铅垂方向标注为 V,水平方向标注为H,轴线方向标注为A,见图6-1。 图6-1 监测点选择 图6-2在机器壳体上测量振动时,振动传感器定位的示意图 振动监测点的标注 (1)卧式机器 这个数字序列从驱动器非驱动侧的轴承座赋予数字001开始,朝着被驱动设备,按数字次序排列,直到第一根轴线的最后一个轴承。在多根轴线的(齿轮传动)机器上,轴承座的次序从驱动器开始,按数字次序继续沿着第二根轴线到被驱动器往下排列,接着再沿着第三根轴线往下排列,直到机组的末端为止。常见的几种标注方法见图6-3~6-5。 图6-3 振动监测点的标注

图6-4 振动监测点的标注 图6-5 振动监测点的标注 (2)立式机器 遵循与卧式机器同样的约定。 现场机器测点标注方法 机壳振动测点的标注可以用油漆标注,也可以在机壳上粘贴钢盘来标注振动测点,最好采用后一种方法标注。采用钢盘时,机壳要得到很好的处理。钢盘规格为厚度5mm,直径30mm,用强度较好的粘接剂粘接,以保证良好的振动传递特性。 2 设备振动监测周期的确定 振动监测周期设置过长,容易捕捉不到设备开始劣化信息,周期设置过短,又增加了监测的工作量和成本。因此应根据设备的结构特点、传动方式、转速、功率以及故障模式等因素,合理选定振动监测周期。当设备处于稳定运行期时,监测周期可以长一些;当设备出现缺陷和故障时,应缩短监测周期。在确定设备监测周期时,应遵守以下原则; 1)安装设备或大规模维修后的设备运行初期,周期要短(如每天监测一次),待设备进入稳定运行期后,监测周期可以适当延长。 2)检测周期应尽量固定。 3)对点检站专职设备监测,多数设备监测周期一般可定为7至14天;对接近或高于3000转/分的高速旋转设备,应至少每周监测1次。 4)对车间级设备监测,监测周期一般可定为每天1次或每班1次。 5)实测的振动值接近或超过该设备报警标准值时,要缩短监测周期。如果实测振动值接近或超过该设备停机值,应及时停机安排检修。如果因生产原因不能停机时,要加强监测,监测周期可缩短为1天或更短。 3 设备振动监测信息采集 振动监测参数的选择 对于超低频振动,建议测量振动位移和速度;对于低频振动,建议测量振动速度和加速度;对于中高频振动和高频振动,建议测量振动加速度。说明如下:(1)设备振动按频率分类。根据振动的频率,设备振动可以分为以下几种:1)超低频振动,振动频率在10Hz以下。2)低频振动,振动频率在10Hz至1000Hz。3)中高频振动,振动频率在1000Hz至10000Hz。4)高频振动,振动频率在10000Hz以上。 (2)位移为峰峰值;速度为有效值;加速度为有效值;有时根据需要,速度和加速度还要测量峰值。 振动监测中的几个“同” 为保证测量结果的可比性,在振动监测中要注意做到以下几个“同”: 1)测量仪器同;2)测量仪器设置同;3)测点位置、方向同;4)设备工况同;5)背景振动同。并尽量由同一个人测量。 振动数据采集 应严格按监测路径和监测周期对设备进行定期监测。采集设备振动数据时,通常还

精选-机械振动公式

弹簧串并联 单自由度无阻尼自由振动 单自由度有阻尼自由振动 单自由度有阻尼强迫振动 简谐力直接激励 2 1212 121,111k k k k k k k k k k k +=+=+=并联 串联),(,)3(;,1,2)2(; 0)()1()(,)(),sin(, sin cos ,,0,0002012 020 0022x x A g T f T m k dt E E d x x tg x x A t A x t x t x x m k x x kx x m st n n n p k n n n n n n n n &&&&&&&&θδωωπωωθωθωωωωωω求响应:静变形法,求固有频率:定义法能量法求微分方程:定理法,=====+=+=+=+===+=+-2 0012002 020 00212ln 1) (,)(),sin(,1,sin cos )1(,2,2,02,0ζπζζωδζωωθωζωθωωζωωωζωωζωωζωζωζω-= ==+=++=+=-=++=====++=+++--d n j i i n d d n d t n d d d n d n cr cr n n n T A A j x x x tg x x x A t Ae x t x x t x x m c c c m c x x x kx x c x m n &&&π&&&&&&λβζλλβλωω λλζλαζλλαωω-=+-==-= =-=+-=-==++-,,) 2()1(11,,12,)2()1(),sin(,sin 2 22221222k F x x x k F B tg k F B t B x t F kx x c x m st st n 无阻尼时,&&&

李峰机械振动作业

2013-2014学年第二学期研究生课程考核 (读书报告,研究报告) 考核科目:机械振动理论 学生所在院(系):机电学院 学生所在学科:机械工程 姓名:李峰 学号:1302210115 题目:机械振动理论作业

