正项级数的判别法

合集下载

级数收敛发散的判断方法总结

级数收敛发散的判断方法总结

级数收敛发散的判断方法总结
级数是一种由数列构成的无限求和,是数学中的一个重要概念。

在学习级数时,我们需要掌握判断级数是否收敛或发散的方法。

一、正项级数判别法
正项级数是指所有项都是非负的级数。

如果正项级数的部分和有上界,则该级数收敛;如果正项级数的部分和无上界,则该级数发散。

二、比较判别法
比较判别法是指将待判断的级数与已知的收敛或发散的级数进行比较,从而判断待判断的级数的收敛性。

1. 比较法一:若0≤a_n≤b_n,则若级数∑b_n收敛,则级数∑a_n
必收敛;若级数∑a_n发散,则级数∑b_n必发散。

2. 比较法二:若a_n≥0,b_n≥0,则若存在正整数N,使得对于n
≥N,a_n≤kb_n,则级数∑b_n收敛,则级数∑a_n必收敛;若级数
∑a_n发散,则级数∑b_n必发散。

三、极限判别法
极限判别法是指将待判断的级数的通项公式中的n变为无穷大,然后求其极限值,从而判断级数的收敛性。

1. 当极限lim(a_n) = 0时,级数∑a_n可能收敛也可能发散。

2. 当极限lim(a_n) ≠ 0时,级数∑a_n必发散。

四、积分判别法
积分判别法是将待判断的级数的通项公式中的n替换为变量x,然后将其转化为函数f(x)的形式,然后对函数f(x)在正实数区间[a,∞)上求不定积分∫f(x)dx,若积分∫f(x)dx收敛,则级数∑a_n收敛;若积分∫f(x)dx发散,则级数∑a_n发散。

以上就是关于级数收敛发散的判断方法的总结,掌握这些方法可以帮助我们更好地判断级数的收敛性,加深对级数概念的理解。

8.2正项级数敛散性的判别

8.2正项级数敛散性的判别


证 : ≤1 级 发 ; >1 级 收 。 明 p 时 数 散 p 时 数 敛 ∞ 1 解: (1) p = 1时, 调和级数 ∑ 发散 . n =1 n ∞ ∞ 1 1 1 ( 2) p < 1时, ≤ p Q ∑ 发散,∴ ∑ 1 发散. 发散, p n n n =1 n n =1 n ( 3) p > 1时, 方向:证原级数 某一收敛级数 方向:证原级数<某一收敛级数 ∞ 1 1 1 1 1 1 1 ∑ np = 1 + 2p + 3p + 4p + 5p + 6p + 7p +L n =1 1 1 1 1 1 1 < 1 + ( p + p ) + ( p + p + p + p ) + L 几何级数 2 2 4 4 34 4 2 n ∞ 1 1 1 1 收敛! < 1 + p −1 + p−1 + p −1 + L = ∑ p−1 收敛! 2 n=0 2 2 2 +∞ 1 此 论 广 积 ∫ dx的 散 相 。 敛 性 同 ∴ 原级数收敛。 结 与 义 分 原级数收敛。 p 1 x
的敛散性。 例2.判定∑ 2 sin n的敛散性。 3 n =1 解: 由于当 x > 0时, < sin x < x 0 n π 2 n n π 故0 < 2 sin n < 2 n = π ( n = 1,2L) 3 3 n 3 ∞ 2 2 Q ∑ π 为公比是 的几何级数, 收敛 的几何级数, n =1 3 ∞3 π n ∴由比较判别法知 ∑ 2 sin n收敛。 收敛。 3 n =1

级数收敛与发散的判定方法

级数收敛与发散的判定方法

级数收敛与发散的判定方法级数是由一系列连加的无穷项组成的数列。

在数学中,判断一个级数是收敛还是发散是一个重要的问题。

下面我将介绍几种常见的方法来判定级数的收敛性或发散性。

一、正项级数收敛判定法正项级数是指级数的每一项都是非负数。

对于正项级数,我们可以使用以下几种方法来判定其收敛性或发散性。

1. 比较判别法:如果一个正项级数的每一项都小于等于另一个已知收敛的正项级数的对应项,那么这个级数也是收敛的;如果一个正项级数的每一项都大于等于另一个已知发散的正项级数的对应项,那么这个级数也是发散的。

