【精编】2015-2016年山东省日照市五莲县九年级(上)数学期中试卷和参考答案

合集下载

【精品】2015-2016年山东省日照市五莲县八年级(上)期中数学试卷带答案

【精品】2015-2016年山东省日照市五莲县八年级(上)期中数学试卷带答案

2015-2016学年山东省日照市五莲县八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分40分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.(3分)小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm3.(3分)点P(a﹣5,a﹣2)与点A(﹣4,a2)关于x轴对称,则P的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(﹣4,﹣1)4.(3分)已知一个多边形的内角和等于它的外角和的3倍,那么它的边数是()A.5 B.6 C.7 D.85.(3分)若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对6.(3分)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为()A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=17.(3分)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°8.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF9.(4分)如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5 B.4 C.3 D.210.(4分)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD 11.(4分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对12.(4分)如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点.有下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;=S梯形ABCD;④S△ADM⑤M到AD的距离等于BC的一半.其中正确的结论有()A.2个 B.3个 C.4个 D.5个二、填空题(共4小题,每小题4分,满分16分)13.(4分)如图,直线a∥b,∠1=50°,∠2=30°,则∠3=.14.(4分)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD ≌△COB,你补充的条件是.15.(4分)如图是标准跷跷板的示意图.横板AB的中点过支撑点O,且绕点O 只能上下转动.如果∠OCA=90°,∠CAO=25°,则小孩玩耍时,跷跷板可以转动的最大角度为.16.(4分)如图,等边△DEF的顶点分别在等边△ABC各边上,且DE⊥BC于E,若AB=1,则DB=.三、解答题(共6小题,满分64分)17.(10分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.18.(10分)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.19.(10分)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点△A1,B1,C1的坐标(直接写答案):A1;B1;C1;(3)△A1B1C1的面积为;(4)在y轴上画出点P,使PB+PC最小.20.(10分)如图,在一个风筝ABCD中,AB=AD,BC=DC,分别在AB、AD的中点E、F处挂两根彩线EC、FC.求证:EC=FC.21.(12分)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.22.(12分)如图①,已知等腰直角△ABC中,BD为斜边上的中线,E为DC上的一点,且AG⊥BE于G,AG交BD于F.(1)求证:AF=BE;(2)如图②,若点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明.2015-2016学年山东省日照市五莲县八年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分40分)1.(3分)下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选:D.2.(3分)小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为()的木条.A.5cm B.3cm C.17cm D.12cm【解答】解:对A,∵4+5=9,不符合三角形两边之和大于第三边,故错误;对B,∵4+3<9,不符合三角形两边之和大于第三边,故错误;对C,∵4+9<17,不符合三角形两边之和大于第三边,故错误;对D,∵4+9>12,12﹣9<4,符合两边之和大于第三边,三角形的两边差小于第三边,故正确;故选:D.3.(3分)点P(a﹣5,a﹣2)与点A(﹣4,a2)关于x轴对称,则P的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(﹣4,﹣1)【解答】解:∵点P(a﹣5,a﹣2)与点A(﹣4,a2)关于x轴对称,∴a﹣5=﹣4,a﹣2=﹣a2,解得:a=1,则P(﹣4,﹣1).故选:D.4.(3分)已知一个多边形的内角和等于它的外角和的3倍,那么它的边数是()A.5 B.6 C.7 D.8【解答】解:∵多边形的内角和等于它的外角和的3倍,∴多边形的内角和=360°×3.设多边形的边数为n,根据题意得:(n﹣2)×180°=360°×3.解得n=8.故选:D.5.(3分)若等腰三角形的周长为26cm,一边为11cm,则腰长为()A.11cm B.7.5cm C.11cm或7.5cm D.以上都不对【解答】解:①11cm是腰长时,腰长为11cm,②11cm是底边时,腰长=(26﹣11)=7.5cm,所以,腰长是11cm或7.5cm.故选:C.6.(3分)如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C.若点C的坐标为(m﹣1,2n),则m与n的关系为()A.m+2n=1 B.m﹣2n=1 C.2n﹣m=1 D.n﹣2m=1【解答】解:∵OA=OB;分别以点A、B为圆心,以大于AB长为半径作弧,两弧交于点C,∴C点在∠BOA的角平分线上,∴C点到横纵坐标轴距离相等,进而得出,m﹣1=2n,即m﹣2n=1.故选:B.7.(3分)如图,将一块三角板的直角顶点放在直尺的一边上,当∠2=38°时,∠1=()A.52°B.38°C.42°D.60°【解答】解:如图:∵AB∥CD,∠2=38°,∴∠3=∠2=38°,∵∠1+∠3=90°,∴∠1=52°,故选:A.8.(3分)如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选:B.9.(4分)如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB,若AE=8,则DF等于()A.5 B.4 C.3 D.2【解答】解:如图,∵∠DAE=∠ADE=15°,∴∠DEG=∠DAE+∠ADE=15°+15°=30°,DE=AE=8,过D作DG⊥AC于G,则DG=DE=×8=4,∵DE∥AB,∴∠BAD=∠ADE,∴∠BAD=∠CAD,∵DF⊥AB,DG⊥AC,∴DF=DG=4.故选:B.10.(4分)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD 【解答】解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、在△AOC和△BOD中,,∴△AOC≌△BOD,∴∠CAO=∠DBO,∴a∥b(内错角相等,两直线平行),故正确.故选:C.11.(4分)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对【解答】解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选:D.12.(4分)如图,在四边形ABCD中,∠B=∠C=90°,∠DAB与∠ADC的平分线相交于BC边上的M点.有下列结论:①∠AMD=90°;②M为BC的中点;③AB+CD=AD;④S=S梯形ABCD;△ADM⑤M到AD的距离等于BC的一半.其中正确的结论有()A.2个 B.3个 C.4个 D.5个【解答】解:过M作ME⊥AD于E,∵∠DAB与∠ADC的平分线相交于BC边上的M点,∴∠MDE=∠CDA,∠MAD=∠BAD,∵DC∥AB,∴∠CDA+∠BAD=180°,∴∠MDA+∠MAD=(∠CDA+∠BAD)=×180°=90°,∴∠AMD=180°﹣90°=90°,∴①正确;∵DM平分∠CDE,∠C=90°(MC⊥DC),ME⊥DA,∴MC=ME,同理ME=MB,∴MC=MB=ME=BC,∴②正确;∴M到AD的距离等于BC的一半,∴⑤正确;∵由勾股定理得:DC2=MD2﹣MC2,DE2=MD2﹣ME2,又∵ME=MC,MD=MD,∴DC=DE,同理AB=AE,∴AD=AE+DE=AB+DC,∴③正确;∵在△DEM和△DCM中,∴△DEM≌△DCM(SSS),=S三角形DCM∴S三角形DEM=S三角形ABM,同理S三角形AEM=S梯形ABCD,∴④正确;∴S三角形AMD故选:D.二、填空题(共4小题,每小题4分,满分16分)13.(4分)如图,直线a∥b,∠1=50°,∠2=30°,则∠3=20°.【解答】解:如图:∵a∥b,∴∠4=∠1=50°.由三角形的外角的性质可知:∠4=∠2+∠3,∴∠3=∠4﹣∠2=50°﹣30°=20°.故答案为:20°.14.(4分)如图,AB、CD相交于点O,AD=CB,请你补充一个条件,使得△AOD ≌△COB,你补充的条件是∠A=∠C或∠ADO=∠CBO.【解答】解:添加条件可以是:∠A=∠C或∠ADC=∠ABC.∵添加∠A=∠C根据AAS判定△AOD≌△COB,添加∠ADC=∠ABC根据ASA判定△AOD≌△COB,故填空答案:∠A=∠C或∠ADC=∠ABC.15.(4分)如图是标准跷跷板的示意图.横板AB的中点过支撑点O,且绕点O 只能上下转动.如果∠OCA=90°,∠CAO=25°,则小孩玩耍时,跷跷板可以转动的最大角度为50°.【解答】解:∵OA=OB′,∠OCA=90°,∴∠OAC=∠OB′C=25°,∴∠A′OA=∠OAC+∠OB′C=2∠OAC=50°.答案为50°.16.(4分)如图,等边△DEF的顶点分别在等边△ABC各边上,且DE⊥BC于E,若AB=1,则DB=.【解答】解:∵∠DEB=90°∴∠BDE=90°﹣60°=30°∴∠ADF=180﹣30°﹣60°=90°同理∠EFC=90°又∵∠A=∠B=∠C,DE=DF=EF∴△BED≌△ADF≌△CFE∴AD=BE,由勾股定理得:∵BE=∵AB=BD+AD=BD+BE=BD+=1∴BD=.三、解答题(共6小题,满分64分)17.(10分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC=60°,∠BCE=40°,求∠ADB的度数.【解答】解:∵AD是△ABC的角平分线,∠BAC=60°,∴∠DAC=∠BAD=30°,∵CE是△ABC的高,∠BCE=40°,∴∠B=50°,∴∠ADB=180°﹣∠B﹣∠BAD=180°﹣30°﹣50°=100°.18.(10分)已知:如图,AB∥CD,E是AB的中点,CE=DE.求证:(1)∠AEC=∠BED;(2)AC=BD.【解答】证明:(1)∵AB∥CD,∴∠AEC=∠ECD,∠BED=∠EDC,∵CE=DE,∴∠ECD=∠EDC,∴∠AEC=∠BED;(2)∵E是AB的中点,∴AE=BE,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD.19.(10分)如图,在平面直角坐标系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点△A1,B1,C1的坐标(直接写答案):A1(3,2);B1(4,﹣3);C1(1,﹣1);(3)△A1B1C1的面积为 6.5;(4)在y轴上画出点P,使PB+PC最小.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)A1(3,2);B1(4,﹣3);C1(1,﹣1);故答案为:(3,2);(4,﹣3);(1,﹣1);(3)△A1B1C1的面积为:3×5﹣×2×3﹣×1×5﹣×2×3=6.5;(4)如图所示:P点即为所求.20.(10分)如图,在一个风筝ABCD中,AB=AD,BC=DC,分别在AB、AD的中点E、F处挂两根彩线EC、FC.求证:EC=FC.【解答】证明:如图,连结AC.在△ABC与△ADC中,,∴△ABC≌△ADC(SSS),∴∠EAC=∠FAC.∵E、F分别是AB、AD的中点,∴AE=AB,AF=AD,∵AB=AD,∴AE=AF.在△AEC与△AFC中,,∴△AEC≌△AFC(SAS),∴EC=FC.21.(12分)如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F.(1)求证:AD=CE;(2)求∠DFC的度数.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.又∵AE=BD,∴△AEC≌△BDA(SAS).∴AD=CE;(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.22.(12分)如图①,已知等腰直角△ABC中,BD为斜边上的中线,E为DC上的一点,且AG⊥BE于G,AG交BD于F.(1)求证:AF=BE;(2)如图②,若点E在DC的延长线上,其它条件不变,①的结论还能成立吗?若不能,请说明理由;若能,请予以证明.【解答】证明:(1)∵△ABC是等腰三角形,BD为斜边上的中线,∴BD=AD=AC,∠ADB=90°,∴∠1+∠GAD=90°,∵AG⊥BE于G,∴∠2+∠DBE=90°,∵∠1=∠2,∴∠DAF=∠DBE,在△AFD和△BED中,,∴△AFD≌△BED(ASA),∴AF=BE;(2)①的结论还能成立;∵△ABC是等腰三角形,BD为斜边上的中线,∴BD=AD=AC,∠ADB=90°,∴∠DBE+∠DEB=90°,∵AG⊥BE于G,∴∠GBF+∠F=90°,∵∠DBE=∠GBF,∴∠F=∠DEB,在△AFD和△BED中,,∴△AFD≌△BED(AAS),∴AF=BE;。

(完整word版)2015-2016学年度上学期期末质量检测九年级数学试卷

(完整word版)2015-2016学年度上学期期末质量检测九年级数学试卷

2015-2016学年度上学期期末质量检测九年级数学试卷说 明:1.本卷共六大题,全卷共 24题,满分120分,考试时间为120分钟2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答, 否则不给分c +d b c B . cCD.—221.下列各数中,为有理数的是( ▲ )A . nB . \ 3C.3.14D .—、32.已知5个正数a , b , c , d , e ,且 a v b v c v dv e ,则新一组数据 的中位数是(▲)、选择题(本大题共 6小题,每小题3分,共18分)每题只有一个正确的选项0,a ,b , c , d ,e3.某几何体的主视图和左视图完全一样如图所示, 则该几何体的俯视图不可能是(▲)A .4.关于x 的一元 A . 1Z I C.次不等式 x — b v 0恰有两个正整数解,则 B . 2.5C. 2D. 5.如图,△ ABC 中, BD=5, DC=2,AE 交BC 于点D ,DE 的长等于(▲AD=3,10 3b 的值可能是(3.56. 如图是二次函数 ①二次三项式 ax ③ 一元二次方程④ 使y<3成立的x 的取值范围是x 淘. 2y 二ax bx c 的图象,下列结论:2■ bx ' c 的最大值为 4 :②4a + 2b + c v 0;2ax bx 1的两根之和为一2;其中正确的个数有( A . 1 个 B▲) .2个 C8个小题,每小题.3个 D . 4个 3分,共24分) 8•点A (m,m - 3)在第一象限,则实数m 的取值范围为 ____ ▲9.已知:二均为锐角,且sin 。

