六年级上 一元一次方程应用题归类
一元一次方程应用题解题方法与归类

练习:1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。
(1)若他们同时相向而行,则经几小时他们相遇?(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?(3)若他们同时同向而行,则经几小时乙追上甲?(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?2、A、B两地相距1200千米。
甲从A地、乙从B地同时出发,相向而行。
甲每分钟行50千米,乙每分钟行70千米。
两人在C处第一次相遇。
问AC之间距离是多少?如相遇后两人继续前进,分别到达A、B两地后立即返回,在D处第二次相遇。
问CD之间距离是多少?3.从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时40千米,设甲乙两地相距x千米,则列方程为________________。
4. 某人从家里骑自行车到学校。
若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?5.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
6.一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,需要几天完成?7.某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?8.已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完;(1)如果单独打开进水管,每小时可以注入的水占水池的几分之几?(2)如果单独打开出水管,每小时可以放出的水占水池的几分之几?(3)如果将两管同时打开,每小时的效果如何?如何列式?(4)对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?9.有一个水池,用两个水管注水。
一元一次方程应用题常见类型及等量关系

一元一次方程应用题常见类型及等量关系湖北翟升华搜集整理班级姓名一、和、差、倍、分问题此类题既可有示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。
二、等积变形问题等积变形是以形状改变而体积不变为前提。
常用等量关系为:原料体积=成品体积。
常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式:V=底面积×高=S·h=πr2h②长方体的体积:V=长×宽×高=abc三、行程问题基本量之间的关系:路程=速度×时间;时间=路程÷速度;速度=路程÷时间。
(1)相遇问题:①甲行距+乙行距=原距;②(甲速+乙速)×相遇时间=相遇距离。
(2)追及问题:①快行距-慢行距=原距;②(快速-慢速)×追及时间=追及距离。
(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度;逆水(风)速度=静水(风)速度-水流(风)速度;静水(风)速度=(顺水(风)速度+逆水(风)速度)÷2;水流(风)速度=(顺水(风)速度-逆水(风)速度)÷2。
抓住两码头间距离不变,水流速和船速(静水速)不变的特点考虑相等关系.(4)环形跑道上的相遇和追及问题:同地反向而行的等量关系是两人走的路程和等于一圈的路程;同地同向而行的等量关系是两人所走的路程差等于一圈的路程。
(5)车上(离)桥(隧道)问题:①车上桥指车头接触桥到车尾接触桥的一段过程,所走路程为一个车长;②车离桥指车头离开桥到车尾离开桥的一段路程。
所走的路程为一个车长;③车过桥指车头接触桥到车尾离开桥的一段路程,所走路程为:一个车长 +桥长;④车完全在桥上指车尾接触桥到车头离开桥的一段路程,所行路程为:桥长 - 一个车长。
四、工程问题基本数量关系:工作总量=工作效率×工作时间;合做的效率=各单独做的效率的和。
一元一次方程应用题归类汇集

一元一次方程应用题归类汇集一元一次方程应用题归类汇集一、行程问题一)追击和相遇问题1、已知某人步行速度为每小时8千米,公交车的速度为每小时40千米,从甲地到乙地,某人步行比乘公交车多用3.6小时,求甲地到乙地的距离是多少千米?2、某人从家里到学校的路程有多少千米?若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟。
3、甲每分钟跑320米,乙每分钟跑280米,在800米跑道上,两人同时同地同向起跑,多少分钟后两人相遇?4、一列客车长200m,一列货车长280m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,求两车每秒各行驶多少米?二)行船问题1、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
2、一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
二、工程问题1、一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,则乙共需要几天完成?2、某工程由甲、乙两队完成,甲队单独完成需16天,乙队单独完成需12天。
如先由甲队做4天,然后两队合做,问再做几天后可完成工程的六分之五?3、已知某水池有进水管与出水管一根,进水管工作15小时可以将空水池放满,出水管工作24小时可以将满池的水放完。