1. 请指出弹簧的串、并联组合方式的计算方法。确定弹性元件的组合方式是串联还是并联的方法是什么?对两种组合方式分别加以说明。 答:,由此推出n 个并联弹簧组合的等效刚度∑==n i i eq k K 1 。由此推 出n 个弹簧并联等效刚度 ∑ ==n i i eq k k 1 11 。并联弹簧刚度较各组成弹簧 “硬”,串联弹簧较各组成弹簧“软”。 确定弹性元件的组合方式是串联还是并联的方法:若弹性元件共位移——端部位移相等,则并联关系;若弹性元件共力——受力相等,则为串联关系。 2.阻尼元件的意义与性质是什么?对于线性阻尼器,所受到的外力与振动速度的关系是什么?非粘性阻尼包括哪几种?它们的定义及计算公式分别是什么? 答:(1)阻尼元件的意义与性质:阻尼元件对外力作用的相应表现为端点的一定的移动速度。阻尼系统所受外力为F d ,是振动速度x 的函数,)(x f F d =。通常假定阻尼器元件的质量是可以忽略不计的,

阻尼元件与弹性元件不同的是,它是消耗能量的,它以热能、声能等方式耗散系统的机械能。 (2)线形系统受到的外力为F d ,阻尼系数为C ,振动速x c F d =。 在角振动系统中,阻尼力矩M ,单位角速度为θ ,则M=θ c (3)非粘性阻尼包括:库伦阻尼,流体阻尼和结构阻尼。库伦阻尼计算公式: )sgn(x umg Fe *-=,其中sgn 为符号函数这里定义) ()()sgn(t x t x x = ,需注意当0)(=t x 时。库伦阻力是不定的,它取决于合力的大小,而方向与之相反; 流体阻尼:当物体以较大速度在粘性较小的流体(如空气)中运动时,由流体介质产生的阻尼,)sgn(2 x Fn x *-=γ;结构阻尼:材料内部产生摩擦所产生的阻尼,计算公式X Es 2 α=?。 3.单自由度无阻尼系统的自由振动的运动微分方程是什么?其自然频率、振幅、初相角的计算公式分别是什么? 答:单自由度无阻尼系统的自由振动的微分方程;0)(=+t kx x m 自然频率 m k f w n ∏= ∏= 212;振幅:)( 02 20 w v x n X += ; 初相角: x w v n arctan =φ 。 4. 对于单自由度无阻尼系统自由振动,确定自然频率的方法有哪几种?具体过程是什么? 答:单自由度无阻尼系统自由振动,确定自然频率的方法: ((1)静变形法:该方法不需要到处系统的运动微分方程,只需根据

11机械振动与机械波20个 题型分类

机械振动与机械波考点例析 一、夯实基础知识 1、深刻理解简谐运动、振幅、周期与频率得概念 (1)简谐运动:物体在跟偏离平衡位置得位移大小成正比,并且总指向平衡位置得回复力得作用下得振动。 特征就是:F=-kx,a=—kx/m (2)简谐运动得规律: 错误!在平衡位置: 速度最大、动能最大、动量最大; 位移最小、回复力最小、加速度最小。 错误!在离开平衡位置最远时: 速度最小、动能最小、动量最小; 位移最大、回复力最大、加速度最大。 错误!振动中得位移x都就是以平衡位置为起点得,方向从平衡位置指向末位置,大小为这两位置间得直线距离。 加速度与回复力、位移得变化一致,在两个“端点”最大,在平衡位置为零,方向总就是指向平衡位置。 (3)振幅A: 振动物体离开平衡位置得最大距离称为振幅. 它就是描述振动强弱得物理量。 它就是标量。 (4)周期T与频率f: 振动物体完成一次全振动所需得时间称为周期T,它就是标量,单位就是秒; 单位时间内完成得全振动得次数称为振动频率,单位就是赫兹(Hz). 周期与频率都就是描述振动快慢得物理量,它们得关系就是:T=1/f、 2、深刻理解单摆得概念 (1)单摆得概念: 在细线得一端拴一个小球,另一端固定在悬点上,线得伸缩与质量可忽略,线长远大于球得直径,这样得装置叫单摆. (2)单摆得特点: 错误!单摆就是实际摆得理想化,就是一个理想模型; 错误!单摆得等时性,在振幅很小得情况下,单摆得振动周期与振幅、摆球得质量等无关; 错误!单摆得回复力由重力沿圆弧方向得分力提供,当最大摆角α<100时,单摆得振动就是简谐运动,其振动周期T=. (3)单摆得应用:\o\ac(○,1)计时器;错误!测定重力加速度g=、 3、深刻理解受迫振动与共振 (1)受迫振动:物体在周期性驱动力作用下得振动,其振动频率与固有频率无关,等于驱动力得频率;受迫振动就是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性得驱动力做功给予补充,维持其做等幅振动。 (2)共振:错误!共振现象:在受迫振动中,驱动力得频率与物体得固有频率相等时,振幅最