-1 2(tan -1)^0,则: 二 ▲:B.O D. ▲)10.如图,直线a // b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于I,若/仁58°则/ 2= ▲;11. 从—1, 0, 2,这三个数中,任取两个数分别作为系数a, b代入ax2•bx::;,2 = 0中.在所有可能的结果中,任取一个方程为有实数解的一元二次方程的概率是▲; 12. 如图在平面直角坐标系中,点A在抛物线y = x2 - 4x • 6上运动.过点A作AC丄x轴于点C,以AC为对角线作矩形ABCD,则对角线BD的最小值为▲;613. 如图,已知点A在双曲线y 上,过点A作AC丄x轴于点C, OC=3,线段0A的x垂直平分线交0C于点8,则厶ABC的周长为▲;14. 菱形ABCD的对角线AC=6 cm,BD=4 cm,以AC为边作正方形ACEF,贝U BF长为三、解答题(本大题共4小题,每小题各6分,共24分)15.计算:(—73 $ +(J2015 — J2016 X J2016 + J2015 )—2誓—tan”45.16. ( 1)如图,六边形ABCDEF满足:AB£EF,AF丄CD.仅用无刻度的直尺画出一条直线I,使得直线l能将六边形ABCDEF的面积给平分;(2)假设你所画的这条直线l与六边形ABCDEF的AF边与CD边(或所在的直线)分别交于点G与点H,则下列结论:①直线I还能平分六边形ABCDEF的周长;②点G与点H恰为AF边与CD边中点;③AG=CH ,FG=DH ;④AG=DH,FG=CH .其中,正确命题的序号为▲.217.已知关于x的一元二次方程x -(k-2)x,2k=0 .(1 )若x=1是这个方程的一个根,求k的值和它的另一根;2(2)当k=—1时,求X j -3X2的值.18.在不透明的袋子中有四张标着数字1, 2, 3,4的卡片,这些卡片除数字外都相同•甲同学按照一定的规则抽出两张卡片,并把卡片上的数字相加•如图是他所画的树状图的一部分.(1 )帮甲同学完成树状图;(2)求甲同学两次抽到的数字之和为偶数的概率.第18题图四、(本大题共4小题,每小题各 8分,共32分) 19.如图,四边形 ABCD 为菱形,M 为BC 上一点, 且/ABM=2/ BAM . (1) 求证:AG=BG ;(2) 若点M 为BC 的中点,且S B MG =1 , 试求△ ADG的面积.20.据报道,历经一百天的调查研究,景德镇 PM 2.5源解析已经通过专家论证.各种调查显示,机动车成为 PM 2.5的最大来源,一辆车每行驶 20千米平均向大气里排放 0.035 千克污染物.校环保志愿小分队从环保局了解到景德镇 100天的空气质量等级情况,并制成统计图和表:空气质量等级优 良轻度污染 中度污染 重度污染 严重污染 天数(天)10a 12 825 b(2)彤彤是环保志愿者,她和同学们调查了 机动车每天的行驶路程,了解到每辆车 每天平均出行25千米.已知景德镇市 2016年机动车保有量已突破 50万辆, 请你通过计算,估计 2016年景德镇市 一天中出行的机动车至少要向大气里 排放多少千克污染物?21.如图ABCD 为正方形,点 A 坐标为(0, 1),点B 坐标为(k y的图象经过点 C , 一次函数y=ax + b 的图象经过 A 、x开始第一次 1234 /N 第二次2 3 4第19题图2016年景德镇市100天空气质量等级天数统计表(1)表中a= ▲, b= ▲ ,图中严重污染部分对应的圆心角n= ▲2016年景德镇市100天空气质量等级天数统计图第20题图(1) 求反比例函数与一次函数的解析式;(2) 若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.22.小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO 后,电脑转到AO B位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C丄OA 于点C, O' C=2cm.(1)求/ CAO的度数;(2)显示屏的顶部B'比原来升高了多少?第22题图五、(本大题共1小题,每小题10分,共10分)23.如图,抛物线y = -x2• bx • c交x轴于点A (- 3, 0)和点B,交y轴于点C (0, 3).(1) 求抛物线的函数表达式;(2) 若点P在抛物线上,且S AOP =4S.BOC,求点P的坐标;(3) 如图b,设点Q是线段AC上的一动点,作DQ丄x轴,交抛物线于点D, 求线段DQ长度的最大值.六、(本大题共1小题,每小题12分,共12分)M , N分别是AD , CD的中点,连接24.如图,在Rt△ ABC中,/ ACB=90°, AC=6, BC=8,点D以每秒1个单位长度的速度由点A向点B匀速运动,到达B点即停止运动, MN,设点D运动的时间为t.(1) 判断MN与AC的位置关系;(2) 求点D由点A向点B匀速运动的过程中,线段MN所扫过区域的面积;(3 )若厶DMN是等腰三角形,求t的值.2016学年第一次质量检测试卷九年级数学答案、选择题(本大题共 6小题,每小题3分,共18分)• x f - 3x 2 = -3x 4 2 - 3x 2 二-3(x 1 x 2) 2=11.(1 )补全树状图如图所示:.一…第一次 1 2/N z1\第二次 2 3 41 3 4(2)由树状图得:共有12种情况,两次抽到的数字之和为偶数的有四、(本大题共4小题,每小题各 8分,共32分) 19. (1)证明:•••四边形 ABCD 是菱形, •••/ABD = / CBD ,•••/ ABM =2 / BAM , ABD =Z BAM ,• AG=BG ;(2)解:T AD // BC ,ADG MBG ,•••点M 为BC 的中点, •竺=2,BM故P (两次抽到的数字之和为偶数)4 = 112 3ii.12. ____ 2 13.5 ____ 14.4小题,每小题各6分,共24分)15解原=2 .16解: (1) 如图;(2) ③. 17解: (1)k=-3,另一根为-6;(2) 当k= - 1时,方程变形为x 2 3x 2 =0 ,_3 X i18.解: 4种,• AG ADGM " BM32° 、解答2二 X i• BMG =1, 二 S A ADG =4.20.解:(1) a=25, b=20, c=72;答:2016年景德镇市一天中出行的机动车至少要向大气里排放21.解:(1 )•••点A 的坐标为(0, 1),点B 的坐标为(0,— 2),••• AB=1 + 2=3.即正方形 ABCD 边长为 3,二 C (3,— 2). 将C 点坐标代入反比例函数可得:k= — 6.丁八6•反比例函数解析式: y 二-丄.x(a ~ -1 将 C( 3, — 2), A ( 0, 1)代入 y=ax + b 解得:2 = 1• 一次函数解析式为 y=— x + 1.111•••—X 1 X | t |= 3 X 3,解得 t =± 18. • P 点坐标为(18, )或(-18,).23 322.解:(1 )• O' C 丄 OA 于 C , OA=OB=24cm ,OC OC 1 • sin / CAO = -------- = -------- = — ,•/ CAO=30OA OA2(2)过点B 作BD 丄AO 交AO 的延长线于 D .• O' C 丄 OA , / CAO=30°, •/ AO C=60° • / AO B' 120°, •/ AO B'+/ AO C = 180° .• O B + O' C — BD= 24 + 12— 12 3 =36 - 12上 3 . •显示屏的顶部 B'比原来升高(2)根据题意得:50 X 0.035 X 10000X=21875 (千克)20(2)设P(t, -• △ OAP 的面积恰好等于正方形 ABCD 的面积,21875千克污染物•/ sin / BOD =电OB '• BD=OB • sin / BOD ,• / AOB=120°, •/ BOD= 60• BD=OB • sin / BOD= 24 X了(36 —12、刁)cm.五、(本大题共1小题,每小题10分,共10分)2 223.解:(1 )将A (- 3, 0)、C (0, 3)代入y = —X +bx + c ,解得:y = —X — 2x + 3 .(2)由(1 )知,该抛物线的解析式为y = _x2_2x3,则易得B( 1, 0). 设P(x,-x2 -2x • 3 ),1 2 1•/ S^O^4S^OC,二{汇3汇一x _2x+3 = 4X[X1><3 . 解得:x - -1 或x - -1 二2'、2 .则符号条件的点P的坐标为(-1, 4)或(-1 2,2 , - 4)或(-1 -2、. 2 , - 4).(3)易知直线AC的解析式为y=x+ 3.设Q点坐标为(x, x+ 3) (- 3< x w 0),则D点坐标为(x, _ x^ 2x 3 ),2 23 2 9QD= ( -x - 2x 3 ) -( x + 3) =-x -3x=-(x )2 4•••当x =「3时,QD有最大值-.2 4六、(本大题共1小题,每小题12分,共12分)24. ( 1)v在厶ADC中,M是AD的中点,N是DC的中点,• MN // AC ;(2)如图1,分别取△ ABC三边AC, AB, BC的中点E, F , G,并连接EG, FG ,根据题意可得线段MN扫过区域的面积就是平行四边AFGE的面积,•/ AC=6, BC=8, • AE=3, GC=4,•••/ ACB=90 °二S 四边形AFGE=AE?GC=3 X 4=12.•线段MN所扫过区域的面积为12.1 1 1(3)据题意可知:MD=—AD , DN= —DC, MN = — AC=3 ,2 2 2①当MD=MN=3时,△ DMN为等腰三角形,此时AD=AC=6 , • t=6 ,1②当MD=DN时,AD=DC ,如图2,过点D作DH丄AC交AC于H ,则AH = — AC=32 ,-cosA= AD 爲• 3 6AD 一10 '解得AD=5 ,••• AD=t=5 .③如图3,当DN=MN=3时,AC=DC,连接MC,贝U CM丄AD , •/ coA=如一竺,即刎」,AC AB 6 1018 36AM= , • AD=t=2AM=^ ,5 5综上所述,当t=5或6或36时,△ DMN为等腰三角形.5DG。