对于空的水池,如果进水管先打开2小时,再同时打开两管,问注满水池还需要多少时间?4、整理一批图书,由一个人做要40小时完成。
现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作。
假设这些人的工作效率相同,具体先安排多少人工作?三、比赛积分问题1、某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得分,选错倒扣1分。
一元一次方程应用题练习题

一元一次方程应用题练习题 篇一:一元一次方程应用题专题训练 一元一次方程应用题归类汇集 一般行程问题(相遇与追击问题) 1.行程问题中的三个基本量及其关系: 路程=速度×时间时间=路程÷速度速度=路程÷时间 2.行程问题基本类型 (1)相遇问题:快行距+慢行距=原距 (2)追及问题:快行距-慢行距=原距 1、从甲地到乙地,某人步行比乘公交车多用 3.6 小时,已知步行速度为每小时 8 千米, 公交车的速 度为每小时 40 千米,设甲、乙两地相距 x 千米,则列方程为。
2、某人从家里骑自行车到学校。
若每小时行 15 千米,可比预定时间早到 15 分钟;若每 小时行 9 千 米,可比预定时间晚到 15 分钟;求从家里到学校的路程有多少千米? 3、一列客车车长 200 米,一列货车车长 280 米,在平行的轨道上相向行驶,从两车头相 遇到两车 车尾完全离开经过 16 秒,已知客车与货车的速度之比是 3:2,问两车每秒各行驶多少 米? 4、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。
行人的速度是每小 时 3.6km, 骑自行车的人的速度是每小时 10.8km。
如果一列火车从他们背后开来,它通过行人的时 间是 22 秒, 通过骑自行车的人的时间是 26 秒。
⑴ 行人的速度为每秒多少米?⑵ 这列火车的 车长是多少米? 6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。
汽车速 度是 60 千 米/时,步行的速度是 5 千米/时,步行者比汽车提前 1 小时出发,这辆汽车到达目的地 后,再回头接步行的这部分人。
出发地到目的地的距离是 60 千米。
问:步行者在出发后经过 多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计) 7、某人计划骑车以每小时 12 千米的速度由 A 地到 B 地,这样便可在规定的时间到达 B 地,但他因 事将原计划的时间推迟了 20 分,便只好以每小时 15 千米的速度前进,结果比规定时间 早 4 分钟到达 B 地,求 A、B 两地间的距离。
一元一次方程应用题归类汇集(已整理)

一元一次方程应用题归类汇集(已整理)一元一次方程应用题归类汇集一、列方程解应用题的一般步骤(解题思路)(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系(找出等量关系).(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,表示出有关的含字母的式子,然后利用已找出的等量关系列出方程.(4)解——解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案.(注意带上单位)二、各类题型解法分析一元一次方程应用题归类汇集:行程问题,工程问题,和差倍分问题(生产、做工等各类问题),等积变形问题,调配问题,分配问题,配套问题,增长率问题,数字问题,方案设计与成本分析,古典数学,浓度问题等。
第一类、行程问题基本的数量关系:(1)路程=速度×时间⑵速度=路程÷时间⑶时间=路程÷速度要特别注意:路程、速度、时间的对应关系(即在某段路程上所对应的速度和时间各是多少)常用的等量关系:1、甲、乙二人相向相遇问题⑴甲走的路程+乙走的路程=总路程⑵二人所用的时间相等或有提前量2、甲、乙二人中,慢者所行路程或时间有提前量的同向追击问题⑴甲走的路程-乙走的路程=提前量⑵二人所用的时间相等或有提前量3、单人往返⑴各段路程和=总路程⑵各段时间和=总时间⑶匀速行驶时速度不变4、行船问题与飞机飞行问题⑴顺水速度=静水速度+水流速度⑵逆水速度=静水速度-水流速度5、考虑车长的过桥或通过山洞隧道问题将每辆车的车头或车尾看作一个人的行驶问题去分析,一切就一目了然。
6、时钟问题:⑴将时钟的时针、分针、秒针的尖端看作一个点来研究⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①时针的速度是0.5°/分②分针的速度是6°/分③秒针的速度是6°/秒一、一般行程问题(相遇与追击问题)利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.1.行程问题中的三个基本量及其关系:路程=速度×时间时间=路程÷速度速度=路程÷时间2.行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.即顺水逆水问题常用等量关系:顺水路程=逆水路程.常见的还有:相背而行;行船问题;环形跑道问题。
一元一次方程十大类应用题

《一元一次方程应用题》十大类应用培优训练一、等积变形问题1.将一个装满水的内部长、宽、高分别为 300 毫米,300 毫米和 80 毫米的长方体铁盒中的水,倒入一个内径为 200 毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精准到 0.1 毫米,3.14 ).≈二、数字问题2.有一个三位数,个位数字为百位数字的 2 倍,十位数字比百位数字大位与百位次序对换(个位变百位)所得的新数比原数的 2 倍少 49,求原数 .1,若将此数个三、商品收益问题(市场经济问题或收益赢亏问题)(1)销售问题中常出现的量有:进价 (或成本 )、售价、标价(或订价)、收益等。