2. 比值判别法:对于正项级数,计算相邻两项的比值,如果这个比值的极限存在且小于1,则级数收敛;如果大于1,则级数发散;如果等于1,则无法判定。

3. 根值判别法:对于正项级数,计算相邻两项的根的比值,如果这个比值的极限存在且小于1,则级数收敛;如果大于1,则级数发散;如果等于1,则无法判定。

二、交错级数收敛判定法交错级数是指级数的每一项交替正负。

对于交错级数,我们可以使用以下方法进行判定。

1. 莱布尼茨判别法:对于交错级数,如果级数的每一项绝对值递减趋向于零,并且满足单调性条件,即后一项的绝对值不大于前一项的绝对值,那么该级数收敛。

三、级数收敛判定法对于非正项级数,也有一些方法可以判定其收敛性。

1. 绝对收敛判别法:如果一个级数的绝对值级数收敛,那么原级数也收敛。

2. 条件收敛判别法:如果一个级数是收敛的但不是绝对收敛的,那么它是条件收敛的。

四、其他级数的判定方法除了上述常见的判定法外,还有一些特殊的级数判定方法。

1. 积分判别法:将一个级数与一个函数的积分进行比较,如果积分收敛,则级数收敛;如果积分发散,则级数发散。

2. 定积分法:将级数的前n项求和表示为一个关于n的函数,然后对该函数进行定积分,如果定积分收敛,则级数收敛;如果定积分发散,则级数发散。

总结:级数的收敛与发散的判定方法有比较判别法、比值判别法、根值判别法、莱布尼茨判别法、绝对收敛判别法、条件收敛判别法、积分判别法和定积分法等。

正项级数的敛散性判别法(二)

正项级数的敛散性判别法(二)

柯西根值判别法
定理2设乌为正项级数,极限= 2存在,则
71 ~OO
(1)^/1 < 1,级数收敛;
(2)若义> 1 (包括4 = 8)
级数发散;
⑶若义=1,
不能由此断定级数的敛散也
例4判别下列级数的敛散性
00
(2)
n=lnn
00
n
3n-l
(1) limVu^ =lim- = 0 < 1
由根值判别法,级数
”"+1
(n+l)"〉 1 n

lint—- Um
n-^oo ht8
= lim (n+l)n+2 n—8
=Um (—)n+2 =1
n-»oo \n+17 e
由比较判别法的极限形式,
级数2 00
n=l
m?l+l
^发散
:♦例3判别级数2二亨!(. 其中* > 0)的敛散性
带, 解这是一个正项级数,Un
(2) lim\/u^=liTn
由根值判别法,
例5判断级数
的敛散性(。> 0).
当0=1时,原级数为
,显然是发散的.
当 0 < a < 1时,Um
当 口 > 1时,lim
故当a >。且a尹1时,原级数收敛.
例1判别下列级数的敛散性
°°1 n=l ST)!
(2) > \i00
解(1) lim un+l
n n—>00
(2) Um 由比值判别法, (3) lim
(n+1)!
(n+l)n+1 3nn\
(n+1)! 10n