机械振动题型分类一

机械振动 一、机械振动 1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动. 振动的特点:①存在某一中心位置;②往复运动,这是判断物体运动是否是机械振动的条件. 产生振动的条件:①振动物体受到回复力作用;②阻尼足够小; 2、回复力:振动物体所受到的总是指向平衡位置的合外力. ①回复力时刻指向平衡位置;②回复力是按效果命名的, 可由任意性质的力提供.可以是几个力的合力也可以是一个力的分力; ③合外力:指振动方向上的合外力,而不一定是物体受到的合外力.④在平衡位置处:回复力为零,而物体所受合外力不一定为零.如单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零. 3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位置;平衡位置通常在振动轨迹的中点。“平衡位置”不等于“平衡状态”。平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态) 二、简谐振动及其描述物理量 1、振动描述的物理量 (1)位移:由平衡位置指向振动质点所在位置的有向线段. ①是矢量,其最大值等于振幅; ②始点是平衡位置,所以跟回复力方向永远相反; ③位移随时间的变化图线就是振动图象. (2)振幅:离开平衡位置的最大距离. ①是标量;②表示振动的强弱; (3)周期和频率:完成一次全变化所用的时间为周期T,每秒钟完成全变化的次数为频率f. ①二者都表示振动的快慢; ②二者互为倒数;T=1/f; ③当T和f由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关. 2、简谐振动:物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动. ①受力特征:回复力F=—KX。 ②运动特征:加速度a=一kx/m,方向与位移方向相反,总指向平衡位置。简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 说明:①判断一个振动是否为简谐运动的依据是看该振动中是否满足上述受力特征或运动特征。 ②简谐运动中涉及的位移、速率、加速度的参考点,都是平衡位置. 题型1:简谐运动的证明(回复力的特点) 【例1】试证明,在竖直方向上做自由振动的弹簧振子是做简谐运动. 2. (95全国卷)如图4质量为m的物体A放置在质量为M的物体B上,B与弹簧相连,它们一起在光滑水平面上作简谐振动,振 动过程中A、B之间无相对运动.设弹簧的倔强系数为k.当物体离开平衡位置的位移为x时,A、B间摩擦力的大小等于() A.0; B.kx; C.(m/M)kx D.[m/(M+m)]kx 3如图所示,在质量为M的无下底的木箱顶部用一轻弹簧悬挂质量均为m(M≥m)的D、B两物体.箱子放在水平地面 上,平衡后剪断D、B间的连线,此后D将做简谐运动.当D运动到最高点时,木箱对地压力为() A、Mg; B.(M-m)g; C、(M+m)g ; D、(M+2m)g 例在光滑的水平面上停放着一辆质量为M的小车,质量为m的物体与劲度系数为k的一轻弹簧固定相连.弹簧的另一端与小车左端固定连接,将弹簧压缩x0后用细绳将m 栓住,m静止在小车上的A点,如图所示,m与M 间的动摩擦因数为μ,O 点为弹簧原长位置,将细绳烧

机械振动理论中的一些原理问答

1.请指出弹簧的串、并联组合方式的计算方法。确定弹性元件的组合方式是串联还是并联的方法是什么?对两种组合方式分别加以说明。 答:n 个刚度为i k 的弹簧串联,等效刚度∑==n i i eq k k 11 1;n 个刚度为i k 的弹簧 并联的等效刚度为∑==n i i eq k k 1 ;并联弹簧的刚度较各组成弹簧“硬”,串联弹簧较 其任何一个组成弹“簧软”。 确定弹性元件是串联还是并联的方法:若弹性元件是共位移——端部位移相等,则为并联关系;若弹性元件是共力——受力相等,则为串联关系。 2.非粘性阻尼包括哪几种?它们的计算公式分别是什么? 答:非粘性阻尼包括: (1)库仑阻尼计算公式?? ? ???=.sgn -x mg F e μ,其中,sgn 为符号函数,这里 定义为) ()()(sgn t x t x x ? ? ? = ,须注意,当0)(x =? t 时,库仑阻尼力是不定的,它取决 于合外力的大小,而方向与之相反; (2)流体阻尼计算公式:是当物体以较大速度在粘性较小的流体(如空气、 液体)中运动是,由流体介质所产生的阻尼,计算公式为?? ? ??-=??x x F n sgn 2 γ; (3)结构阻尼:由材料内部摩擦所产生的阻尼,计算公式为2 X E s α=? 3.单自由度无阻尼系统的自由振动的运动微分方程是什么?其自然频率、振幅、初相角的计算公式分别是什么? 答:单自由度无阻尼系统的自由振动的运动微分方程()0=+? ?t kx x m ; 自然频率:m k f n n ππω21 2== ; 振幅:2 02 ??? ? ??+=n v x X ω;

相关文档
最新文档