2017-2018年山东省日照市五莲县九年级(上)期中数学试卷和答案

2017-2018年山东省日照市五莲县九年级(上)期中数学试卷和答案

2017-2018学年山东省日照市五莲县九年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分40分)1.(3分)二次函数y=(x﹣1)2图象的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣2 D.直线x=22.(3分)方程x2﹣4x=0的解是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣43.(3分)如图,BC为⊙O直径,交弦AD于点E,若B点为中点,则说法错误的是()A.AD⊥BC B.=C.AE=DE D.OE=BE4.(3分)可以把抛物线y=x2平移后得到y=(x+2)2﹣3,则下列平移过程正确的是()A.向左移2个单位,下移3个单位B.向右移2个单位,上移3个单位C.向右移2个单位,下移3个单位D.向左移2个单位,上移3个单位5.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(3分)为了让某市的山更绿、水更清,2014年市委、市政府提出了确保到2016年实现全市森林覆盖率达到63%的目标,已知2014年该市森林覆盖率为60%.设从2014年起森林覆盖率的年平均增长率为x,则可列方程()A.60(1+2x)=63% B.60(1+2x)=63 C.60(1+x)2=63% D.60(1+x)2=63 7.(3分)如图,▱ABCD的一边AB为直径的⊙O过点C,连接OC,若∠AOC=80°,则∠BCD等于()A.140°B.135°C.130° D.120°8.(3分)如图,△AOB中,∠B=30°.将△AOB绕点O顺时针旋转52°得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.22°B.52°C.60°D.82°9.(4分)已知m、n是方程x2﹣2x﹣1=0的两根,且(m2﹣2m+a)(3n2﹣6n﹣7)=8,则a的值为()A.﹣5 B.5 C.﹣3 D.310.(4分)二次函数y=ax2+bx+c满足b2=ac,且x=0时,y=﹣4,则()A.y最大=﹣4 B.y最小=﹣4 C.y最大=﹣3 D.y最小=﹣311.(4分)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1<y2,其中说法正确的是()A.①②B.②③C.①②④D.②③④12.(4分)如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(共4小题,每小题4分,满分16分)13.(4分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法:①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c 的最值为6;③抛物线的对称轴是x=;④在对称轴左侧,y随x的增大而增大,其中正确的是(填写序号).14.(4分)如果α、β是一元二次方程x2+3x﹣1=0的两个根,那么α2+2α﹣β的值是.15.(4分)二次函数y=ax2+(2a+3)x+(a+1)图象与x轴只有一个交点,则a=.16.(4分)如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为s时,△BEF是直角三角形.三、解答题(共6小题,满分64分)17.(9分)解下列一元二次方程:(1)x2﹣6x﹣2=0;(2)(x﹣3)2+2x(x﹣3)=0.18.(9分)已知:关于x的方程x2﹣(3k﹣1)x+2(k﹣1)=0.(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且|x1﹣x2|=2,求k的值.19.(10分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)写出上涨后每件商品的利润为元,每月能销售件商品(用含x的代数式表示)(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?20.(10分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C 为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.21.(12分)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB 的度数等于,正方形的边长为;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于,正六边形的边长为.22.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.2017-2018学年山东省日照市五莲县九年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分40分)1.(3分)二次函数y=(x﹣1)2图象的对称轴是()A.直线x=﹣1 B.直线x=1 C.直线x=﹣2 D.直线x=2【解答】解:∵y=(x﹣1)2是抛物线的顶点式,∴对称轴为直线x=1.故选:B.2.(3分)方程x2﹣4x=0的解是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4【解答】解:方程分解因式得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4.故选:C.3.(3分)如图,BC为⊙O直径,交弦AD于点E,若B点为中点,则说法错误的是()A.AD⊥BC B.=C.AE=DE D.OE=BE【解答】解:∵BC为⊙O直径,交弦AD于点E,B点为中点∴AD⊥BC,故A选项正确;∵BC为⊙O直径,B点为中点,∴=,AE=DE,故B、C选项正确,D选项错误.故选:D.4.(3分)可以把抛物线y=x2平移后得到y=(x+2)2﹣3,则下列平移过程正确的是()A.向左移2个单位,下移3个单位B.向右移2个单位,上移3个单位C.向右移2个单位,下移3个单位D.向左移2个单位,上移3个单位【解答】解:把抛物线y=x2向左平移2个单位,再向下平移3个单位后得到y=(x+2)2﹣3,故选:A.5.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:由图象开口向上可知a>0,对称轴x=﹣<0,得b>0.所以一次函数y=bx+a的图象经过第一、二、三象限,不经过第四象限.故选:D.6.(3分)为了让某市的山更绿、水更清,2014年市委、市政府提出了确保到2016年实现全市森林覆盖率达到63%的目标,已知2014年该市森林覆盖率为60%.设从2014年起森林覆盖率的年平均增长率为x,则可列方程()A.60(1+2x)=63% B.60(1+2x)=63 C.60(1+x)2=63% D.60(1+x)2=63【解答】解:2015年全市森林覆盖率为60%×(1+x),2016年全市森林覆盖率为60%×(1+x)×(1+x)=63%×(1+x)2,可列方程为60%×(1+x)2=63%,故选:D.7.(3分)如图,▱ABCD的一边AB为直径的⊙O过点C,连接OC,若∠AOC=80°,则∠BCD等于()A.140°B.135°C.130° D.120°【解答】解:∵∠AOC=80°∴∠B=∠AOC=40°∵AB∥CD∴∠BCD=180°﹣∠B=140°故选:A.8.(3分)如图,△AOB中,∠B=30°.将△AOB绕点O顺时针旋转52°得到△A′OB′,边A′B′与边OB交于点C(A′不在OB上),则∠A′CO的度数为()A.22°B.52°C.60°D.82°【解答】解:∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选:D.9.(4分)已知m、n是方程x2﹣2x﹣1=0的两根,且(m2﹣2m+a)(3n2﹣6n﹣7)=8,则a的值为()A.﹣5 B.5 C.﹣3 D.3【解答】解:∵m、n是方程x2﹣2x﹣1=0的两根,∴m2﹣2m﹣1=0,n2﹣2n﹣1=0,∴m2﹣2m=1,n2﹣2n=1,∴代入(m2﹣2m+a)(3n2﹣6n﹣7)=8得:(1+a)(3×1﹣7)=8,解得:a=﹣3.故选:C.10.(4分)二次函数y=ax2+bx+c满足b2=ac,且x=0时,y=﹣4,则()A.y最大=﹣4 B.y最小=﹣4 C.y最大=﹣3 D.y最小=﹣3【解答】解:把x=0,y=﹣4代入可得c=﹣4,∵b2=ac=﹣4a>0,∴a<0,∴二次函数有最大值,====﹣3,∴y最大故选:C.11.(4分)如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=﹣1,且过点(﹣3,0),下列说法:①abc<0;②2a﹣b=0;③4a+2b+c<0;④若(﹣5,y1),(,y2)是抛物线上两点,则y1<y2,其中说法正确的是()A.①②B.②③C.①②④D.②③④【解答】解:∵抛物线开口向上,∴a>0,∵抛物线对称轴为直线x=﹣=﹣1,∴b=2a>0,则2a﹣b=0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc<0,所以①正确;∵x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣5,y1)离对称轴要比点(,y2)离对称轴要远,∴y1>y2,所以④错误.故选:A.12.(4分)如图,抛物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),过点A作x轴的平行线,分别交两条抛物线于点B,C.则以下结论:①无论x取何值,y2的值总是正数;②a=1;③当x=0时,y2﹣y1=4;④2AB=3AC;其中正确的个数是()A.1个 B.2个 C.3个 D.4个【解答】解:①∵抛物线y2=(x﹣3)2+1开口向上,顶点坐标在x轴的上方,∴无论x取何值,y2的值总是正数,故本结论正确;②把A(1,3)代入,抛物线y1=a(x+2)2﹣3得,3=a(1+2)2﹣3,解得a=,故本结论错误;③由两函数图象可知,抛物线y1=a(x+2)2﹣3解析式为y1=(x+2)2﹣3,当x=0时,y1=(0+2)2﹣3=﹣,y2=(0﹣3)2+1=,故y2﹣y1=+=,故本结论错误;④∵物线y1=a(x+2)2﹣3与y2=(x﹣3)2+1交于点A(1,3),∴y1的对称轴为x=﹣2,y2的对称轴为x=3,∴B(﹣5,3),C(5,3)∴AB=6,AC=4,∴2AB=3AC,故本结论正确.故选:B.二、填空题(共4小题,每小题4分,满分16分)13.(4分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表:从上表可知,下列说法:①抛物线与x轴的一个交点为(3,0);②函数y=ax2+bx+c 的最值为6;③抛物线的对称轴是x=;④在对称轴左侧,y随x的增大而增大,其中正确的是①③④(填写序号).【解答】解:由表格可知,抛物线的对称轴x=,开口向下,与x轴的交点为(﹣2,0),(3,0),在对称轴左侧,y随x的增大而增大,函数y有最大值,最大值>6,所以①③④正确,故答案为①③④.14.(4分)如果α、β是一元二次方程x2+3x﹣1=0的两个根,那么α2+2α﹣β的值是4.【解答】解:∵α,β是方程x2+3x﹣1=0的两个实数根,∴α+β=﹣3,α2+3α﹣1=0即α2+3α=1,又∵α2+2α﹣β=α2+3α﹣α﹣β=α2+3α﹣(α+β),将α+β=﹣3,α2+3α=1代入得,α2+2α﹣β=α2+3α﹣(α+β)=1+3=4.故填空答案:4.15.(4分)二次函数y=ax2+(2a+3)x+(a+1)图象与x轴只有一个交点,则a=﹣.【解答】解:∵二次函数y=ax2+(2a+3)x+(a+1)的图象与x轴只有一个交点,∴△=(2a+3)2﹣4a(a+1)=0且a≠0,∴8a+9=0,解得:a=,故答案为:.16.(4分)如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A⇒B⇒A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当t为1或1.75或2.25s时,△BEF是直角三角形.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°;Rt△ABC中,BC=2cm,∠ABC=60°;∴AB=2BC=4cm;①当∠BFE=90°时;∵∠BFE=∠ACB,∵F是弦BC的中点,∴当△BEF是直角三角形时点E与点O重合,∴BE=2BF=2cm;故此时AE=AB﹣BE=2cm;∴E点运动的距离为:2cm或6cm,故t=1s或3s;由于0≤t<3,故t=3s不合题意,舍去;所以当∠BFE=90°时,t=1s;②当∠BEF=90°时;同①可求得BE=BF=0.5cm,此时AE=AB﹣BE=3.5cm;∴E点运动的距离为:3.5cm或4.5cm,故t=1.75s或2.25s;综上所述,当t的值为1、1.75或2.25s时,△BEF是直角三角形.故答案为:1或1.75或2.25s.三、解答题(共6小题,满分64分)17.(9分)解下列一元二次方程:(1)x2﹣6x﹣2=0;(2)(x﹣3)2+2x(x﹣3)=0.【解答】解:(1)∵a=1、b=﹣6、c=﹣2,∴△=36+4×1×2=44>0,∴x==3±;(2)∵(x﹣3)(3x﹣3)=0,∴x﹣3=0或3x﹣3=0,解得:x=3或x=118.(9分)已知:关于x的方程x2﹣(3k﹣1)x+2(k﹣1)=0.(1)求证:无论k为何实数,方程总有实数根;(2)若此方程有两个实数根x1,x2,且|x1﹣x2|=2,求k的值.【解答】(1)证明:△=[﹣(3k﹣1)]2﹣4×2(k﹣1)=9k2﹣14k+9=(3k﹣)2+.∵(3k﹣)2≥0,∴(3k﹣)2+>0,即△>0,∴无论k为何实数,方程总有两个不相等的实数根.(2)解:∵方程x2﹣(3k﹣1)x+2(k﹣1)=0有两个实数根x1、x2,∴x1+x2=3k﹣1,x1x2=2(k﹣1).∵|x1﹣x2|=2,∴(x1﹣x2)2=(x1+x2)2﹣4x1x2=4,即(3k﹣1)2﹣4×2(k﹣1)=4,整理,得:9k2﹣14k+5=0,解得:k1=,k2=1.19.(10分)某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元).设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.(1)写出上涨后每件商品的利润为10+x元,每月能销售210﹣10x件商品(用含x的代数式表示)(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2200元?根据以上结论,请你直接写出售价在什么范围时,每个月的利润不低于2200元?【解答】解:(1)∵设每件商品的售价上涨x元(x为正整数),每个月的销售利润为y元.∴上涨后每件商品的利润为(10+x)元,每月能销售(210﹣10x)件商品;故答案为:10+x,210﹣10x;(2)由题意得:y=(210﹣10x)(50+x﹣40)=﹣10x2+110x+2100(0<x≤15且x为整数);=﹣10(x﹣5.5)2+2402.5.∵a=﹣10<0,∴当x=5.5时,y有最大值2402.5.∵0<x≤15,且x为整数,当x=5时,50+x=55,y=2400(元),当x=6时,50+x=56,y=2400(元)∴当售价定为每件55或56元,每个月的利润最大,最大的月利润是2400元.(3)当y=2200时,﹣10x2+110x+2100=2200,解得:x1=1,x2=10.∴当x=1时,50+x=51,当x=10时,50+x=60.∴当售价定为每件51或60元,每个月的利润为2200元.当售价不低于51或60元,每个月的利润为2200元.当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元(或当售价分别为51,52,53,54,55,56,57,58,59,60元时,每个月的利润不低于2200元).20.(10分)如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C 为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【解答】(1)证明:连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)解:过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6﹣x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5﹣x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5﹣x)2+(6﹣x)2=25,化简得x2﹣11x+18=0,解得x1=2,x2=9.∵CD=6﹣x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5﹣2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.21.(12分)阅读下面材料:小伟遇到这样一个问题:如图1,在正三角形ABC内有一点P,且PA=3,PB=4,PC=5,求∠APB的度数.小伟是这样思考的:如图2,利用旋转和全等的知识构造△AP′C,连接PP′,得到两个特殊的三角形,从而将问题解决.请你回答:图1中∠APB的度数等于150°.参考小伟同学思考问题的方法,解决下列问题:(1)如图3,在正方形ABCD内有一点P,且PA=,PB=1,PD=,则∠APB的度数等于135°,正方形的边长为;(2)如图4,在正六边形ABCDEF内有一点P,且PA=2,PB=1,PF=,则∠APB的度数等于120°,正六边形的边长为.【解答】解:阅读材料:把△APB绕点A逆时针旋转60°得到△ACP′,由旋转的性质,P′A=PA=3,P′D=PB=4,∠PAP′=60°,∴△APP′是等边三角形,∴PP′=PA=3,∠AP′P=60°,∵PP′2+P′C2=32+42=25,PC2=52=25,∴PP′2+P′C2=PC2,∴∠PP′C=90°,∴∠AP′C=∠A P′P+∠PP′C=60°+90°=150°;故∠APB=∠AP′C=150°;(1)如图3,把△APB绕点A逆时针旋转90°得到△ADP′,由旋转的性质,P′A=PA=2,P′D=PB=1,∠PAP′=90°,∴△APP′是等腰直角三角形,∴PP′=PA=×2=4,∠AP′P=45°,∵PP′2+P′D2=42+12=17,PD2=2=17,∴PP′2+P′D2=PD2,∴∠PP′D=90°,∴∠AP′D=∠AP′P+∠PP′D=45°+90°=135°,故,∠APB=∠A P′D=135°,∵∠APB+∠APP′=135°+45°=180°,∴点P′、P、B三点共线,过点A作AE⊥PP′于E,则AE=PE=PP′=×4=2,∴BE=PE+PB=2+1=3,在Rt△ABE中,AB===;(2)如图4,∵正六边形的内角为×(6﹣2)•180°=120°,∴把△APB绕点A逆时针旋转120°得到△AFP′,由旋转的性质,P′A=PA=2,P′F=PB=1,∠PAP′=120°,∴∠APP′=∠AP′P=(180°﹣120°)=30°,过点A作AM⊥PP′于M,设PP′与AF相交于N,则AM=PA=×2=1,P′M=PM===,∴PP′=2PM=2,∵PP′2+P′F2=(2)2+12=13,PF2=2=13,∴PP′2+P′F2=PF2,∴∠PP′F=90°,∴∠AP′F=∠AP′P+∠PP′F=30°+90°=120°,故,∠APB=∠AP′F=120°,∵P′F=AM=1,∵△AMN和△FP′N中,,∴△AMN≌△FP′N(AAS),∴AN=FN,P′N=MN=P′M=,在Rt△AMN中,AN===,∴AF=2AN=2×=.故答案为:150°;(1)135°,;(2)120°,.22.(14分)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,点O为坐标原点,点D为抛物线的顶点,点E在抛物线上,点F在x轴上,四边形OCEF为矩形,且OF=2,EF=3,(1)求抛物线所对应的函数解析式;(2)求△ABD的面积;(3)将△AOC绕点C逆时针旋转90°,点A对应点为点G,问点G是否在该抛物线上?请说明理由.【解答】解:(1)∵四边形OCEF为矩形,OF=2,EF=3,∴点C的坐标为(0,3),点E的坐标为(2,3).把x=0,y=3;x=2,y=3分别代入y=﹣x2+bx+c中,得,解得,∴抛物线所对应的函数解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的顶点坐标为D(1,4),∴△ABD中AB边的高为4,令y=0,得﹣x2+2x+3=0,解得x1=﹣1,x2=3,所以AB=3﹣(﹣1)=4,∴△ABD的面积=×4×4=8;(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1,∴点A对应点G的坐标为(3,2),当x=3时,y=﹣32+2×3+3=0≠2,所以点G不在该抛物线上.第21页(共21页)。