正项级数的根式判别法和比式判别法

正项级数的根式判别法和比式判别法

重庆三峡学院毕业设计(论文)题目:对正项级数敛散性判别法应用性的探讨目录摘要 (I)Abstract: ..................................................................................................................................................... I I 1 引言 . (3)2正项级数相关概念 (3)2.1 定义 (3)2.2 正项级数敛散性判别的充要条件 (3)2.3 三个重要比较级数 (4)2.3.1 几何级数 (4)2.3.2 调和级数 (5)2.3.3 P-级数 (5)3 正项级数敛散性判别法 (6)3.1 判别发散的简单方法 (6)3.2 比较判别法 (7)3.2.1 定理及其推论 (7)3.2.2 活用比较判别法 (9)3.2.3 归纳总结 (11)3.3 柯西判别法与达朗贝尔判别法 (12)3.3.1 柯西判别法 (12)3.3.2 达朗贝尔判别法 (13)3.3.3 比值判别法和根值判别法失效的情况 (15)3.4 拉贝判别法 (17)3.5 积分判别法 (19)3.6 两种新方法 (20)3.7 判别正项级数敛散性方法的总结 (23)4 在判别级数敛散性中的作用 (23)4.1 证明负项级数的敛散性 (23)4.2 证明变号级数绝对收敛 (24)4.3 证明函数级数收敛 (25)5 结束语 (26)致谢 (27)参考文献: (27)对正项级数敛散性判别法应用性的探讨尹委红(重庆三峡学院数学学院数学与应用数学专业2006级重庆万州 404000)摘要:正项级数是级数内容中的一种重要级数,它的敛散性是其基本性质.本文主要探讨正项级数∑∞=1 nnu)0(>nu的各种敛散性判别法,主要有积分判别法、比较判别法、柯西判别法、达朗贝尔判别法、拉贝判别法.探讨了它们的证明过程及应用其解决相关的例题.并简单介绍了它们之间的关系,如强弱性的比较,不同形式的nu适合用哪种方法来证明其敛散性更为简单.最后介绍了正项级数敛散性判别法在判别级数敛散性中的作用.关键词: 正项级数;判别法;敛散性Positive Series Convergence Criterion of applicabilityYIN Wei-hong(Grade 2006, Mathematics and Applied Mathematics, College of Mathematics and Computer Science, Chongqing Three Gorges University, Wanzhou, Chongqing 404000 )Abstract:Series is a series of positive content is an important series,convergence and Divergence of its basic nature of its. This paper discusses the positive series all Convergence Criterion, There are Integral Test, Comparison Tests, Cauchy Criterion, Criterion big Lambert, Rabe Criterion. Discussed their certification process and application of relevant examples of its solution. And briefly describes the relationships between them, such as comparison of theu which method to prove its convergence and strength of、suitable for different forms ofndivergence easier. Finally, Introduced the positive series Convergence Criterion of Convergence and Divergence in the identification of the role.Keywords: positive series; criterion; convergence1 引言级数是数学分析这门学科中的一个重要部分,而正项级数又是级数中最简单从而也是级数中最基本的一种级数.证明级数的敛散性是级数的一种重要性质,解决级数的问题多半要设计到讨论级数的敛散性.由于正项级数在级数中的基础地位,所以讨论正项级数的敛散性是级数的一个基础内容,也是一个十分重要的内容,故正项级数敛散性判别法在数学分析中有着重要的作用.2正项级数相关概念2.1 定义设有数列{}n u ,即 .,,,,321 n u u u u 将此数列的项依次用加号连接起来,即+++++n u u u u 321 或 ∑∞=1n n u ,称为数值级数,其中n u 称为级数的第n 项或通项.级数就是无限多个数的和.若级数的每一项n u 的符号都是正,则称级数∑∞=1n nu是正项级数.取级数前n 项的和为n s ,即 n n u u u s +++= 21 或 ∑==nk nn us 1,称为级数的n 项部分和.若一级数的部分和数列{}n s 收敛,设s s n n =∞→lim 或 s unk kn =∑=∞→1lim,则称此级数收敛,s是级数的和,表为 +++++==∑∞=n n nu u u u us 3211.若部分和数列{}n s 发散,则称该级数发散,此时级数没有和.2.2 正项级数敛散性判别的充要条件正项级数的每一项都为正的基本特点导致正项级数部分和数列单调增加,从而有正项级数敛散性的基本判别定理:定理1 正项级数∑∞=1n nu收敛⇔它的部分和数列{}n s 有上界.证明 由于),2,1(0 =>i u i ,所以{}n s 是递增数列.