(2)收益问题常用等量关系:商品收益=商品售价-商品进价=商品标价×折扣率-商品进价商品售价=商品标价×折扣率商品收益商品售价-商品进价商品收益率=商品进价×100%=商品进价×100%(3)商品销售额=商品销售价×商品销售量商品的销售收益=(销售价-成本价)× 销售量(4)商品打几折销售,就是按原标价的百分之几十销售,如商品打价的 80%销售.即商品售价 =商品标价×折扣率.8 折销售,即按原标3.某商铺开张为吸引顾客,所有商品一律按八折优惠销售,已知某种旅行鞋每双进价为60 元,八折销售后,商家所获收益率为40%。
问这类鞋的标价是多少元?优惠价是多少?四、行程问题——绘图剖析法1.行程问题基本种类(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距-慢行距=原距(3)航行问题:顺流(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度 =(顺流速度 -逆水速度)÷ 2抓住两码头间距离不变、水流速和船速(静不速)不变的特色考虑相等关系.即顺流逆水问题常用等量关系:顺流行程=逆水行程.4.一列火车匀速行驶,经过一条长300m的地道需要20s 的时间。
一元一次方程应用题归类练习题
一元一次方程 Juaney知识点讲授(1)重温一元一次方程解题步骤去分母——去括号——移项——合并同类项——系数化为1例1.(1) 22431-=-+x x (2) 3121x x =+-易错注意点:去分母时记得将分子部分看成一个整体进行括号。
(2)用一元一次方程求解实际问题a 、用列方程的方法解决实际问题的一般思路是分析数量关系,列出方程。
b 、列方程的实质就是用两种不同的方法来表示同一个量。
单位统一c 、列方程解应用题的一般步骤是设未知数,列方程,解方程,求出方程的解。
d 、实际问题中的数量关系比较隐蔽,关键是审题,弄清问题背景,分析清楚数量关系,特别是找出可以作为列方程依据的相等关系。
①路程= 时间 ⨯ 速度②工作总量= 工作效率 ⨯ 工作时间③顺水航速= 静水速度+水流速度 ,顺水航速= 静水速度—水流速度 。
④利润= 售出价—成本价 ,利润率= 利润/ 成本价⨯ 100%⑤如果一个两位数十位数字是a ,个位数字是b ,则这个两位数是: 10a+b题型归类:A 、行程问题B 、工程问题C.分配问题E、利润率问题F.利息问题G 等积变形问题:H 、方案题小结在小学,学生对应用题的学习还是比较久的,量也比较大,但是很多教师却没有对其题型进行统一分类,这样就导致很多需要记忆的东西,而学生一旦记不住就无法理解了。
怎样引导学生由记忆性思维转化为理解性思维,这是本次课所要解决的主要问题。
教师需要通过题型的分类来帮助学生梳理知识点,这样对于其他应用题也能游刃有余了。
课堂练习A、行程问题[解题指导](1)行程问题中的三个基本量及其关系:路程=速度×时间。
(2)基本类型有1)相遇问题;(V甲+V乙)T=S2)追及问题:第一种,同时不同地,第二种,同地不同时.(V快-V慢)T追及的时间=S追及的路程3)环道问题:第一种:相向而行(V甲+V乙)T=1圈第二种:同向而行(V快-V慢)T=1圈4)行船问题:V顺=V静+V水V逆=V水-V静2V水=V顺+V逆2V 静=V顺-V逆5)飞行问题:V顺=V静+V风V逆=V风-V静解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。
一元一次方程应用题专题分类汇总
一元一次方程应用题分类汇总一、和差倍分问题(生产、做工等各类问题):1.整理一批图书,由一个人做要40小时完成.现计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?2.小红经过调查发现,在班里的30名男生中,有25人喜欢打乒乓球,12人喜欢打篮球,有4人这两项活动都不喜欢,求同时喜欢这两项活动的学生有几人?3.某厂一车间有64人,二车间有56人.现因工作需要,要求第一车间人数是第二车间人数的一半.问需从第一车间调多少人到第二车间?4.某机械加工厂计划在规定期限内完成一批零件的生产任务,如果每天生产零件25个,那么到期将比原计划少生产100个;如果每天生产零件30个,那么到期将比原计划多生产80个,求原计划几天完成任务?5.我国某部边防军小分队成一列在野外行军,通讯员在队伍中,数了一下他前后的人数,发现前面人数是后面的两倍,他往前超了6位战士,发现前面的人数和后面的人数一样.(1)这列队伍一共有多少名战士?(2)这列队伍要过一座320米的大桥,为安全起见,相邻两个战士保持相同的一定间距,行军速度为5米/秒,从第一位战士刚上桥到全体通过大桥用了100秒时间,请问相邻两个战士间距离为多少米(不考虑战士身材的大小)?二、比赛积分问题:6.通辽市举办中学生足球比赛,规定胜一场得3分,平一场得1分.某中学足球队比赛11场,没有输过一场,共得27分.试问该队胜几场,平几场?7.某企业对应聘人员进行英语考试,试题由50道选择题组成,评分标准规定:每道题的答案选对得3分,不选得0分,选错倒扣1分.已知某人有5道题未作,得了103分,则这个人选错了几道题?三、利润与利润率问题:8.某件商品9折降价后每件商品售价为a元,则该商品每件原价为元.9.一家服装店将某种服装按成本提高40%后标价,又以八折优惠卖出,结果每件仍获利36元,这种服装每件的成本为.10.泗水华联超市某商品的销售价格每件900元,为了参加市场竞争,商店按售价的九折再让利40元销售,这时仍可获利10%,此商品的进价为.11.