XXX版2015-2016学年九年级上册期中考试数学试卷及答案

XXX版2015-2016学年九年级上册期中考试数学试卷及答案

XXX版2015-2016学年九年级上册期中考试数学试卷及答案.doc本试卷满分150分,考试时间120分钟。

一、选择题1、下列命题中正确的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.对角线垂直的平行四边形是正方形D.一组对边平行的四边形是平行四边形2、下面关于的方程中:①④();⑤②;③;1.一元二次方程的个数是()A.1B.2C.3D.43、如图,菱形ABCD中,AB=4,∠B=60°,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,则的△AEF的面积是()A.4B.3C.2D.14、在一个口袋中有4个完全相同的小球,它们的标号分别为1,2,3,4,从中随机摸出一个小球记下标号后放回,再从中随机摸出一个小球,则两次摸出的小球的标号之和大于4的概率是()A.B.C.D.5、如图,在矩形ABCD中,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从B向C 移动而R不动时,那么下列结论成立的是()A)线段EF的长逐渐增大B)线段EF的长逐渐减少C)线段EF的长不变D)线段EF的长不能确定6、如图,AB∥CD∥EF,则在图中下列关系式一定成立的是()A.B.C.D.7、根据下列表格对应值:判断关于的方程3.240.023.250.013.260.03的一个解的范围是()A.<3.24B.3.24<<3.25C.3.25<<3.26D.3.25<<3.288、若关于x的一元二次方程有解,那么m的取值范围是()A.B.C.D.9、某市2013年投入教育经费2亿元,为了发展教育事业,该市每年教育经费的年增长率均为x,从2013年到2015年共投入教育经费9.5亿元,则下列方程正确的是()A.B.C.D.10、如图,四边形ABCD中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A1B1C1D1顺次连接得到四边形A1B1C1D1二、填空题(本大题共8小题,每小题4分,共32分.把答案写在题中的横线上.)11、顺次连接四边形ABCD各边中点E、F、G、H,得到四边形EFGH,只要添加条件,就能保证四边形EFGH是矩形。

山东省五莲县九年级数学上学期期中试题(扫描版) 新人教版

山东省五莲县九年级数学上学期期中试题(扫描版) 新人教版

山东省五莲县2018届九年级数学上学期期中试题2017–2018学年度上学期期中质量检测九年级数学试题答案一、选择题(共40分)13. ①③④ 14. 415.89- 16. 1或1.75或2.25s三、解答题17.解下列一元二次方程:(1)113±=x (2)1,321==x x18.(1)证明:∵△=(3k-1)²-4×2(k-1)=9k ²-6k+1-8k+8=(3k-7/3)²+32/9>0, ∴无论k 为何实数,方程总有实数根。

(2)解:∵x ₁+x ₂=3k-1,x ₁·x ₂=2(k-1),|x ₁-x ₂|=2,∴(x ₁-x ₂)²=(x ₁+x ₂)²-4x ₁·x ₂=(3k-1)²-4×2(k-1)=9k ²-14k+9=2² 9k²-14k+5=0 (9k-5)(k-1)=0 ∴k ₁=9/5, k ₂=1经检验,k ₁=9/5, k ₂=1是方程的解。

19.解:(1)10+x,210-10x (2)55元或56元,2400元 (3)当售价定当售价不低于51元或60元时每个月的利润恰为2200元;当售价不低于51元且不高于60元且为整数时,每个月的利润不低于2200元。

20.(1)证明:连接OC , ∵OA=OC ,∴∠OCA=∠OAC , ∵AC 平分∠PAE , ∴∠DAC=∠CAO , ∴∠DAC=∠OCA , ∴PB ∥OC , ∵CD ⊥PA ,∴CD ⊥OC ,CO 为⊙O 半径, ∴CD 为⊙O 的切线;(2)过O 作OF ⊥AB ,垂足为F , ∴∠OCD=∠CDA=∠OFD=90°, ∴四边形DCOF 为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(6-x)2=25,化简得x2-11x+18=0,解得x1=2,x2=9.∵CD=6-x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5-2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.21、;(1)135°,;(2)120°,(1)参照题目给出的解题思路,可将△ABP绕点A逆时针旋转90°,得到△A DP′,根据旋转的性质知:△ABP≌△A DP′,进而可判断出△APP′是等腰直角三角形,可得∠A P′P=45°;然后得到△DPP′是直角三角形,即可求得结果;(2)方法同(2),再结合正六边形的性质即可求得结果.由题意得△APP′是等边三角形,则∠A P′C=60°∵∴△CPP′是直角三角形∴∠CP′P=90°∴∠AP′C=150°∴∠APB=150°;(1)将△ABP绕点A逆时针旋转90°,得到△A DP′,由题得△ABP≌△ADP′,△APP′是等腰直角三角形,∴∠AP′P=45°∵∴△DPP′是直角三角形,∴∠DP′P=90°∴∠DP′A=135°∴∠APB=135°,正方形的边长为;(2)方法同(2),∠APB的度数等于120°,正六边形的边长为22、解:(1)∵四边形OCEF为矩形,OF=2,EF=3,∴点C的坐标为(0,3),点E的坐标为(2,3).把x=0,y=3;x=2,y=3分别代入y=-x2+bx+c中,得,解得,∴抛物线所对应的函数解析式为y=-x2+2x+3;(2)∵y=-x2+2x+3=-(x-1)2+4,∴抛物线的顶点坐标为D(1,4),∴△ABD中AB边的高为4,令y=0,得-x2+2x+3=0,解得x1=-1,x2=3,所以AB=3-(-1)=4,∴△ABD的面积=×4×4=8;(3)△AOC绕点C逆时针旋转90°,CO落在CE所在的直线上,由(2)可知OA=1,∴点A对应点G的坐标为(3,2),当x=3时,y=-32+2×3+3=0≠2,所以点G不在该抛物线上.。

人教版 2016届九年级上册初三数学期中试卷(含答案解析)

人教版 2016届九年级上册初三数学期中试卷(含答案解析)