而单调数列收敛的充要条件是该数列有界(单调有界定理),从而本定理得证.基本判别定理解决了一个级数的收敛问题,不必研究s s n n =∞→lim ,而粗略地估计n s 的值当∞→n 时是否保持有界就可以了,这样就避开了n s 冠以n 的复杂的表达式.它是判断正项级数收敛(或发散)的最基本方法,几乎所有其它的判别法都是由它导出,但是在具体应用时不大方便.由正项级数敛散性的基本判别定理可以推导出正项级数敛散性常用判别定理——积分判别法、比较判别法、柯西判别(又叫根值判别法)、达朗贝尔判别法(又叫比值判别法).2.3 三个重要比较级数在正项级数敛散性的判别中往往需要用到一个比较因子,用比较因子的敛散性来判断一个级数收敛还是发散.常用的比较因子有三个重要的正项级数——几何级数、调和级数、p-级数.下面简单介绍这三个级数,及其它们敛散性的证明,便于后面能更好的应用.2.3.1 几何级数(等比级数)讨论几何级数+++++=-∞=-∑1211n n n ar ar ar a ar的敛散性,其中r a ,0≠是公比.解:1)当0≠r 时,已知几何级数的n 项部分和 +++++=-12n n ar ar ar a s(i )当1<r 时,存在极限,且.11lim lim rar ar a s n n n n -=--=∞→∞→因此,当1<r 时,几何级数收敛,其和是r a -1,即r aar n n -=∑∞=-111.(ii )当1>r 时,不存在极限,且.1lim lim ∞=--=∞→∞→rar a s nn n n因此,当1>r 时,几何级数发散. 2)当1=r 时,有两种情况:(ⅰ)当1=r 时,几何级数是)0(≠a , +++++a a a a .na a a a s n n =+++=个∞==∞→∞→na s n n n lim lim 即部分和数列{}n s 发散.(ⅱ)当1-=r 时,几何级数是 .)1(1+-++-+--a a a a a n{,,0,,是偶数是奇数n n a n s =即部分和数列{}n s 发散.于是,当1=r 时,几何级数发散.综上所述,几何级数∑∞=-11n n ar ,当1<r 时收敛,其和是ra-1,当1≥r 时发散. 2.3.2 调和级数证明调和级数+++++=∑∞=n n n 13121111是发散的. 证明 设调和级数∑∞=11n n 的n 项部分和是ns ,即.131211n s n ++++= 由于已知.1]ln )1211[(lim .)ln 1211(lim =+++=-+++∞→∞→n nc n n n n 或(欧拉常数)即当∞→n 时,调和级数的部分和n s n 131211++++= 与n ln 是等价无穷大,即调和级数∑∞=11n n 发散. 2.3.3 P-级数讨论p-级数+++++=∑∞=p p p n p n n 13121111的敛散性,其中p 是任意实数.(该级数又称为广义调和级数)解:1)当1=p 时,广义调和级数就是调和级数∑∞=11n n,已知调和级数发散,即p-级数发散.2)当1<p 时,+∈∀N n ,有n n p 11≥.已知调和级数∑∞=11n n发散,根据比较判别法可知,当1<p 时,p-级数发散.3)当1>p 时,2≥∀n ,有]1)1(1[11111-----<p p p n n p n .于是,N n ∈∀,有1111)11(111)1)1(131212111(111)1)1(1(11)3121(11)2111(1111312111111111111111-=-+<--+=--++-+--+=---++--+--+≤++++=-------------p p p n p n n p nn p p p n s p p p p p p p p p p p p p p p p n 即p-级数的部分和数列{}n s 有上界,从而p-级数收敛.综上所述,当1≤p 时,p-级数发散;当1>p 时,p-收敛.在正项级数敛散性的证明中常借助于这三个级数敛散性为桥梁来判断其它级数的敛散性,所以必须要熟练掌握这三个级数.3 正项级数敛散性判别法3.1 判别发散的简单方法由级数收敛的基本判别定理——柯西收敛准则:级数∑∞=1n nu收敛,,,,0N p N n N N ∈∀>∀∈∃>∀⇔+ε有ε<++++++p n n n u u u 21.取特殊的1=p ,可得推论:若级数∑∞=1n nu收敛,则0lim =∞→nn u .定理2 该推论的逆否命题:若0lim ≠∞→nn u ,则级数∑∞=1n nu发散.例1 快速判断级数∑∞=+12215n n n 的敛散性.解: 由于05115lim22≠=+∞→n n n ,从而根据定理2可知,该级数发散. 如果0lim ≠∞→n n u ,则可由该逆否命题直接可以判别出该级数发散;如果0lim =∞→nn u ,则不能判断级数是否收敛,因为存在级数满足0lim =∞→nn u 的发散级数,如∑∞=11n n ;也存在级数满足0lim =∞→n n u 的收敛级数,如∑∞=121n n.显然该逆否命题只使用于满足0lim ≠∞→nn u 的发散级数.3.2 比较判别法 3.2.1 定理及其推论定理3 (比较判别法) 有两个正项级数∑∞=1n nu与∑∞=1n nv,且N n N N ≥∀∈∃+,,有n n cv u ≤,c 是正常数.1)若级数∑∞=1n nv收敛,则级数∑∞=1n nu也收敛;2)若级数∑∞=1n nu发散,则级数∑∞=1n nv也发散.证明 因为有定理若去掉、增添或改变级数∑∞=1n nu的有限项,则不改变级数∑∞=1n nu的敛散性,因此,不妨设+∈∀N n ,有 c cv u n n ,≤是正常数.设级数∑∞=1n nu与∑∞=1n nv的n 项部分和分部是n A 与n B ,由上述不等式,有.)(212121n n n n n cB v v v c cv cv cv u u u A =+++=+++≤+++=1)若级数∑∞=1n nv收敛,根据定理1,数列{}n B 有上界,从而数列{}n A 也有上界,再根据定理1,级数∑∞=1n nu收敛.2)若级数∑∞=1n nu发散,根据定理1,数列{}n A 无上界,从而数列{}n B 也无上界,再根据定理1,级数∑∞=1n nv发散.