某商场出售某种文具,每件可盈利2元,为了支援贫困山区,现在按原售价的7折出售给一山区学校,结果每件盈利0.2元.问该文具每件的进货价是多少元?12.某商品的进价为300元,标价为400元,折价销售时的利润率为20%,求商品是按几折销售?四、行程问题:13.甲、乙两人在相距18千米的两地同时出发,相向而行,1小时48分相遇,如果甲比乙早出发40分钟,那么在乙出发1小时30分相遇,求甲、乙两人的速度.14.某人从家里骑自行车到学校.若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?15.甲乙两地相距240千米,从甲站开出一列慢车,速度为每小时80千米,从乙站开出一列快车,速度为每小时120千米.(1)若两车同时开出,背向而行,经过多长时间两车相距540千米.(2)若两车背向而行,甲车开出1小时后,乙车开出,乙车开出多长时间两车相距540千米.(3)若两车同时开出,同向而行(快车在后),经过多长时间快车可追上慢车.(4)若两车同时开出,同向而行(慢车在后),经过多长时间两车相距300千米.五、航行问题:16.一架飞机在两城之间飞行,风速为24千米/小时,顺风飞行需2小时50分,逆风飞行需要3小时.(1)求无风时飞机的飞行速度;(2)求两城之间的距离.17.某船从A地顺流而下到达B地,然后逆流返回,到达A、B两地之间的C地,一共航行了7小时,已知此船在静水中的速度为8千米/时,水流速度为2千米/时.A、C两地之间的路程为10千米,求A、B两地之间的路程.六、工程问题:18.一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?19.整理一批数据,由一人做需80小时完成,现先计划组织一批人做2小时,再增加5人做8小时,共完成这项工作的,若参与这项工作的每一个人工作效率相同,求先计划组织的一批人的人数.20.一项工程,如果由甲工程队单独做需要20天完成,乙工程队单独做需要12天完成.现在由甲队单独做4天,剩下的工程由甲、乙合作完成.(1)(列方程解答)剩下的部分合作还需要几天完成?(2)若该工程的总费用为240万元,根据实际完成情况,甲乙两工程队各得多少万元?21.在落实国家“精准扶贫”政策的过程中,政府为某村修建一条长为400米的公路,由甲、乙两个工程队负责施工.甲工程队独立施工2天后乙工程队加入,两工程队联合施工4天后,还剩70米的工程.已知甲工程队每天比乙工程队多施工5米,求甲,乙工程队每天各施工多少米?22.某工厂接到一批为地震灾区制作板房的任务,如果按原计划每天生产20套板房,到预定限期还有100套板房不能完成.若提高工作效率25%,到期将超额完成50套,问该工厂接到制作多少套板房的任务?预定的限期是多少天?七、销售问题:23.一水果店第一次购进400kg西瓜,由于天气炎热,很快卖完,该店马上又购进了800kg西瓜,进货价比第一次每千克少了0.5元,两次进货共花费4400元.(1)第一次购进的西瓜进价每千克多少元;(2)在销售过程中,两次购进的西瓜售价相同,由于西瓜是易坏水果,从购进到全部售完会有部分损耗.第一次购进的西瓜有4%的损耗,第二次购进的西瓜有6%的损耗,该水果店售完这些西瓜共获利3552元,则每千克西瓜的售价为多少元.八、年龄问题:24.甲比乙大15岁,五年前甲年龄是乙年龄的两倍,求乙现在的年龄.25.今年父亲的年龄是儿子年龄的4倍,5年后父亲的年龄是儿子年龄的3倍.问今年父亲、儿子各几岁?九、配套问题:26.某车间有技术工人56人,平均每天每人可加工甲种部件18个或乙种部件15个,2个甲种部件和3个乙种部件配成一套,问加工甲、乙两种部件各安排多少人才能使每天加工的两种部件刚好配套?并求出加工了多少套?27.某服装厂要生产某种型号的学生校服,已知3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,库内存这种布料600m,应如何分配布料做上衣和做裤子才能恰好配套?共能做多少套?十、分配问题:28.学校分配学生住宿,如果每室住8人,还少12个床位,如乘每室住9人,则空出两个房间,求房间的个数和学生的人数.29.某学校准备动用本校全部的旅游大巴组织七年级学生去春游,如果每辆汽车坐45人,则有28人没有上车;如果每辆车坐50人,则空出一辆汽车,并且有一辆车还可以坐12人,问七年级共有多少学生?学校共有多少辆旅游大巴?30.北京,上海两地的两个厂家同时生产同种型号的计算机,除本地使用外,北京可调运给外地10台,上海可调运给外地4台,现协议给武汉6台,重庆8台,每台的运费如下表所示,现有一种调运方案,预计的运费为7600元,这种调运方案中,北京,上海应分别调往武汉,重庆各多少台?武汉重庆北京400800上海300500十一、银行利率问题:31.李明存入银行一笔钱,整存整取3年,年利率2.5%,到期后共取出5375元,求李明存入了多少钱?十二、数字问题:32.一个两位数的十位数字和个位数字之和是7,如果这个两位数加上45,则恰好成为个位数字与十位数字对调之后组成的两位数.求这个两位数.33.一个三位数,十位数比个位数字大2,百位数是十位数字的2倍,如果把百位数字与个位数字对调,那么得到的三位数比原来的三位数小495.求原来的三位数.34.为了加强公民的节水意识,合理利用水资源,某市采用价格调控手段达到节水的目的.该市自来水收费价格见价目表.若某户居民1月份用水8m3,则应收水费:2×6+4×(8﹣6)=20元.(1)若该户居民2月份用水10m3,则应收水费元;(2)若该户居民3月份用水12.5m3,则应收水费元;(3)若该户居民6月份交水费60元,则该户居民6月份用水多少立方米?35.