2016-2017学年九年级(上)期中数学试卷一、选择题:(本大题满分45分,共15小题,每题3分.在下列各小题给出的四个选项中,只有一项符合题目的要求,请把符合要求的选项前面的字母代号填写在答卷上指定的位置)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.将一元二次方程x2+3=x化为一般形式后,二次项系数和一次项系数分别为()A.0、3 B.0、1 C.1、3 D.1、﹣13.抛物线y=(x+2)2+1的顶点坐标是()A.(2,1) B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)4.关于x的一元二次方程9x2﹣6x+k=0有两个实根,则k的范围是()A.k≤1 B.k≥1 C.k<1 D.k>15.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是()A.y=2(x+1)2+3 B.y=2(x﹣1)2﹣3 C.y=2(x+1)2﹣3 D.y=2(x﹣1)2+36.若x1,x2是一元二次方程x2﹣3x﹣2=0的两个根,则x1x2的值是()A.3 B.﹣2 C.﹣3 D.27.下列命题中:①圆既是轴对称图形又是中心对称图形;②平分弦的直径垂直于弦,并且平分弦所对的两条弧;③相等的圆心角所对的弧相等;④长度相等的弧是等弧.真命题有()个.A.1 B.2 C.3 D.48.某种型号的电视机经过连续两次降价,每台售价由原来的1500元,降到了980元,设平均每次降价的百分率为x,则下列方程中正确的是()A.1500(1﹣x)2=980 B.1500(1+x)2=980 C.980(1﹣x)2=1500 D.980(1+x)2=15009.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A .29°B .31°C .59°D .62°10.已知二次函数y=x 2﹣4x+m (m 为常数)的图象与x 轴的一个交点为(1,0),则关于x 的一元二次方程x 2﹣4x+m=0的两个实数根是( )A .x 1=1,x 2=﹣1B .x 1=﹣1,x 2=2C .x 1=﹣1,x 2=0D .x 1=1,x 2=311.如图,在⊙O 中,直径AB 垂直于弦CD ,垂足为P .若PA=2,PB=8,则CD 的长为( )A .2B .4C .8D .12.已知点(﹣3,y 3),(﹣2,y 1),(﹣1,y 2)在函数y=x 2+1的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 1>y 2C .y 3>y 2>y 1D .y 2>y 1>y 313.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD ,则的长为( )A .πB .6πC .3πD .1.5π14.如图,用一块直径为a 的圆桌布平铺在对角线长为a 的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x 为( )A .B .C .D .15.已知一次函数y=﹣kx+k 的图象如图所示,则二次函数y=﹣kx 2﹣2x+k 的图象大致是( )A .B .C .D .二、解答题:(本大题满分75分,共9小题)16.解方程:x (2x ﹣5)=4x ﹣10.17.已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.18.如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (0,1),B (﹣1,1),C (﹣1,3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点C 1的坐标;(2)画出△ABC 绕原点O 顺时针方向旋转90°后得到的△A 2B 2C 2,并写出点C 2的坐标;19.已知关于x 的一元二次方程x 2﹣6x+k=0有两个不相等的实数根.(1)求k 的取值范围;(2)若x 1,x 2为该方程的两个实数根且满足x 12x 22﹣x 1﹣x 2=115,求k 的值.20.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,且AB ⊥CD ,垂足为E .(1)求证:BC=BD ;(2)若BC=15,AD=20,求AB和CD的长.21.如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?22.某工厂从1月份起,每月生产收入是22万元,但在生产过程中会引起环境污染;若再按现状生产,将会受到环保部门的处罚,每月罚款2万元;如果投资111万元治理污染,治污系统可在1月份启用,这样,该厂不但不受处罚,还可降低生产成本,使1至3月的生产收入以相同的百分率递增,经测算,投资治污后,1月份生产收入为25万元,1至3月份的生产累计可达91万元;3月份以后,每月生产收入稳定在3月份的水平.(1)求出投资治污后2、3月份生产收入增长的百分率(参考数据:3.62=1.912,11.56=3.402)(2)如果把利润看做生产累计收入减去治理污染的投资额或环保部门的处罚款,试问:治理污染多少个月后,所投资金开始见效?(即治污后所获利润不小于不治污情况下所获利润).23.如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形边CB、CD上,连接AF,取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,则△AEF是三角形,MD、MN的数量关系是.(2)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则MD、MN的数量关系还成立吗?若成立,请加以证明;若不成立,请说明理由.(3)将图1中正方形ABCD及直角三角板ECF同时绕点C顺时针旋转90°,如图3,其他条件不变,则MD、MN的数量关系还成立吗?若成立,请加以证明;若不成立,请说明理由.24.如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C (0,﹣3).(1)求抛物线的解析式;(2)点M是抛物线上一动点,且在第三象限;①当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标;②在抛物线的对称轴上是否存在一点P,使△AMP是以AM为底的等腰直角三角形,若存在,请求出点P和点M的坐标;若不存在,请说明理由.九年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题满分45分,共15小题,每题3分.在下列各小题给出的四个选项中,只有一项符合题目的要求,请把符合要求的选项前面的字母代号填写在答卷上指定的位置)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C. D.【考点】中心对称图形;轴对称图形.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选B.【点评】本题考查了中心对称图形与轴对称图形的知识.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.2.将一元二次方程x2+3=x化为一般形式后,二次项系数和一次项系数分别为()A.0、3 B.0、1 C.1、3 D.1、﹣1【考点】一元二次方程的一般形式.【分析】首先移项进而得出二次项系数和一次项系数即可.【解答】解:∵x2+3=x,∴x2﹣x+3=0,∴二次项系数和一次项系数分别为:1,﹣1.故选:D.【点评】此题主要考查了一元二次方程的一般形式,正确移项得出是解题关键.3.抛物线y=(x+2)2+1的顶点坐标是()A.(2,1) B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)【考点】二次函数的性质.【分析】已知解析式是抛物线的顶点式,根据顶点式的坐标特点,直接写出顶点坐标.【解答】解:因为y=(x+2)2+1是抛物线的顶点式,由顶点式的坐标特点知,顶点坐标为(﹣2,1).故选B.【点评】考查顶点式y=a(x﹣h)2+k,顶点坐标是(h,k),对称轴是x=h.要掌握顶点式的性质.4.关于x的一元二次方程9x2﹣6x+k=0有两个实根,则k的范围是()A.k≤1 B.k≥1 C.k<1 D.k>1【考点】根的判别式.【分析】根据方程有实数根,得到根的判别式的值大于等于0,列出关于k的不等式,求出不等式的解集即可得到k的范围.【解答】解:根据题意得:△=36﹣36k≥0,解得:k≤1.故选A.【点评】本题考查了根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.5.将抛物线y=2x2向左平移1个单位,再向上平移3个单位得到的抛物线,其解析式是()A.y=2(x+1)2+3 B.y=2(x﹣1)2﹣3 C.y=2(x+1)2﹣3 D.y=2(x﹣1)2+3【考点】二次函数图象与几何变换.【分析】抛物线平移不改变a的值.【解答】解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3).可设新抛物线的解析式为y=2(x ﹣h )2+k ,代入得:y=2(x+1)2+3. 故选A .【点评】解决本题的关键是得到新抛物线的顶点坐标.6.若x 1,x 2是一元二次方程x 2﹣3x ﹣2=0的两个根,则x 1x 2的值是( )A .3B .﹣2C .﹣3D .2【考点】根与系数的关系.【专题】计算题.【分析】直接根据根与系数的关系求解.【解答】解:根据题意得x 1x 2=﹣2.故选B .【点评】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a ≠0)的两根时,x 1+x 2=,x 1x 2=.7.下列命题中:①圆既是轴对称图形又是中心对称图形;②平分弦的直径垂直于弦,并且平分弦所对的两条弧;③相等的圆心角所对的弧相等;④长度相等的弧是等弧.真命题有( )个.A .1B .2C .3D .4 【考点】命题与定理.【专题】推理填空题.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:∵圆既是轴对称图形又是中心对称图形,∴选项①正确;∵所平分的弦是直径时不满足,∴选项②不正确;∵在同圆或等圆中,相等的圆心角所对的弧相等,∴选项③不正确;∵能完全重合的弧是等弧,∴选项④不正确.综上,可得正确的命题有1个:①.故选:A.【点评】主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.某种型号的电视机经过连续两次降价,每台售价由原来的1500元,降到了980元,设平均每次降价的百分率为x,则下列方程中正确的是()A.1500(1﹣x)2=980 B.1500(1+x)2=980 C.980(1﹣x)2=1500 D.980(1+x)2=1500【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】设平均每次降价的百分率为x,根据题意可得,原价×(1﹣降价百分率)2=现价,据此列方程即可.【解答】解:设平均每次降价的百分率为x,由题意得,1500(1﹣x)2=980.故选A.【点评】本题考查了由实际问题抽象出一元二次方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.9.如图,AB是⊙O的直径,CD是⊙O的弦,∠ABD=59°,则∠C等于()A.29° B.31° C.59° D.62°【考点】圆周角定理.【分析】由AB是⊙O的直径,根据直径所对的圆周角是直角,求得∠ADB=90°,继而求得∠A的度数,然后由圆周角定理,求得∠C的度数.【解答】解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=59°,∴∠A=90°﹣∠ABD=31°,∴∠C=∠A=31°.故选B.【点评】此题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.此题难度不大,注意掌握数形结合思想的应用.10.已知二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程x2﹣4x+m=0的两个实数根是()A.x1=1,x2=﹣1 B.x1=﹣1,x2=2 C.x1=﹣1,x2=0 D.x1=1,x2=3【考点】抛物线与x轴的交点.【分析】根据抛物线与x轴交点的性质和根与系数的关系进行解答.【解答】解:∵二次函数y=x2﹣4x+m(m为常数)的图象与x轴的一个交点为(1,0),∴关于x的一元二次方程x2﹣4x+m=0的一个根是x=1.∴设关于x的一元二次方程x2﹣4x+m=0的另一根是t.∴1+t=4,解得 t=3.即方程的另一根为3.故选:D.【点评】本题考查了抛物线与x轴的交点.注意二次函数解析式与一元二次方程间的转化关系.11.如图,在⊙O中,直径AB垂直于弦CD,垂足为P.若PA=2,PB=8,则CD的长为()A .2B .4C .8D .【考点】垂径定理;勾股定理.【分析】连接OC ,根据PA=2,PB=8可得CO=5,OP=5﹣2=3,再根据垂径定理可得CD=2CP=8.【解答】解:连接OC ,∵PA=2,PB=8,∴AB=10,∴CO=5,OP=5﹣2=3,在Rt △POC 中:CP==4,∵直径AB 垂直于弦CD ,∴CD=2CP=8,故选:C .【点评】此题主要考查了勾股定理和垂径定理,关键是掌握平分弦的直径平分这条弦,并且平分弦所对的两条弧.12.已知点(﹣3,y 3),(﹣2,y 1),(﹣1,y 2)在函数y=x 2+1的图象上,则y 1,y 2,y 3的大小关系是( )A .y 1>y 2>y 3B .y 3>y 1>y 2C .y 3>y 2>y 1D .y 2>y 1>y 3【考点】二次函数图象上点的坐标特征.【分析】将三个点的坐标分别代入函数关系式,求出y 1,y 2,y 3的值,从而得解.【解答】解:y 1=(﹣3)2+1=9+1=10,y 2=(﹣2)2+1=4+1=5,y3=(﹣1)2+1=1+1=2,所以,y1>y2>y3.故选A.【点评】本题考查了二次函数图象上点坐标特征,此类题目,可以利用二次函数的对称性以及增减性求解,也可以求出具体的相关的函数值.13.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π【考点】旋转的性质;弧长的计算.【专题】计算题.【分析】根据弧长公式列式计算即可得解.【解答】解:的长==1.5π.故选:D.【点评】本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键.14.