推论 有两个正项级数∑∞=1n n u 与)0(1≠∑∞=n n n v v ,且 k v u nnn =∞→lim).0(+∞≤≤k1)若级数∑∞=1n nv收敛,且+∞<≤k 0,则级数∑∞=1n nu也收敛;2)若级数∑∞=1n nv发散,且+∞≤<k 0,则级数∑∞=1n nu也发散.证明 1)若级数∑∞=1n nv收敛,且+∞<≤k 0,由已知条件,N n N N ≥∀∈∃>∃+,,00ε,有0||ε<-k v u n n 或 0ε+<k v u n n,即N n ≥∀,有n n v k u )(0ε+<,根据定理2,级数∑∞=1n n u 也收敛.2)若级数∑∞=1n nv发散,且+∞<<k 0,由已知条件,N n N N k ≥∀∈∃<<∃+,,0:00εε,有 0||ε<-k v u n n 或 n n v u k <-0ε )0(0>-εk ,即N n ≥∀,有n n u k v 01ε-≤,根据定理2,级数∑∞=1n nu也发散.若级数∑∞=1n nv发散,且+∞=k ,由已知条件,,,,0N n N N M ≥∀∈∃>∃+有M v u n n>,即N n N N ≥∀∈∃+,,有n n u M v 1<,根据定理2,级数∑∞=1n n u 也发散. 从比较判别法的内容,我们可以得出以下几点启示:(1)比较判别法只适用于正项级数敛散性的判断;(2)比较判别法重在“比较”,是利用两个正项级数的通项结构来比较的;要求必须掌握等比级数,调和级数,p-级数的敛散性,因为比较判别法的比较对象常常就是上述三种级数.(3)要证明某一个级数∑∞=1n nu收敛,需要找一个通项比n u 大的收敛的整形级数∑∞=1n nv,即n n cv u ≤,也就是需要将所求的级数通咯级数项放大;(4)要证明某一个级数∑∞=1n nu发散,需要找一个通项比n u 小的发散的正项级数∑∞=1n nv,即n n u cv ≤,也就是需要将所求的级数通项缩小.比较判别法提供了一个判别级数敛散的简单方法:只须拿一个已知敛散性的级数和要判别的级数作比较便能得出结论.常用的作为比较的级数有等比级数、调和级数、p-级数,因此,正项级数比较判别法的关键是:如何选取比较对象,放大或缩小所求级数的通项.3.2.2 活用比较判别法(1) 当所求级数的通项中出现关于n 的有理式时,比较对象常常选取p-级数或调和级数. 例1 判别级数∑∞=+1)1(1n n n 的敛散性. 分析: 考虑通项)1(1+n n ,分子n 的最高幂是0(只有常数1 ),分母n 的最高幂是2,这时通项接近2201n n n =,原级数也接近于级数∑∞=121n n,这是12>=p 的收敛的p-级数,那么原级数也一定收敛.事先知道级数是收敛的,就把通项放大,放大为一个收敛的级数通项,这个级数一般就是∑∞=121n n ,至多差一个系数. 解: 因为21)1(1n n n <+(分母缩小,分数放大),又由于∑∞=121n n收敛.则由此比较判别法,原级数∑∞=+1)1(1n n n 也收敛. 例2 判别级数∑∞=+1421n nn 的敛散性. 分析: 考虑通项421n n +,分子n 的最高幂是1,分母n 的最高幂是4,这时通项接近341n n n =,原级数也接近于级数∑∞=131n n,这是13>=p 的收敛的p-级数,那么原级数也一定收敛.解: 因为3444122221n n n n n n n n ==+≤+(分子放大,分数放大),又由于∑∞=131n n 收敛,则由比较判别法,原级数∑∞=+1421n nn 也收敛. 例3 判别级数∑∞=--+12521n n n n 的敛散性. 分析: 考虑通项5212--+n n n ,分子n 的最高幂是1,分母n 的最高幂是2,这时通项接近,n n n 2122=,原级数也接近于级数∑∞=11n n,至多差一个系数. 解: 因为52152221222--+≤--<=n n n n n n n n n (分子缩小,分母放大,分数缩小),又由于∑∞=11n n 是发散的,则由比较判别法,原级数也是发散的. (2) 当所求级数通项中出现正弦函数或对数函数时,利用不等式选取适当的比较对象.主要用到下面两个式子:当0>x 时,.1)11ln(11,sin xx x x x ≤+≤+< 例4 判别级数nn n 3sin21π∑∞=的敛散性.分析: 考虑当0>x 时,x x <sin ,则πππππnnn nn nn)32(323sin2,33sin=⋅<<,而πnn )32(1∑∞=是公比132||<=q 的收敛级数,故原级数收敛. 例5 判别级数∑∞=+1221ln n n n 的敛散性. 分析: 由于有不等式22221)11ln(1ln n n n n ≤+=+,而∑∞=121n n是收敛的级数,故原级数也收敛.(3) 当所求级数的通项放大、缩小不方便时,可采用比较判别法的推论.利用比较判别法的推论时要注意:(1)把要求的级数当作∑∞=1n nu,另找一个正项级数(往往找调和级数、p-级数或等比级数),作∑∞=1n nv;(2)重点考察极限结果1,因为1在0与∞之间.例6 判别级数∑∞=+-12114n nn 的敛散性. 分析: 考虑通项1142+-n n ,分子n 的最高幂为1,分母n 的最高幂为2,通项接近nn n 12=,因此就把级数∑∞=11n n作∑∞=1n n v .解: 由于414lim ]1114[lim 222=+-=+-∞→∞→n nn n n n n n ,又因为∑∞=11n n 是发散的,则原级数也发散.例7 另解上面的例5.分析: 我们前面已经讨论过该题,若忘记前面的不等式,而此题的通项又不易进行放大、缩小,可用推论.把)11ln(2n +作为n u ,再找一个n v .观察到n u 中,有对数函数)11ln(2n+出现,考虑用第二重要极限e nnn =+∞→)11(lim ,取.12n v n =解: 因为1)11ln(lim ]1)11ln([lim 2222=+=+∞→∞→n n n n nn,又∑∞=121n n收敛,故原级数也收敛.3.2.3 归纳总结判断正项级数∑∞=1n nu“ 敛散性的一般步骤:(ⅰ) 检查通项。