崇左市甲超市和乙超市在元旦节期间分别推出如下促销方式:甲超市乙超市全场商品一律优惠15%购物不超过200元,不优惠购物超过200元而不超过500元,一律八折购物超过500元,其中的500元优惠10%,超过的部分打七五折.已知两家超市相同的商品的标价都一样.(1)若小华同学一次性购物200元,请问小华同学到两家超市实际付款分别是多少?(2)当购物总额为多少时,小华同学到两家超市实际付款相同?(3)若小华在乙超市购物实际付款480元,则买同样的商品到甲超市实际付款多少元,他的选择划算吗?试说明理由.36.为了抗击新冠肺炎疫情,健民药店对消毒液和口罩开展优惠活动.消毒液每桶标价15元,口罩每包标价5元.现在药店有两种优惠方式:①按标价购买时,买一桶消毒液送一包口罩;②消毒液和口罩都按定价的80%付款.现在某单位要到该药店购买消毒液40桶,口罩x包(x>40).(1)该单位按优惠方式①购买需要付款元(用含x的式子表示);该单位按优惠方式②购买需要付款元(用含x的式子表示).(2)试求当x取何值时,方式①和方式②的购买费用一样.(3)当x=200时,通过计算说明按哪个优惠方式购买最合适.37.已知甲、乙两个单位共110人到某公园游玩.公园门票的价格规定如下:人数(人)1﹣5051﹣100100以上门票价(元/人)12108(1)当两个单位人数相同时,你认为这两个单位分开购票合算还是合起来购票合算为什么?(2)当甲单位不足50人时,如果两个单位分开购票,那么两单位共需要付款1190元.求甲、乙单位各有多少人?参考答案与试题解析1.【解答】解:设应先安排x人工作,根据题意得:+=1化简可得:+=1,即:x+2(x+2)=10解可得:x=2答:应先安排2人工作.2.【解答】解:设同时喜欢这两项活动的学生有x人,则有:(25﹣x)+(12﹣x)+x+4=30,解得:x=11.答:同时喜欢这两项活动的学生有11人.3.【解答】解:设需从第一车间调x人到第二车间,根据题意得:2(64﹣x)=56+x,解得x=24;答:需从第一车间调24人到第二车间.4.【解答】解:设原计划x天完成任务,由题意得25x+100=30x﹣80,解得x=36,答:原计划36天完成任务.5.【解答】解:(1)设这支队伍有x人,根据题意得:+6=2(﹣6),解得:x=37.…(3分)(2)设相邻两个战士间距离为y米队伍全部通过所经过的路程为(320+36y)米,∴=100解得:y=5答:(1)这列队伍一共有37名战士(2)相邻两个战士间距离为5米.6.【解答】解:设该队胜x场,平y场.根据题意可得,,解得.答:该队胜8场,平3场.7.【解答】解:设这个人选错了x道题,根据题意得3(50﹣x﹣5)﹣x=103,解得x=8.答:这个人选错了8道题.8.【解答】解:a÷0.9=a元.故答案为:a.9.【解答】解:设这种服装每件的成本价是x元,由题意得:(1+40%)x×80%=x+36,解得:x=300,故答案为:300元.10.【解答】解:设此商品的进价是x元,由题意得,900×0.9﹣40=(1+10%)x,解得x=700.答:此商品的进价为700元.故答案为:700元.11.【解答】解:设该文具每件的进货价是x元,依题意得:70%•(x+2)﹣x=0.2解得:x=4答:该文具每件的进货价为4元.12.【解答】解:设商品是按x折销售.则解得:x=9.答:商品是按9折销售.13.【解答】解:1小时48分=小时=小时40分钟=小时=小时1小时30分=小时=小时设甲的速度是x千米/时,乙的速度是y千米/时,根据题意列出方程组,得解得所以,甲的速度是4.5千米/时,乙的速度是5.5千米/时.14.【解答】解:设从家里到学校的路程为x千米,根据题意得:+=﹣,解得:x=.答:从家里到学校的路程为千米.15.【解答】解:(1)设经过x小时两车相距540千米,由题意得:80x+120x=540﹣240,解得:x=.答:经过小时两车相距540千米;(2)设乙车开出x小时两车相距540千米.80(x+1)+120x=540﹣240,解得:x=.答:乙车开出小时两车相距540千米;(3)设经过x小时快车可追上慢车:由题意得:120x﹣80x=240,解得:x=6.答:经过6小时快车可追上慢车;(4)设经过x小时,两车相距300千米.由题意得;120x﹣80x=300﹣240.解得:x=.答:经过小时两车相距300千米.16.【解答】解:(1)设无风时飞机的速度为x千米每小时,两城之间的距离为S千米.则顺风飞行时的速度v1=x+24,逆风飞行的速度v2=x﹣24顺风飞行时:S=v1t1逆风飞行时:S=v2t2即S=(x+24)×=(x﹣24)×3解得x=840,答:无风时飞机的飞行速度为840千米每小时.(2)两城之间的距离S=(x﹣24)×3=2448千米答:两城之间的距离为2448千米.17.【解答】解:设A、B两地之间的路程为x千米,则B、C两地之间的路程为(x﹣10)千米,依题意,得:+=7,解得:x=.答:A、B两地之间的路程为千米.18.【解答】解:设还需要x天完成,根据题意得:+=1,解得:x=5.答:还需要5天完成.19.【解答】解:设应先安排x人工作,根据题意得:×2+×8=,解得:x=2.答:先计划组织的一批人的人数为2人.20.【解答】解:(1)设剩下的部分合作还需要x天完成.根据题意得:,解得:x=6,则剩下的部分合作需要6天完成;(2)甲完成的工作量为,则甲乙完成的工作量都是,所以报酬应相同,均为120万元.21.【解答】解:设乙工程队每天施工x米,则甲工程队每天施工(x+5)米,依题意得:(2+4)(x+5)+4x=400﹣70,解得:x=30,∴x+5=30+5=35.答:甲工程队每天施工35米,乙工程队每天施工30米.22.【解答】解:设预定的限期是x天,根据题意可得:20x+100=20(1+25%)x﹣50,解得:x=30,则20x+100=600+100=700.