如图,用一块直径为a的圆桌布平铺在对角线长为a的正方形桌面上,若四周下垂的最大长度相等,则桌布下垂的最大长度x为()A.B.C.D.【考点】垂径定理的应用;正方形的性质.【专题】计算题.【分析】如图,正方形ABCD为直径为a的⊙O的内接正方形,作OE⊥BC于E,交⊙O于F,连接OB,则OB=a,则可判断△OBE为等腰直角三角形,所以OE=OB=a,然后计算OF﹣OE即可.【解答】解:如图,正方形ABCD为直径为a的⊙O的内接正方形,作OE⊥BC于E,交⊙O于F,连接OB,则OB=a,∴△OBE为等腰直角三角形,∴OE=OB=a,∴EF=OF﹣OE=a﹣a=a.即桌布下垂的最大长度x为a.故选A.【点评】本题考查了垂径定理的应用:垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.也考查了正方形的性质.15.已知一次函数y=﹣kx+k的图象如图所示,则二次函数y=﹣kx2﹣2x+k的图象大致是()A. B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】根据一次函数的图象和性质判断k的取值范围,确定抛物线的开口方向、对称轴和顶点坐标,得到答案.【解答】解:从一次函数图象可知,k >1,﹣k <0,抛物线开口向下,﹣>﹣1,对称轴在x=﹣1的右侧,与y 轴的交点在(0,1)的上方.故选:B .【点评】本题考查的是一次函数的图象和性质、二次函数的图象和性质,掌握性质、读懂图象从中获取正确的信息是解题的关键,解答二次函数图象问题时,要从开口方向、对称轴和顶点坐标三个方面入手.二、解答题:(本大题满分75分,共9小题)16.解方程:x (2x ﹣5)=4x ﹣10.【考点】解一元二次方程-因式分解法.【分析】由于方程左右两边都含有(2x ﹣5),可将(2x ﹣5)看作一个整体,然后移项,再分解因式求解.【解答】解:原方程可变形为:x (2x ﹣5)﹣2(2x ﹣5)=0,(2x ﹣5)(x ﹣2)=0,2x ﹣5=0或x ﹣2=0;解得x 1=,x 2=2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.17.已知抛物线的顶点为A (1,﹣4),且过点B (3,0).求该抛物线的解析式.【考点】待定系数法求二次函数解析式.【专题】计算题.【分析】根据顶点坐标设出顶点形式,把B 坐标代入求出a 的值,即可确定出解析式.【解答】解:设抛物线的解析式为y=a (x ﹣1)2﹣4,∵抛物线经过点B (3,0),∴a (3﹣1)2﹣4=0,解得:a=1,∴y=(x﹣1)2﹣4,即y=x2﹣2x﹣3.【点评】此题考查了待定系数法求二次函数解析式,熟练掌握待定系数法是解本题的关键.18.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(0,1),B(﹣1,1),C(﹣1,3).(1)画出△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;(2)画出△ABC绕原点O顺时针方向旋转90°后得到的△A2B2C2,并写出点C2的坐标;【考点】作图-旋转变换;作图-轴对称变换.【专题】作图题.【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)让三角形的各顶点都绕点O顺时针旋转90°后得到对应点,顺次连接即可.【解答】解:(1)点C1的坐标(﹣1,﹣3).(2)所作图形如下:.根据图形结合坐标系可得:C 2(3,1).【点评】本题考查轴对称及旋转作图的知识,属于基础题,解答本题的关键是掌握两种几何变换的特点,根据题意找到各点的对应点.19.已知关于x 的一元二次方程x 2﹣6x+k=0有两个不相等的实数根.(1)求k 的取值范围;(2)若x 1,x 2为该方程的两个实数根且满足x 12x 22﹣x 1﹣x 2=115,求k 的值.【考点】根与系数的关系;根的判别式.【分析】(1)根据方程有两个不相等的实数根可得△=36﹣4k >0,解不等式求出k 的取值范围;(2)由根与系数的关系可得x 1+x 2=6,x 1•x 2=k ,代入x 12x 22﹣x 1﹣x 2=115得到关于k 的方程,结合k 的取值范围解方程即可.【解答】解:(1)由题意可得△=36﹣4k >0,解得k <9;(2)∵x 1,x 2为该方程的两个实数根,∴x 1+x 2=6,x 1•x 2=k ,∵x 12x 22﹣x 1﹣x 2=115,∴k 2﹣6=115,解得k=±11.∵k <9,∴k=﹣11.【点评】此题考查了一元二次方程ax 2+bx+c=0根的判别式和根与系数的关系的应用,(1)△>0时,方程有两个不相等的实数根;(2)△=0时,方程有两个相等的实数根;(3)△<0时,方程没有实数根;(4)x 1+x 2=﹣;(5)x 1•x 2=.20.已知:如图,AB 是⊙O 的直径,CD 是⊙O 的弦,且AB ⊥CD ,垂足为E .(1)求证:BC=BD ;(2)若BC=15,AD=20,求AB 和CD 的长.【考点】垂径定理;勾股定理.【专题】探究型.【分析】(1)直接根据垂径定理即可得出结论;(2)先根据垂径定理判断出△ABD 是直角三角形,再根据勾股定理求出AB 的长,由AB •DE=AD •BD 即可求出DE 的长,再由CD=2DE 即可得出结论.【解答】(1)证明:∵AB为⊙O的直径,AB⊥CD,∴,∴BC=BD;(2)解:∵AB为⊙O的直径,∴∠ADB=90°,∴AB===25,∵AB•DE=AD•BD,∴×25×DE=×20×15.∴DE=12.∵AB为⊙O的直径,AB⊥CD,∴CD=2DE=2×12=24.【点评】本题考查的是垂径定理及勾股定理,熟知垂直于弦的直径平分弦,并且平分弦所对的弧是解答此题的关键.21.如图所示,有一座抛物线形拱桥,桥下面在正常水位AB时,宽20m,水位上升3m就达到警戒线CD,这时水面宽度为10m.(1)在如图的坐标系中求抛物线的解析式;(2)若洪水到来时,水位以每小时0.2m的速度上升,从警戒线开始,再持续多少小时才能到达拱桥顶?【考点】二次函数的应用.【专题】函数思想.【分析】先设抛物线的解析式,再找出几个点的坐标,代入解析式后可求解.【解答】解:(1)设所求抛物线的解析式为:y=ax2(a≠0),由CD=10m,可设D(5,b),由AB=20m,水位上升3m就达到警戒线CD,则B(10,b﹣3),把D、B的坐标分别代入y=ax2得:,解得.∴y=;(2)∵b=﹣1,∴拱桥顶O到CD的距离为1m,∴=5(小时).所以再持续5小时到达拱桥顶.【点评】命题立意:此题是把一个实际问题通过数学建模,转化为二次函数问题,用二次函数的性质加以解决.22.(2011•枝江市模拟)某工厂从1月份起,每月生产收入是22万元,但在生产过程中会引起环境污染;若再按现状生产,将会受到环保部门的处罚,每月罚款2万元;如果投资111万元治理污染,治污系统可在1月份启用,这样,该厂不但不受处罚,还可降低生产成本,使1至3月的生产收入以相同的百分率递增,经测算,投资治污后,1月份生产收入为25万元,1至3月份的生产累计可达91万元;3月份以后,每月生产收入稳定在3月份的水平.(1)求出投资治污后2、3月份生产收入增长的百分率(参考数据:3.62=1.912,11.56=3.402)(2)如果把利润看做生产累计收入减去治理污染的投资额或环保部门的处罚款,试问:治理污染多少个月后,所投资金开始见效?(即治污后所获利润不小于不治污情况下所获利润).【考点】一元二次方程的应用;一元一次不等式组的应用.【专题】增长率问题.【分析】(1)设每月的增长率为x,那么2月份的生产收入为25(1+x),三月份的生产收入为25(1+x)2,根据1至3月份的生产累计可达91万元,可列方程求解.(2)设y月后开始见成效,根据利润看做生产累计收入减去治理污染的投资额或环保部门的处罚款且治污后所获利润不小于不治污情况下所获利润可列不等式求解.【解答】解:(1)设每月的增长率为x,由题意得:25+25(1+x)+25(1+x)2=91解得,x=0.2,或x=﹣3.2(不合题意舍去)答:每月的增长率是20%.(2)三月份的收入是:25(1+20%)2=36(万元)设y月后开始见成效,由题意得:91+36(y﹣3)﹣111≥22y﹣2y解得,y≥8答:治理污染8个月后开始见成效.【点评】本题考查理解题意能力,关键是找到1至3月份的生产累计可达91万元和治污后所获利润不小于不治污情况下所获利润这个等量关系和不等量关系可列方程和不等式求解.23.如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形边CB、CD上,连接AF,取AF中点M,EF的中点N,连接MD、MN.(1)连接AE,则△AEF是等腰三角形,MD、MN的数量关系是MD=MN .(2)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则MD、MN的数量关系还成立吗?若成立,请加以证明;若不成立,请说明理由.(3)将图1中正方形ABCD及直角三角板ECF同时绕点C顺时针旋转90°,如图3,其他条件不变,则MD、MN的数量关系还成立吗?若成立,请加以证明;若不成立,请说明理由.【考点】四边形综合题;全等三角形的判定与性质;直角三角形斜边上的中线;等腰直角三角形;三角形中位线定理;正方形的性质.【分析】(1)根据正方形的性质以及等腰直角三角形的性质得出CE=CF,继而证出△ABE≌△ADF,得到AE=AF,即△AEF是等腰三角形;依据直角三角形斜边上中线的性质以及三角形的中位线的性质,可得到MN与MD的数量关系;(2)连接AE,根据正方形的性质以及等腰直角三角形的性质,得出BE=DF,继而证出△ABE≌△ADF,得到AE=AF,再依据直角三角形斜边上中线的性质,可得DM=AF,根据三角形的中位线的性质,可得MN=AE,最后得出MN与MD的数量关系;(3)先连接AE,A′F,根据等腰直角三角形的性质得出CE=CF,继而证出△ADE≌△A′D′F,得到AE=AF,再依据三角形的中位线的性质,可得DM=A′F,MN=AE,最后得出MN与MD的数量关系.【解答】解:(1)∵FC=EC,DC=BC,∴DF=BE,又∵AB=AD,∠B=∠ADF=90°,∴△ABE≌△ADF(SAS),∴AE=AF,即△AEF是等腰三角形,又∵M、N分别是AF与EF的中点,∴Rt△ADF中,DM=AF,△AEF中,MN=AE,∴DM=MN,故答案为:等腰,DM=MN;(2)MD=MN仍成立,证明:连接AE,∵四边形ABCD为正方形,∴AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF(SAS),∴AE=AF,∵在Rt△ADF中,点M为AF的中点,∴DM=AF,∵点M为AF的中点,点N为EF的中点,∴MN=AE,∴DM=MN;(3)MD=MN仍成立,理由如下:连接AE,A′F,∵CD=CD′,CE=CF,∴CD﹣CE=CD′﹣CF,即DE=D′F,又∵AD=A′D′,∠ADE=∠D′,∴△ADE≌△A′D′F(SAS),∴AE=A′F,又∵点D是AA′的中点,点M为AF的中点,点N为EF的中点,∴MN,MD分别为△AEF和△AA′F的中位线,∴MN=AE,DM=A′F,∴MN=DM.【点评】本题主要考查的是四边形的综合应用,解答本题需要掌握正方形的性质、等腰直角三角形的性质以及全等三角形的性质和判定,综合性较强,难度较大.解题时注意:直角三角形斜边上的中线等于斜边的一半,三角形的中位线等于第三边的一半,是得出线段相等数量关系的主要依据.24.如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C (0,﹣3).(1)求抛物线的解析式;(2)点M是抛物线上一动点,且在第三象限;①当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标;②在抛物线的对称轴上是否存在一点P,使△AMP是以AM为底的等腰直角三角形,若存在,请求出点P和点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)将C(0,﹣3)代入抛物线的解析式求得k的值,从而得到抛物线的解析式;(2)连结AC,过点M作MD⊥AC,交AD于点D.先求得点A、B的坐标,然后再求得直线AC的解析式,设M(x,x2+2x﹣3),则D(x,﹣x﹣3),则MD=﹣x2﹣3x,然后依据四边形AMCB的面积=△ABC面积+△AMC面积列出S与x的函数关系式,然后依据配方法求得二次函数的最大值,从而可求得点M的坐标;(3)先求得抛物线的对称轴方程为x=﹣1,然后过点M 作MD ⊥直线x=﹣1,垂足为D ,设直线x=﹣1与x 轴交于点E ,先证明△APE ≌△PMD ,从而得到EP=MD ,AE=PD .设点P (﹣1,a ),点M (a ﹣1,a ﹣2).将点M 的坐标代入抛物线的解析式可求得a 的值,从而得到点M 与点P 的坐标.【解答】解:(1)∵y=(x+1)2+k 与y 轴交于点C (0,﹣3)﹣3=1+k ,得,k=﹣4∴抛物线解析式为y=(x+1)2﹣4,即y=x 2+2x ﹣3.(2)如图1所示:连结AC ,过点M 作MD ⊥AC ,交AD 于点D .令y=0得:x 2+2x ﹣3=0,解得x 1=﹣3,x 2=1,∴A (﹣3,0)、B (1,0).设直线AC 的解析式为y=kx+b .∵将A (﹣3,0)、C (0,﹣3)代入得:,解得k=﹣1,b=﹣3. ∴直线AC 解析式为y=﹣x ﹣3.设M (x ,x 2+2x ﹣3),则D (x ,﹣x ﹣3),则MD=﹣x 2﹣3x .∵四边形AMCB 的面积=△ABC 面积+△AMC 面积,∴四边形AMCB 的面积=MD •AO+AB •OC=×(﹣x 2﹣3x )×3+×4×3=﹣x 2﹣x+6=﹣(x+)2+.∴当x=﹣时,S 最大值为,点M 的坐标为(﹣,﹣). (3)存在,理由如下.∵x=﹣=﹣1,∴抛物线的对称轴为x=﹣1.如图2所示:过点M作MD⊥直线x=﹣1,垂足为D,设直线x=﹣1与x轴交于点E∵△APM为等腰直角三角形,∴AP=PM,∠APE+∠MPD=90°.∵∠MPD+∠PMD=90°,∴∠PMD=∠APE.在△APE和△PMD中,∴△APE≌△PMD.∴EP=MD,AE=PD.设点P(﹣1,a),点M(a﹣1,a﹣2).将M点代入y=x2+2x﹣3中,得(a﹣1)2+2(a﹣1)﹣3=a﹣2,整理得:a2﹣a﹣2=0,解得a=2或a=﹣1,∵点P在x轴的下方,∴a=﹣1.∴P(﹣1,﹣1)、M(﹣2,﹣3).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求一次函数、二次函数的解析式、全等三角形的性质和判断、求二次函数的最大值,列出S与x的函数关系式是解答问题(2)的关键,用含a的式子表示点M的坐标是解答问题(3)的关键.。