几个正项级数敛散性的判别法的强弱比较

几个正项级数敛散性的判别法的强弱比较

《数学与应用数学》学年论文题目几个正项级数敛散性的判别法的强弱比较学号姓名教师评语:成绩指导教师摘要:级数理论在实际生活中的运用极为广泛,正项级数又是级数理论中重要的组成部分,级数的收敛性更是级数理论的核心问题,要想解决正项级数的求和问题必须先解决正项级数收敛性判断,正项级数敛散性判断的方法虽然较多,但使用起来仍有一定的技巧,归纳总结正项级数收敛性判断的一些典型方法,比较这些方法的不同特点,总结出一些典型的正项级数,根据不同的题目特点分析、判断选择适宜的方法进行判断,才能事半功倍. 我们在书上已经学了很多种正项级数敛散性的判定定理,但书上往往只是对定理本身做一个证明,然后举几个简单应用的例子就好了,没有做过多的分析.但是,我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性.因此,我们便会去想,我们常用的这些定理到底有哪些局限呢,定理与定理之间会有些什么联系和区别呢,做题目时如何才能更好得去运用这些定理呢?下面就对正项级数的各种判别法强弱比较进行了讨论与分析。

1 正项级数相关概念 1.1正项级数的定义如果级数1n n x ∞=∑的各项都是非负实数,即0,1,2,,n x n ≥=则称此级数为正项级数1.2正项级数敛散性判别的充要条件正项级数的每一项都为正的基本特点导致正项级数部分和数列单调增加,从而有正项级数敛散性的基本判别定理:定理: 正项级数∑∞=1n n u 收敛⇔它的部分和数列{}n s 有上界.证明 由于),2,1(0 =>i u i ,所以{}n s 是递增数列.而单调数列收敛的充要条件是该数列有界(单调有界定理),从而本定理得证.例级数22(1)(1)n n n n ∞=⎤⎥-+⎦∑是正项级数。

它的部分和数列的通项2112212ln ln ln 2ln ln 2(1)(1)11n n n k k k k k n s k k k k n ++==⎤++⎡⎤=<-=-<⎥⎢⎥-+-+⎣⎦⎦∑∑,所以正项级数22(1)(1)n n n n ∞=⎤⎥-+⎦∑收敛。

正项级数

正项级数

的敛散性.
故原级数收敛.
例2 判定级数
的敛散性.

收敛, 则级数
收敛.
例3 判定级数
的敛散性.
解 因为
发散, 则级数
发散.
定理9.2.3 (比较判别法的极限形式)
若两个正项级数
满足:
(1)当0 < l < +∞时, 级数
同敛散;
(2)当l= 0且级数 收敛时, 级数 也收敛;
(3)当l= +∞且级数
发散时, 级数 也发散.
§9.2 正项级数及其敛散性判别
一. 正项级数的概念 二. 正项级数敛散性的判别法
一、正项级数的概念
定义9.2.1 若数项级数 中的各项 则称此级数为正项级数.
于是正项级数的部分和数列
是一个单増数列, 即
定理9.2.1 正项级数 有上界.
收敛的充要条件是部分和数列
此定理的等价命题: 正项级数发散的充要条件是部分和数列 其等价命题是: “若 无上界, 则 从而正项级数发散.”
故原级数发散.
3. 根值判别法
定理9.2.5 (柯西根值判别法) 若正项级数
满足
则 (1) 当0 ≤ l < 1时, 级数
收敛;
(2) 当 l > 1时, 级数 发散;
(3) 当 l = 1 时, 级数
可能收敛, 也可能发散.
例6 判定级数
的敛散性.

故原级数收敛. 练习:
3,(1) 判定级数 解
无上界.
二. 正项级数敛散性的判别法
1. 比较判别法 定理9.2.2 (比较判别法) 设两个正项级数
的对
应项满足:
则 (1)当级数 收敛时, 级数 (大收小收)