答:该工厂接到制作700套板房的任务,预定的限期是30天.23.【解答】解:(1)设第一次购进西瓜的进价为每千克x元,则第二次购进西瓜的进价为每千克(x ﹣0.5)元,依题意得:400x+800(x﹣0.5)=4400,解得:x=4.答:第一次购进西瓜的进价为每千克4元.(2)设每千克西瓜的售价为y元,依题意得:400×(1﹣4%)y+800×(1﹣6%)y﹣4400=3552,解得:y=7.答:每千克西瓜的售价为7元.24.【解答】解:设乙现在的年龄是x岁,则乙五年前的年龄是(x﹣5)岁,甲五年前的年龄是(x+15﹣5)岁,依题意得:x+15﹣5=2(x﹣5),解得:x=20.答:乙现在的年龄是20岁.25.【解答】解:设今年儿子的年龄是x岁,则父亲今年的年龄是4x岁,那么5年后儿子的年龄是(x+5)岁,父亲的年龄是(4x+5)岁,由题意得(x+5)×3=4x+5,解得x=10,4x=4×10=40(岁);答:今年父亲的年龄是40岁,儿子的年龄是10岁.26.【解答】解:设安排x人加工甲部件,则安排(56﹣x)人加工乙部件,依题意得:.解得x=20.乙:56﹣20=36(人).则加工(套).答:安排20人加工甲部件,安排36人加工乙部件,一共加工了180套.27.【解答】解:设做上衣的布料用xm,则做裤子的布料用(600﹣x)m,由题意得出:×2=×3,解得:x=360,600﹣x=240(m).答:做上衣的布料用360m,做裤子的布料用240m,才能恰好配套,共能做240套.28.【解答】解:设房间有x个,根据题意得8x+12=9(x﹣2),解得x=30.8×30+12=252(人).答:房间有30个,学生有252人.29.【解答】解:设有x辆汽车,由题意得:45x+28=50(x﹣1)﹣12,解得:x=18,45×18+28=838(人).答:共有18辆汽车,838个学生.30.【解答】解:设北京往武汉运x台,则北京往重庆调(10﹣x)台,上海往武汉调(6﹣x)台,上海往重庆调(x﹣2)台.则400x+800(10﹣x)+300(6﹣x)+500(x﹣2)=7600解得:x=6∴10﹣x=4,(6﹣x)=0,(x﹣2)=4答:从北京调往武汉6台,调往重庆4台;从上海调往武汉0台,调往重庆4台.31.【解答】解:设李明存入x元,则x+x×2.5%×3=5375,解得x=5000,答:李明存入5000元.32.【解答】解:设这个两位数的十位数字为x,则个位数字为7﹣x,由题意列方程得,10x+7﹣x+45=10(7﹣x)+x,解得x=1,∴7﹣x=7﹣1=6,∴这个两位数为16.33.【解答】解:由题意可得:设个位数为x,则十位数是x+2,百位数是2(x+2),则这个三位数是:100×2(x+2)+10(x+2)+x,新的三位数为:[100x+10(x+2)+2(x+2)],故100×2(x+2)+10(x+2)+x﹣[100x+10(x+2)+2(x+2)]=495,解得:x=1,故2×(1+2)=6,1+2=3,答:原来的三位数是:631.34.【解答】解:(1)若该户居2月份用水10m3,则应收水费:2×6+4×(10﹣6)=28(元);(2)若该户居民3月份用水,则应收水费:2×6+4×4+8×(12.5﹣10)=48(元);(3)设6月份用水x m3,12+16+8(x﹣10)=60,解得x=14.答:该户居民6月份用水14立方米.35.【解答】解:(1)甲超市:200×(1﹣15%)=170(元),乙超市:200元,所以小华到甲超市实际付款170元,到乙超市实际付款200元;(2)由题意知,x>500设购物总额为x元,当两家超市实际付款相同,则有(1﹣15%)x=500×(1﹣10%)+75% (x﹣500),解得x=750,答:当购物总额750元时,小华同学到两家超市实际付款相同.(3)他的选择不划算,理由:小华在乙超市购物实际付款480元,∵500×0.8=400<480,∴该顾客在乙超市购物实际总数多于500元,设在乙超市购物总额为y元,则有500×(1﹣10%)+75% (y﹣500)=480,解得y=540,甲超市:540×85%=459,459<480,他的选择不划算,在甲超市购物较划算.36.【解答】解:(1)方案①需付费为:40×15+5(x﹣40)=(5x+400)元;方案②需付费为:(40×15+5x)×0.8=(4x+480)元;故答案为:(5x+400),(4x+480);(2)由题意得,5x+400=4x+480,解得:x=80,答:当x=80时,方案①和方案②的购买费用一样.(3)当x=200时,方案①需付款为:5x+400=5×200+400=1400(元),方案②需付款为:4x+480=4×200+480=1280(元),∵1400>1280,∴选择方案②购买较为合算.37.【解答】解:(1)两个单位合起来购票合算.当两个单位人数相同时,两个单位各有55人.如果两单位分开购票,那么每一个单位需付款55×10=550元,两单位共需付款1100元.如果两单位合起来购票,那么两单位共需付款110×8=880元.显然两个单位合起来购票合算;(2)当甲单位不足50人时,乙单位的人数必定超过50.设甲单位人数为x,则乙单位人数为(110﹣x),①甲单位不足50人,乙单位人数在51﹣100时,由题意得:12x+10(110﹣x)=1190,解得:x=45,此时,(110﹣x)=65;②甲单位不足50人,乙单位人数100以上时由题意得12x+8(110﹣x)=1190,解得:x=,不合题意.所以,甲单位有45人,乙单位有65人.。
六年级上:4.3一元一次方程的应用(五)
(2)若已知通讯员用了25分钟,则队长为多少米?