2014-2015年山东省日照市莒县五校联考九年级(上)期中数学试卷和答案

2014-2015学年山东省日照市莒县五校联考九年级(上)期中数学试卷一、选择题(共12小题,1-8题每题3分,9-12题每题4分,共40分)1.(3分)在下列图案中,是中心对称图形的是()A. B.C.D.2.(3分)同时掷两枚质地均匀的硬币,恰好有2枚正面朝上的概率是()A.B.C.D.3.(3分)4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张 B.第二张、第三张C.第三张、第四张 D.第四张、第一张4.(3分)下列成语中描述的事件必然发生的是()A.水中捞月B.瓮中捉鳖C.守株待兔D.拔苗助长5.(3分)AB为⊙O的直径,弦CD⊥AB,垂足为E,下列结论中错误的是()A.CE=DE B.C.∠BAC=∠BAD D.AC=ED6.(3分)如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于()A.15°B.20°C.30°D.70°7.(3分)如果扇形的圆心角为150°,它的面积为240π cm2,那么扇形的半径为()A.48cm B.24cm C.12cm D.6cm8.(3分)如图,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S39.(4分)△ABC的三边长分别为6、8、10,则其内切圆和外接圆的半径分别是()A.2,5 B.1,5 C.4,5 D.4,1010.(4分)如图所示,把边长为2的正方形ABCD的一边放在定直线L上,按顺时针方向绕点D旋转到如图的位置,则点B运动到点B′所经过的路线长度为()A.1 B.πC.D.π11.(4分)如图,直线x=t(t>0)与反比例函数的图象分别交于B、C两点,A为y轴上的任意一点,则△ABC的面积为()A.3 B.C.D.不能确定12.(4分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A.1 B.﹣3 C.4 D.1或﹣3二、填空题(共5小题,每小题4分,满分20分)13.(4分)反比例函数y=的图象如图所示,则实数m的取值范围是.14.(4分)如图,AB为⊙O直径,∠BAC的平分线交⊙O于D点,∠BAC=40°,∠ABD=.15.(4分)如图,⊙O的半径为1,圆心O在正三角形的边AB上沿图示方向移动.当⊙O移动到与AC边相切时,OA的长为.16.(4分)一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是.17.(4分)如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.三、解答题(共5小题,满分60分)18.(10分)某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1,2,3,4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率.19.(12分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC关于原点对称的△A2B2C2;并写出各点的坐标.(2)在x轴上求作一点P,使△PAB的周小最小,请画出△PAB,并直接写出P的坐标.20.(12分)如图,⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙于E,交AM于D,交BN于C.设AD=x,BC=y.(1)求证:AM∥BN.(2)探究y与x的函数关系.21.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN ⊥AC于点N.(1)求证:MN是⊙O的切线;(2)若∠BAC=120°,AB=2,求图中阴影部分的面积.22.(14分)如图,矩形ABDC中,AB∥x轴,AC∥y轴,反比例函数y=(x>0)的图象过点B,C,直线BC交x轴于点E,交y轴于点F.(1)若点A的坐标为(1,2),求矩形ABCD的面积;(2)在(1)的条件下,判断线段BE与CF的大小关系,并说明理由;(3)若点A的坐标为(m,n),请直接写出当m,n满足什么关系时,线段CF,CB,BE相等.2014-2015学年山东省日照市莒县五校联考九年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,1-8题每题3分,9-12题每题4分,共40分)1.(3分)在下列图案中,是中心对称图形的是()A. B.C.D.【解答】解:A、不是中心对称图形.故A选项错误;B、不是中心对称图形.故B选项错误;C、是中心对称图形.故C选项正确;D、不是中心对称图形.故D选项错误.故选:C.2.(3分)同时掷两枚质地均匀的硬币,恰好有2枚正面朝上的概率是()A.B.C.D.【解答】解:∵同时掷两枚质地均匀的硬币,共有4种结果,而两枚正面朝上的结果有一种,∴恰好有2枚正面朝上的概率是.故选B.3.(3分)4张扑克牌如图(1)所示放在桌子上,小敏把其中两张旋转180°后得到如图(2)所示,那么她所旋转的牌从左起是()A.第一张、第二张 B.第二张、第三张C.第三张、第四张 D.第四张、第一张【解答】解:观察两个图中可以发现,所有图形都没有变化,所以旋转的扑克是成中心对称的第一张和第二张.故选:A.4.(3分)下列成语中描述的事件必然发生的是()A.水中捞月B.瓮中捉鳖C.守株待兔D.拔苗助长【解答】解:A、水中捞月是不可能事件,故本选项错误;B、瓮中捉鳖是一定能发生的事件,属必然事件,故本选项正确;C、守株待兔是可能发生也可能不发生的事件,是随机事件,故本选项错误;D、拔苗助长是一定不会发生的事件,是不可能事件,故本选项错误.故选:B.5.(3分)AB为⊙O的直径,弦CD⊥AB,垂足为E,下列结论中错误的是()A.CE=DE B.C.∠BAC=∠BAD D.AC=ED【解答】解:∵AB为⊙O的直径,弦CD⊥AB,∴CE=DE,=,=,∴∠BAC=∠BAD,AC=AD.故选:D.6.(3分)如图,AB是⊙O的弦,BC与⊙O相切于点B,连接OA、OB.若∠ABC=70°,则∠A等于()A.15°B.20°C.30°D.70°【解答】解:∵BC与⊙O相切于点B,∴OB⊥BC,∴∠OBC=90°,∵∠ABC=70°,∴∠OBA=∠OBC﹣∠ABC=90°﹣70°=20°,∵OA=OB,∴∠A=∠OBA=20°.故选:B.7.(3分)如果扇形的圆心角为150°,它的面积为240π cm2,那么扇形的半径为()A.48cm B.24cm C.12cm D.6cm【解答】解:设扇形的半径为r,∵扇形的圆心角为150°,它的面积为240πcm2,∴=240π,解得r=24.故选:B.8.(3分)如图,直线l和双曲线交于A、B两点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别为C、D、E,连接OA、OB、0P,设△AOC的面积为S1、△BOD的面积为S2、△POE的面积为S3,则()A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S3【解答】解:结合题意可得:AB都在双曲线y=上,则有S1=S2;而AB之间,直线在双曲线上方;故S1=S2<S3.故选:D.9.(4分)△ABC的三边长分别为6、8、10,则其内切圆和外接圆的半径分别是()A.2,5 B.1,5 C.4,5 D.4,10【解答】解:∵62+82=102,∴△ABC为直角三角形,∴△ABC的内切圆的半径==2,△ABC的外接圆的半径==5.故选:A.10.(4分)如图所示,把边长为2的正方形ABCD的一边放在定直线L上,按顺时针方向绕点D旋转到如图的位置,则点B运动到点B′所经过的路线长度为()A.1 B.πC.D.π【解答】解:如图,连结DB、DB′,∵四边形ABCD为正方形,∴∠BDC=45°,BD=AB=2,∵正方形ABCD按顺时针方向绕点D旋转到如图的位置,点B运动到点B′,∴∠CDB′=45°,BD=DB′=2,∴∠BDB′=90°,∴点B运动到点B′所经过的路线长==π.故选:D.11.(4分)如图,直线x=t(t>0)与反比例函数的图象分别交于B、C两点,A为y轴上的任意一点,则△ABC的面积为()A.3 B.C.D.不能确定【解答】解:把x=t分别代入,得y=,y=﹣,所以B(t,)、C(t,﹣),所以BC=﹣(﹣)=.∵A为y轴上的任意一点,∴点A到直线BC的距离为t,∴△ABC的面积=××t=.故选:C.12.(4分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上.若点A的坐标为(﹣2,﹣2),则k的值为()A.1 B.﹣3 C.4 D.1或﹣3【解答】解:设C(x,y).∵四边形ABCD是矩形,点A的坐标为(﹣2,﹣2),∴B(﹣2,y)、D(x,﹣2);∵矩形ABCD的对角线BD经过坐标原点,∴设直线BD的函数关系式为:y=kx,∵B(﹣2,y)、D(x,﹣2),∴k=,k=,∴=,即xy=4;①又∵点C在反比例函数的图象上,∴xy=k2+2k+1,②由①②,得k2+2k﹣3=0,即(k﹣1)(k+3)=0,∴k=1或k=﹣3,故选:D.二、填空题(共5小题,每小题4分,满分20分)13.(4分)反比例函数y=的图象如图所示,则实数m的取值范围是m>1.【解答】解:∵反比例函数y=的图象位于第一、第三象限,∴m﹣1>0,∴m>1.故答案为m>1.14.(4分)如图,AB为⊙O直径,∠BAC的平分线交⊙O于D点,∠BAC=40°,∠ABD=70°.【解答】解:∵AD平分∠BAC,∴∠BAD=∠BAC=×40°=20°,∵AB为直径,∴∠ADB=90°,∴∠ABD=90°﹣∠BAD=70°.故答案为70°.15.(4分)如图,⊙O的半径为1,圆心O在正三角形的边AB上沿图示方向移动.当⊙O移动到与AC边相切时,OA的长为.【解答】解:如图.连接OD.∵AC与⊙O相切于点D,∴∠ADO=90°.∵△ABC为正三角形,∴∠A=60°.∴sin∠A=,∴∴OA=.16.(4分)一个暗箱里放有a个除颜色外完全相同的球,这a个球中红球只有3个.若每次将球搅匀后,任意摸出1个球记下颜色再放回暗箱.通过大量重复摸球试验后发现,摸到红球的频率稳定在20%附近,那么可以推算出a的值大约是15.【解答】解:由题意可得,×100%=20%,解得,a=15个.故答案为15.17.(4分)如图,在Rt△OAB中,OA=4,AB=5,点C在OA上,AC=1,⊙P的圆心P在线段BC上,且⊙P与边AB,AO都相切.若反比例函数y=(k≠0)的图象经过圆心P,则k=.【解答】解:设⊙P与边AB,AO分别相切于点E、D,连接PE、PD、PA,如图所示.则有PD⊥OA,PE⊥AB.设⊙P的半径为r,∵AB=5,AC=1,∴S=AB•PE=r,S△APC=AC•PD=r.△APB∵∠AOB=90°,OA=4,AB=5,∴OB=3.=AC•OB=×1×3=.∴S△ABC=S△APB+S△APC,∵S△ABC∴=r+r.∴r=.∴PD=.∵PD⊥OA,∠AOB=90°,∴∠PDC=∠BOC=90°.∴PD∥BO.∴△PDC∽△BOC.∴=.∴PD•OC=CD•BO.∴×(4﹣1)=3CD.∴CD=.∴OD=OC﹣CD=3﹣=.∴点P的坐标为(,).∵反比例函数y=(k≠0)的图象经过圆心P,∴k=×=.故答案为:.三、解答题(共5小题,满分60分)18.(10分)某商场开展购物抽奖活动,抽奖箱中有4个标号分别为1,2,3,4的质地、大小相同的小球,顾客任意摸取一个小球,然后放回,再摸取一个小球,若两次摸出的数字之和为“8”是一等奖,数字之和为“6”是二等奖,数字之和为其它数字则是三等奖,请分别求出顾客抽中一、二、三等奖的概率.【解答】解:列表得:∴一共有16种情况,两次摸出的数字之和为“8”的有一种,数字之和为“6”的有3种情况,数字之和为其它数字的有12种情况,∴抽中一等奖的概率为,抽中二等奖的概率为,抽中三等奖的概率为.19.(12分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC关于原点对称的△A2B2C2;并写出各点的坐标.(2)在x轴上求作一点P,使△PAB的周小最小,请画出△PAB,并直接写出P的坐标.【解答】解:(1)△A2B2C2如图所示:坐标为:A2(﹣1,﹣1),B2(﹣4,﹣2),C2(﹣3,﹣4);(2)作出点A关于x轴的对称点A′,连接A′B与x轴相交于点P,连接AP、BP,即可得出△PAB,点P坐标为(2,0).20.(12分)如图,⊙O的直径AB=2,AM和BN是它的两条切线,DE切⊙于E,交AM于D,交BN于C.设AD=x,BC=y.(1)求证:AM∥BN.(2)探究y与x的函数关系.【解答】(1)证明:∵AM和BN是⊙O的两条切线,∴AB⊥AD,AB⊥BC,∴AM∥BN.(2)解:作DF⊥BN交BC于F,∵AB⊥AM,AB⊥BN.又∵DF⊥BN,∴∠BAD=∠ABC=∠BFD=90°,∴四边形ABFD是矩形,∴BF=AD=x,DF=AB=2,∵BC=y,∴FC=BC﹣BF=y﹣x;∵AM和BN是⊙O的两条切线,DE切⊙O于E,∴DE=DA=x CE=CB=y,则DC=DE+CE=x+y,在Rt△DFC中,由勾股定理得:(x+y)2=(x﹣y)2+22,整理为:y=,∴y与x的函数关系为:y=.21.(12分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点M,MN ⊥AC于点N.(1)求证:MN是⊙O的切线;(2)若∠BAC=120°,AB=2,求图中阴影部分的面积.【解答】(1)证明:连接OM.∵OM=OB,∴∠B=∠OMB.∵AB=AC,∴∠B=∠C.∴∠OMB=∠C.∴OM∥AC.∵MN⊥AC,∴OM⊥MN.∵点M在⊙O上,∴MN是⊙O的切线.(5分)(2)解:连接AM.∵AB为直径,点M在⊙O上,∴∠AMB=90°.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°.∴∠AOM=60°.又∵在Rt△AMC中,MN⊥AC于点N,∴∠AMN=30°.∴AN=AM•sin∠AMN=AC•sin30°•sin30°=.∴MN=AM•cos∠AMN=A C•sin30°•cos30°=.(8分)∴S=,梯形ANMOS扇形OAM=,∴S==﹣.(11分)阴影22.(14分)如图,矩形ABDC中,AB∥x轴,AC∥y轴,反比例函数y=(x>0)的图象过点B,C,直线BC交x轴于点E,交y轴于点F.(1)若点A的坐标为(1,2),求矩形ABCD的面积;(2)在(1)的条件下,判断线段BE与CF的大小关系,并说明理由;(3)若点A的坐标为(m,n),请直接写出当m,n满足什么关系时,线段CF,CB,BE相等.【解答】解:(1)∵矩形ABDC中,AB∥x轴,AC∥y轴,点A的坐标为(1,2),∴点B的纵坐标为2,点C的横坐标为1,∵反比例函数y=(x>0)的图象过点B,C,∴B(3,2),C(1,6),∴AB=3﹣1=2,AC=6﹣2=4,∴S=AB•AC=8;矩形ABCD(2)BE=CF.理由:设直线BC的解析式为:y=kx+b,把B,C的坐标代入得:,解得:,∴直线BC的解析式为:y=﹣2x+8,∴点E(4,0),点F(0,8),∴BE==,CF==,∴BE=CF;(3)延长DC交y轴于点M,延长DB交轴于点N,∵矩形ABDC中,AB∥x轴,AC∥y轴,点A的坐标为(m,n),∴点B的纵坐标为n,点C的横坐标为m,∵反比例函数y=(x>0)的图象过点B,C,∴B(,n),C(m,),∴CM=m,AB=﹣m,AC=﹣n,BN=n,∵矩形ABDC中,AB∥x轴,AC∥y轴,∴∠FMC=∠A=∠BNE=90°,∠FCM=∠CBA=∠BEN,∴△FMC∽△CAB∽△BNE,∴,,∴若CF=CB=BE,则CM=AB,BN=AC,∴m=﹣m,﹣n=n,∴2mn=6,即mn=3.∴当m,n满足mn=3时,线段CF,CB,BE相等.。