04第四讲 正项级数的概念,比较判别法

04第四讲 正项级数的概念,比较判别法

数学分析第十二章数项级数正项级数的概念,比较判别法第四讲数学分析第十二章数项级数正项级数收敛性的一般判别原则若数项级数各项的符号都相同,则称为同号级数. 对于同号级数,只须研究各项都是由正数组成的级数(称正项级数).由级数与其部分和数列的关系,得:数学分析第十二章数项级数定理12.5>=0(1,2,),i u i 由于证所以{S n }是递增数列. 单调数列收敛的充要条件是该数列有界(单调有界定理).仅靠定义和定理12.5来判断正项级数的收敛性是不容易的,敛性判别法则.n u ∑正项级数收敛的充要条件是:{}n S 有界, <.n S M 即存在某正数M ,对一切正整数n 有而这就证明了定理的结论.部分和数列因此要建立基于级数一般项本身特性的收数学分析第十二章数项级数定理12.6(比较原则)n n u v ∑∑设和是两个正项级数,如果存在某正数N ,对一切n > N 都有,(1)n n u v ≤则(i),;n n v u 若级数收敛则级数也收敛∑∑(ii),.n n u v 若级数发散则级数也发散∑∑证因为改变级数的有限项并不影响原有级数的敛因此不妨设不等式(1)对一切正整数都成立.'''∑∑nn n n S S u v 现在分别以和记级数与的部分和.散性,数学分析第十二章数项级数由(1)式可得,对一切正整数n ,都有.(2)nn S S '''≤,lim ,n nn v S →∞''∑若收敛即存在则由(2)式对一切n 有lim nn n S S →∞'''≤,n u ∑{}n S '即正项级数的部分和数列有由定理12.5级数n u ∑收敛, (ii)为(i)的逆否命题,自然成立.≤(1)n nu v 界,这就证明了(i).数学分析第十二章数项级数例1 -+∑21.1n n 考察的收敛性解≥2,n 由于当时有因为正项级数21(1)n n n ∞=-∑收敛(§1例2),原则, 级数211n n -+∑也收敛.22111n n n n≤-+-()1.1n n =-故由比较数学分析第十二章数项级数22,,0,0.nnn n u v u v >>∑∑收敛且例2 若级数2210(),2n n n n u v u v <≤+证因为根据比较原则, 得到正项级数n nu v∑收敛.在实际使用上,比较原则的极限形式通常更方便.n n u v 则级数收敛.∑∑∑22,nnu v而级数均收敛,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


思考题
设正项级数 un 收敛, 能否推得 un 收敛?
2 n1 n1
反之是否成立?
思考题解答
由正项级数 un 收敛,可以推得 un 收敛,
2 n 1 n1
un lim lim un 0 n u n n
由比较审敛法知 un 收敛.
2
1时级数发散; 1 时失效.
1 例如, 设级数 n , n1 n

1 1 un n n 0 ( n ) 级数收敛. n n
n
小 结
正 项 级 数
1. 若 Sn S , 则级数收敛;


2. 当 n , un 0, 则级数发散;
3.按基本性质; 4.充要条件 5.比较法 6.比值法 7.根值法Leabharlann lim a2 nn
1 , 6
lim a2 n1
n
3 , 2
un1 lim lim an 不存在. n u n n
例 4 判别下列级数的收敛性:
1 (1) ; n 1 n!


n! 1 (2) n ; (3) . n 1 10 n 1 ( 2n 1) 2n 1 un1 ( n 1)! 1 (1) 0 ( n ), 1 un n1 n! 1 故级数 收敛. n 1 n!
1 (1) sin ; n n 1


二、比值判别法
un 1 (数或 ) 设 un 是正项级数,如果 lim n u n 1 n
则 1时级数收敛; 1 时级数发散; 1 时失效.

证明 当为有限数时, 对 0,
un1 N , 当n N时, 有 , un
(n N )
由比较审敛法的推论, 得证.

un 为正项级数, n 1
n n

如果 lim nun l 0 (或 lim nun ), 则级数
un 发散; n 1
n

如果有 p 1 , 使得lim n p un 存在, 则级数
u
n 1
n 收敛.
n 1

n 1
且 sn u1 u2 un v1 v2 vn ,
即部分和数列有界

un收敛. n 1

(2) 设 sn (n ) 且 un vn ,
则 n sn

推论: 若
不是有界数列 定理证毕.
vn发散. n 1

级数
n 1

1 发散. n( n 1)
4.比较审敛法的极限形式:
un l, 设 un 与 vn 都是正项级数, 如果 lim n v n n 1 n 1




则(1) 当 0 l 时, 二级数有相同的敛散性;
(2) 当 l 0 时,若
v n 收敛, 则 un 收敛; n 1

u
n 1

n 收敛(发散)
且v n kun ( n N )( kun v n ) , 则
v n 收敛(发散). n 1

比较审敛法的不便: 须有参考级数.
例 1 讨论 P-级数
1 1 1 1 1 p p p p 的收敛性.( p 0) 2 3 4 n 1 1 设 p 1, p , 则P 级数发散. 解 n n
,
m 1
uN 1 ,

uN m
uu收敛, n N 1
收敛
当 1时, 取 1, 使r 1,
当n N时, un1 run un , lim un 0.
n
发散
比值审敛法的优点: 不必找参考级数.
两点注意:
1.当 1 时比值审敛法失效;
六、若 lim n un 存在,证明:级数 un 收敛 .
2 n
n 1