变式练习:
2.一轮船在甲、乙两码头之间航行,顺水航行需 要4小时,逆水航行需要5小时,水流的速度为2 千米/时,
求:甲、乙两码头之间的距离。
航行问题:
顺水(风)速度=静水(风)速度+水流 (风)速度
(1)爸爸追上小明用了多长时间?
(2)追上小明时,距离学校还有多远? 如果小明的爸爸以120m/min的速度去追小明(其 它条件不变),那么小明的爸爸能够在途中追上 小明吗?
点拨:
在相遇问题中,等量关系一般为:双方 所走的路程之和=总路程;在追及问题中,等 量关系一般为:两者的行程之差=开始时两者 之间的距离。
6、练——勤加练习,熟能生巧。触类 旁通,举一反三。
布置作业 巩固所学
• 课后145页随堂练习题 • 配套4.11
逆水(风)速度=静水(风)速度-水 流(风)速度
注意:抓住两地间距离不变,水流速和船速(静
水速)不变的特点考虑相等关系。
常见的还有:相背而行;环形跑道问题。
【解题思路】
1、审——读懂题意,找出等量关系。 2、设——巧设未知数。 3、列——根据等量关系列方程。 4、解——解方程,求未知数的值。 5、答——检验,写答案(注意写清单 位和答话)。
分析:在这个问题中,当爸爸追上小明时,两人所 行的路程相等,在解决这个问题时画出线段图关
家
学校 系就清楚啦
变式练习:
1.一队学生去军事训练,走到半路,队长有事要 从队头通知到队尾,通讯员以18米/分的速度从 队头至队尾又返回,已知队伍的行进速度为14米 /分。
4.3一元一次方程的应用(五)
行程问题
一元一次方程应用题
六年级一元一次方程应用题分类题型1.和、差、倍、分问题例1 小明做了一个实验,把黄豆育成豆芽后,重量可以增加7.5倍,如果小明想要得到3400千克黄豆芽,需要多少千克的黄豆2.盈亏问题例2 用化肥若干千克给一块麦田追肥,每公顷6kg还差17 kg;每公顷5kg就余下3kg.问这块麦田有多少公顷?共有化肥多少千克?3.劳力调配问题例3 在甲处劳动的有52人,在乙处劳动的有23人,现从甲、乙两地共调12人到丙处劳动,使在甲处劳动的人数是在乙处劳动人数的2倍,求应该从甲、乙两处各调走多少人?4.产品配套问题例4星光服装厂接受生产一些某种型号的学生服装的订单,已知每3m长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750 m长的这种布料生产学生服。
应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套5.比赛积分问题例5 在一次有12队参加的足球循环赛(每两个队之间赛且只赛一场),规定胜一场计3分,平一场计1分,负一场计0分,某队在这次循环赛中胜场比负场多2场,结果共积18分,问该对战平机场?6.容积(体积)问题例6 一个容器装47 L水,另一个容器装58 L水。
如果将第二个容器的水倒满第一个容器,那么第二个容器剩下的水相当于这个容器容量的一半;如果将第一个容器的水倒满第二个容器,那么第一个容器的水相当于这个容器容积的1/3,求这两个容器的容量各是多少?基础达标演练l.一桶油连桶重8 kg,油用去一半后连桶重4.5 kg,则桶中原有油多少?2.在甲处工作的有272人,在乙处工作的有196人,如果乙处工作人数是甲处工作人数的1/3,应从乙处调多少人到甲处?3.某课外兴趣小组的女生占全组人数的1/3,再加人6名女生后,女生人数就占原来的一半,问此课外兴趣小组原有多少人?4.甲、乙两仓共有大米50 t,从甲仓取出1/10,从乙仓取出2/5,则两仓所剩大米相等。
则甲仓原有大米多少t?5.甲、乙两人各有钱若干元,若甲给乙5元,则甲、乙两人的钱数相等;若乙给甲40元.则甲的钱数是乙剩下的4倍,甲原有的钱数多少?6.41人参加运土劳动,有30根扁担,要安排多少人抬、多少人挑,可使扁担和人数相配不多不少?7.某旅行团外出旅行,如果每辆汽车坐45人,那么有10人没有座位;如果每辆汽车坐60人,那么空出一辆车,求有多少辆汽车?8.某工地调来72人挖土和运土,已知3人挖的土1人恰好能全部运走,怎样调配劳动力才能使挖出来的土能够及时运走且不窝工.9.用绳量井深,三折而量,绳长比井深多2 m,四折而量,绳长比井深少1 m,求绳子长?井深?10.有两根绳子,第一根长110m,第二根绳长80m,两根绳子剪去相同的长度后,第一根绳子的长度是第二根绳子的3倍,求每根绳子剪掉多少米?11.一辆翻斗车向工地运送一堆石子,第一天运了这对石子的1/3还多2吨,第二天运了剩下的1/2少1吨,这时还剩下38吨石子没运完,这对石子原有多少吨?12.某企业原来管理人员与营销人数之比为3:2,总人数为180人,为了扩大市场,从管理人员中抽调多少人参加营销工作,就能使营销人员人数是管理人员人数的2倍?13.把一些图书分给某班学生阅读,如果每人分3本,则余20本;如果每人分4本,则还缺25本,这个班有多少学生?14.甲、乙、丙三队合修一条公路,计划出280人,如果甲队人数是乙队人数的一半,丙队人数是乙队的2倍,问三队各有多少人?15.某车间有60名工人,生产一种螺栓和螺帽,平均每人每小时能生产螺栓15个或螺帽10个,应分配多少人生产螺栓,多少人生产螺帽,才能使生产的螺栓和螺帽配套?(每个螺栓配两个螺帽)16.爷爷与孙子下棋,爷爷赢1盘记1分,孙子赢1盘记3分,下了8盘后两人得分相等,他们各赢了多少盘?17.某校七年级选出男生的和12名女生参加数学竞赛,余下的男生人数恰好是所余下的女生人数的2倍.已知该年级共有学生156人,问男生、女生各有多少人?18.甲工厂有某种原料120t,乙工厂有同样原料96t,甲厂每天用原料15t,乙厂每天用原料90 t,问多少天后,两厂剩下的原料相等?19.有桔子、梨、苹果三种水果若干,梨的个数是桔子个数的4/5,苹果个数是桔子个数的2/3,梨的个数比苹果多2个,问筐内三种水果共有多少个?20.某沿海发达镇2006年的人均收人是16000元,比2004年的人均收入翻两番还多2000元,该镇2004年人均收人多少元?21.李大爷到商店购鞋,仅知道自己的老尺码是43码,而不知道自己应穿多大的新鞋号,他记得老尺码加上一个数后折半计算即为新鞋号,由于他儿子鞋号的新老尺码都是整数且容易记住,因而他知道儿子穿鞋的老尺码是40号,新鞋号是25号,现在请你帮助李大爷计算一下他的新鞋号是多少?22.某种中药含有甲、乙、丙、丁四种草药成分,这四种成分的质量比为0.7:1:2:4.7,现要配制这种中药2100 g,四种草药分别要多少克?23.阅读下列材料,并交流体会.诗仙李白本性嗜酒,豪放、旷达,向有斗酒诗百篇的美誉,为唐代‘饮中八仙’之一,民间流传李白买酒歌谣,是一道有趣的数学问题:李白街上走,提壶去买酒;遇店加一倍,见花喝一斗;三遇店和花,喝完壶中酒,试问壶中原有多少酒?24.小明和小颍同学在课多外学习中,用20张白卡纸做包装盒,,每张白卡纸可以做盒身2个或者做盒底盖3个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
一元一次方程应用题专练
一 年龄问题
1.小亮今年11岁,爸爸今年39岁,多少年后爸爸的年龄是小亮年龄的3倍?
2.小贝今年3岁,她与她妈妈年龄的1/10的和的一半恰好就是小贝的年龄,小贝的妈妈今年多少岁?
二 变化中的不变量
1.用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱型零件,问需要截取多长的圆钢?
三价格问题
1.某品牌衬衣的标价为132元,在一次促销活动中以9折出售,仍可获利10%,这种衬衣的进价是多少元?
2.某商店将每台彩电先按进价提高40%标出售价,然后将之以8折的优惠出售,结果每台赚了300元,则每台彩电
的进价是多少元?
四 涉及两个未知量
1.六年级2班学生来参加公益活动,原来每组8人,后来根据需要重新编组,每组14人,这样比原来减少了3组,
这各班有学生多少人?
2.食品加工厂收购了一批质量为10000kg的山货,进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工
的质量3倍还多2000kg,求粗加工的该种山货质量。
2
五 行程问题
1.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传
给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,问通讯员用多少时间可以追上学生队伍?
2.甲乙两人骑自行车,同时从相距45km的两地相向而行,2小时后相遇,已知甲比乙每小时多走2.5km,求两人每
小时各走多少km?
六 利息问题
公式:1.利率=
2.利息=
3.本息和=
1.假定一年期定期储存年利率为2.25%,已知某储户有一笔一年期定期储蓄,到期后得利562.5元,问该储户存入
多少本金?
2.某公司存入银行甲乙两种不同性质的存款共20万元,甲种存款的年利率为1.4%,乙种存款的年利率为3.7%,该
公司一年共得利息6250元,甲乙两种存款各多少元?