b 3n 七、证明: lim 0. n n n! a
练习题答案
一、1、 p 1, p 1; 2、 1, 二、1、发散; 三、1、发散; 四、1、收敛; 五、1、发散;
un1 1(或 lim ), 1. n u n 2、发散. 2、收敛. 2、收敛. a 1, 收敛; 2、收敛; 3、 0 a 1, 发散; a 1, 发散.
例 3 判定下列级数的敛散性:
1 (2) n ; n 1 3 n 1 sin n 1, 原级数发散. 解 (1) lim n sin 1 lim n n n 1 1 n n 1 3 n 1, lim ( 2) lim n 1 n n 1 n n 3 3 1 n收敛 , 故原级数收敛. n 1 3
n dx 1 设 p 1, 由图可知 p n1 p n x 1 1 1 sn 1 p p p 2 3 n 2 dx n dx o 1 1 p n1 p x x
y
y
1 ( p 1) xp
1
2
3
4
x
1 1
n
dx 1 1 1 (1 p1 ) 1 p 1 x p1 n p1
un1 即 un
(n N )
当 1时, 取 1 ,
使r 1,
uN 2 ruN 1 ,
uN m r
m 1
uN 3 ruN 2 r 2 uN 1 ,
而级数 r m 1uN 1收敛,
m 1
比值审敛法失效, 改用比较审敛法
1 1 1 2 , 级数 2 收敛, ( 2n 1) 2n n n 1 n 1 故级数 收敛. n1 2n ( 2n 1)
设 un 是正项级数,如果lim n un
三、根值判别法
n 1
n
( 为数或 ) , 则 1 时级数收敛;
2
1 反之不成立. 例如: 2 收敛, n 1 n
n 1

1 n 发散. n 1




一、填空题: 1、 p 级数当_______时收敛,当_______时发散;
等于 , 2、若正项级数 un 的后项与前项之比值的根
n 1
则当________时级数收敛;________时级数发散; ____________时级数可能收敛也可能发散 .
二、用比较审敛法或极限审敛法判别下列级数的收敛 性: 1 2 1 3 1 n ; 1、1 2 2 2 1 2 1 3 1 n 1 2、 ( a 0) . n n 1 1 a
三、用比值审敛法判别下列级数的收敛性: 3 32 33 3n 2 n n! ;2 、 1、 . 2 3 n n 1 2 2 2 3 2 n2 n n 1 四、用根值审敛法判别下列级数的收敛性: 1 n 2 n 1 ) 1、 2 、 ( . n ; n 1 [ln( n 1)] n 1 3n 1 五、判别下列级数的收敛性: 3 n1 ; 1、 2 2 n ln( n 2) n 2、 2 sin n ; 3、 ( a 0) . 1 n 3 n 1 n 1 (a ) n
n 1


(3) 当 l 时, 若
vn 发散,则 un 发散;
n 1 n 1


un 证明 (1) 由lim l n v n
l 对于 0, 2
l un l N , 当n N时, l l 2 vn 2
l 3l 即 vn un vn 2 2
1 例 级数 发散, n 1 n

1 级数 2 收敛, n 1 n

( 1)
2.条件是充分的,而非必要.
2 ( 1) 3 例 un n vn , n 2 2
n
2 ( 1)n 级数 un 收敛, n 2 n 1 n 1


un1 2 ( 1)n1 但 an , n un 2( 2 ( 1) )
即sn有界,
则P 级数收敛.
当p 1时, 收敛 P 级数 当p 1时, 发散
重要参考级数: 几何级数, P-级数, 调和级数.
例 2 证明级数
证明

n 1

1 是发散的. n( n 1)
1 1 , n( n 1) n 1
1 而级数 发散, n 1 n 1
第二节
正项级数的判别法
一、比较判别法 二、比值判别法 三、根值判别法
一、比较判别法
1.定义: 如果级数 un中各项均有 un 0,
这种级数称为正项级数. 2.正项级数收敛的充要条件: s1 s2 sn 部分和数列 { sn } 为单调增加数列. 定理
n 1
正项级数收敛 部分和所成的数列 sn有界.
3. 比较判别法 设 un和 vn均为正项级数,
n 1


且 un vn ( n 1, 2,) ,若 vn 收敛,则 un 收敛; 反之,若 un 发散,则 vn 发散.

n 1 n 1

n 1

证明 (1) 设 vn un vn ,
n 1

un1 ( n 1)! 10 n n 1 ( 2) ( n ), n 1 un n! 10 10 n! 故级数 n 发散. n1 10 un1 ( 2n 1) 2n lim 1, ( 3) lim n u n ( 2n 1) ( 2n 2) n
相关文档
最新文档