山东省日照市五莲县北京路中学2024-2025学年九年级上学期期中考试数学试题-L

山东省日照市五莲县北京路中学2024-2025学年九年级上学期期中考试数学试题一、单选题1.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .2.已知点()2,A m 和点(),1B n -关于原点对称,则m n += ()A .1B .1-C .3D .4-3.一元二次方程2820x x +-=,配方为()24x k +=,则k 的值为( )A .14B .15C .18D .204.某经济技术开发区今年一月份工业产值达50亿元,且一月份、二月份、三月份的总产值为175亿元,若设平均每月的增长率为x ,根据题意可列方程( )A .250(1)175x +=B .25050(1)175x ++=C .250(1)50(1)175x x +++=D .25050(1)50(1)175x x ++++=5.正方形绕其中心旋转一定的角度与原图形重合,则这个角至少为( )A .60︒B .45︒C .90︒D .180︒6.将抛物线223y x x =-+先沿水平方向向左平移1个单位,再沿竖直方向向下平移3个单位,则得到的新抛物线的解析式为( )A .2(2)3y x =-+B .2(2)5y x =-+C .24y x =+D .21y x =-7.如图,MN 是O 的直径,OD 是弦NP 的弦心距,2cm OD =, MP为60︒,则MN 为( )A .6cmB .8cmC .10cmD .4cm8.如图,ABC V 中,90ACB ∠=︒,4BC =,3AC =,将ABC V 绕点B 逆时针旋转得A BC ''△,若点C '在AB 上,则AA '的长为( )A .4BC D .59.设()12,y -,()21,y -,()32,y 是抛物线224y x x =++上的三点,则1y ,2y ,3y 的大小关系为( )A .123y y y >>B .132y y y >>C .312y y y >>D .321y y y >>10.如图,在O 中,AB 是弦,AC 是O 切线,过B 点作BD AC ⊥于D ,BD 交O 于E 点,若AE 平分BAD ∠,则ABD ∠的度数是( )A .30︒B .45︒C .50︒D .60︒11.如图,在直角坐标系中,以点O 为圆心,半径为4的圆与 y 轴交于点B ,点()84A ,是圆外一点,直线AC 与O 切于点C ,与x 轴交于点D ,则点C 的坐标为( )A.(22B .(125,-85)C .(165,-125)D .(22-)12.如图为二次函数2y ax bx c =++的图象,在下列说法中:①0ac <;②方程20ax bx c ++=的根是11x =-,23x =;③0a b c ++<;④当1x >时,y 随x 的增大而减小;⑤20a b -=;⑥240b ac ->.下列结论一定成立的是( )A .①②④⑥B .①②③⑥C .②③④⑤⑥D .①②③④二、填空题13.下列图形中既是轴对称图形又是中心对称图形的有(填序号).①平行四边形、②矩形、③等腰三角形、④线段、⑤菱形.14.在半径为1的⊙O 中,弦AB 的长为1,则弦AB 所对弧的度数 .15.二次函数y=ax 2+bx+c 和一次函数y=mx+n 的图像如图所示,则ax 2+bx+c≤mx+n 时,x 的取值范围是 .16.如图,在Rt ABC △中,90ACB ∠=︒,60A ∠=︒,2AC =,将ABC V 绕点C 按逆时针方向旋转得到A B C ''△,此时点A '恰好在AB 边上,连结BB ',则A BB '' 的周长为 .17.如图,在ABC V 中,90C ∠=︒,O 是ABC V 的内切圆,切点分别为D 、E 、F ,若3BD =,2AD =,则O 的半径为 .18.如图,已知正方形ABCD 中,两动点M 和N 分别从顶点B 、C 同时出发,以相同的速度沿BC 、CD 向终点C 、D 运动,连接AM 、BN ,交于点P ,再连接PC ,若4AB =,则PC 长的最小值为 .三、解答题19.用适当的方法解方程:(1)()()221321x x +=+;(2)27100x x -+=.20.已知1x 、2x 是关于x 的一元二次方程()222130x m x m -+++=的两个实数根.(1)求m 的取值范围;(2)是否存在实数根m ,使()()12116x x m --=+成立,若存在,求出m 的值,若不存在,请说明理由.21.某商场销售一种商品,进价为每个20元,规定每个商品售价不低于进价,且不高于60元.经调查发 现,每天的销售量y(个)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:(1)求y 与x 之间的函数关系式;(2)设商场每天获得的总利润为w (元),求w 与x 之间的函数关系式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?22.如图,四边形ABCD 内接于O ,90DAB ∠=︒,点E 在BC 的延长线上,且CED CAB ∠=∠.(1)求证:DE 是O 的切线;(2)若AC DE ∥,当4AB =,2DC =时,求AC 的长.23.已知AOB V 和MON △都是等腰直角三角形,90OM ON AOB MON ⎫<=∠=∠=⎪⎭︒.(1)如图1:连,AM BN ,求证:AM BN =;(2)若将MON △绕点O 顺时针旋转,①如图2,当点N 恰好在AB 边上时,若1,2AN ON ==,请求出线段BN 的长;②当点,,A M N 在同一条直线上时,若AB ON ==BN 的长.24.如图所示,抛物线2y ax bx c =++与x 轴相交于()()1,03,0A B -与y 轴相交于点C (0,−3),点M 为抛物线的顶点.(1)求抛物线的解析式及顶点M 的坐标;(2)如图2,若点N 是第四象限内抛物线上的一个动点,过点N 作x 轴的垂线,垂足为D ,并与直线BC 交于点Q ,连接BN CN 、.求BCN △面积的最大值及此时点N 的坐标.(3)若点P 在y 轴上,PBC △为等腰三角形,请直接写出P 点的坐标。

【最新】山东省日照市五莲县九年级数学上学期期末考试试题含解析青岛版_2922

【最新】山东省日照市五莲县九年级数学上学期期末考试一试题含分析青岛版_2922 Evaluation Only. Created with Aspose.PDF. Copyright 2002-2020 Aspose Pty Ltd.

山东省日照市五莲县 2015-2016 学年九年级数学上学期期末考试一试 题 一、选择题:本大题共 12 小题,此中 1-8 小题每题 3 分,9-12 小题每题 3 分,共 40 分.在每题给出的四个选项中,只有一项为哪一项正确的,请将正确的字母代号涂在答题卡相 应地点上. 1.以下方程是一元二次方程的是( ) A.(x﹣3)x=x 2+2 B.ax2+bx+c=0 C.3x 2 2=1

﹣+2=0 D.2x

2.以下表记中,既是轴对称图形,又是中心对称图形的是( ) A. B

3.把方程 配方,化为( x+m) 2 =n 的形式应为( ) 2 A.

4.如图,△ ODC是由△ OAB绕点 O顺时针旋转 31° 后获得的图形,若点 D恰巧落在 AB上, 且∠AOC的度数为 100° ,则∠ DOB的度数是( )

.38° D.40° .如图,从一块直径是 8m的圆形铁皮上剪出一个圆心角为 90° 的扇形,将剪下的扇形围 成一个圆锥,圆锥的高是( )m.

A . D 2 6.将一个正六面体骰子连掷两次,它们的点数都是 4 的概率是( ) A

7.如图, F 是平行四边形 ABCD对角线 BD上的点, BF:FD=1:3,则 BE:EC=( ) A 8.函数 y=与 y=﹣kx 2+k(k≠0)在同向来角坐标系中的图象可能是( )

A. B

9.若 为实数,则函数 )x 2+mx+1的图象与坐标轴交点的个数为( )

A.3 .2 或 3

10.如图, AB为⊙O的直径, C为⊙O上一点,弦 AD均分∠ BAC,交 BC于点 E,AB=6,AD=5, 则 AE的长为( )

【初三数学】日照市九年级数学上期中考试检测试卷及答案

新九年级(上)数学期中考试题(答案)(1)一、选择题1.已知∠A=40°,则它的余角为( )A.40°B.50°C.130°D.140°答案 B2.如图,四个立体图形中,从左面看,所看到的图形为长方形的( )A.①③B.①④C.②③D.③④答案 B3.下面说法:①线段AC=BC,则C是线段AB的中点;②两点之间直线最短;③延长直线AB;④一个角既有余角又有补角,它的补角一定比它的余角大.其中正确的有( )A.0个B.1个C.2个D.3个答案 B4.如图,小于平角的角有( )A.9个B.8个C.7个D.6个答案 C5.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )A.3cmB.6cmC.11cmD.14cm答案 B6.小明由点A出发向正东方向走10m到达点B,再由点B向东南方向走10m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D7.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D8.在市委、市政府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图,原正方体中与“文”字所在的面相对的面上标的字应是( )A.全B.明C.城D.国答案 C9.若∠α与∠β互为补角,∠β的一半比∠α小30°,则∠α为( )A.30°B.80°C.100°D.140°答案 B10.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D11.用一副三角板不能画出的角为A.75°B.95°C.105°D.165°答案B12.如图所示,∠AOB=90°,∠AOC=40°,∠COD∶∠COB=1∶2,则∠BOD=A .40°B .50°C .25°D .60°答案C13.如图,C 、D 是线段AB 上的点,若AB =8,CD =2,则图中以A 、C 、D 、B 为端点的所有线段的长度之和为A .24B .22C .20D .26答案D14.角α和β互补,α>β,则β的余角为A .α–βB .180°–α–βC .D .答案C二、填空题15.如图,从A 到B 的最短的路线是 .答案 A →F →E →B16.如图所示,延长线段AB 到C,使BC=4,若AB=8,则线段AC 的长是BC 的 倍.答案 317.如图,已知M 、N 分别是AC 、CB 的中点,MN=6 cm,则AB= cm.1()2αβ-90αβ︒-答案1218.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于.答案2419.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.答案(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC20.如图,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.(1)∠MON= ;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”)答案(1)42°(2)不会三、解答题21.计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.答案(1)116°21'15″.(2)12°22'13″.22.如果一个角的余角是它的补角的,求这个角的度数.答案设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.画图并计算:已知线段AB=2cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.答案(1)如图.(2)点A是线段DC的中点,AB=CD.(3)BC=AB=×2=1(cm),因而AC=AB+BC=2+1=3(cm).而AD=AC=3cm,故BD=DA+AB=3+2=5(cm).24.如图,七年级小林同学在一张透明纸上画了一条长8cm的线段MN,并在线段MN上任意找了一个不同于M、N的点C,然后用折纸的方法找出了线段MC、NC的中点A和B,并求出了线段AB的长为4cm.回答:(1)小林是如何找到线段MC、NC的中点的?又是如何求出线段AB的长为4cm的?(2)在反思解题过程时,小林想到:如果点C在线段MN的延长线上,“AB=4cm”这一结论还成立吗?请你帮小林画出图形,并解决这一问题.答案(1)纸是透明的,小林将纸对折,依次使点M、C重合,点N、C重合,两个折痕与线段MN的交点就分别是中点A和B,AB=AC+BC=MC+NC=MN=×8=4(cm).(2)成立.理由:如图,若点C在线段MN的延长线上,AB=AC-BC=MC-NC=(MC-NC)=MN=×8=4(cm).25.如图所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC 的度数.答案因为OE平分∠AOB,∠AOB=90°,所以∠BOE=45°.又∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°.又因为OF平分∠BO新人教版九年级(上)期中模拟数学试卷及答案一、填空题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.(3分)如图,不是中心对称图形的是()A.B.C.D.2.(3分)若y=(m﹣2)x+3x﹣2是二次函数,则m等于()A.﹣2B.2C.±2D.不能确定3.(3分)方程x2﹣2x﹣4=0和方程x2﹣4x+2=0中所有的实数根之和是()A.2B.4C.6D.84.(3分)若将抛物线y=x2向右平移2个单位,再向上平移3个单位,则所得抛物线的表达式为()A.y=(x+2)2+3B.y=(x﹣2)2+3C.y=(x+2)2﹣3D.y=(x﹣2)2﹣3 5.(3分)如图,已知在⊙O中,点A,B,C均在圆上,∠AOB=80°,则∠ACB等于()A.130°B.140°C.145°D.150°6.(3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,系列结论:(1)4a+b=0;(2)4a+c>2b;(3)5a+3c>0;(4)方程a (x﹣1)2+b(x﹣1)+c=0的两根是x1=0,x2=6.其中正确的结论有()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2015的值为.8.(3分)已知A(﹣2,y1),B(﹣1,y2),C(1,y3)两点都在二次函数y=(x+1)2+m 的图象上,则y1,y2,y3的大小关系为.9.(3分)将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD=110°,则∠COB =度.10.(3分)将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B 的读数分别为86°、30°,则∠ACB的大小为.11.(3分)如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为.12.(3分)如图,点O是等边△ABC内一点,∠AOB=110°.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.当α为度时,△AOD是等腰三角形?三、(本大题共5小题,每小题12分,共30分)13.(12分)用适当的方法解下列方程:(1)(x﹣3)2=2x﹣6;(2)2x2+5x﹣3=014.(8分)随着港珠澳大桥的顺利开通,预计大陆赴港澳旅游的人数将会从2018年的100万人增至2020年的144万人,求2018年至2020年这两年的赴港旅游人数的年平均增长率.15.(10分)如图,有一座抛物线型拱桥,桥下面水位AB宽20米时,此时水面距桥面4米,当水面宽度为10米时就达到警戒线CD,若洪水到来时水位以每小时0.2米的速度上升,问从警戒线开始,再持续多少小时才能到拱桥顶?(平面直角坐标系是以桥顶点为点O的)16.(6分)如图,抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,请仅用无刻度的直尺,分别按下列要求画图.(1)如图(1),在抛物线y=ax2+bx+c找一点D,使点D与点C关于抛物线对称轴对称.(2)如图(2),点D为抛物线上的另一点,且CD∥AB,请画出抛物线的对称轴.17.(13分)如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(点D与A,B不重合),连结CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连结DE 交BC于点F,连接BE.(1)求证:△ACD≌△BCE;(2)当AD=BF时,求∠BEF的度数.四.(本大题共3小题,每小题10分,共24分)18.(10分)已知一元二次方程x2﹣4x+k=0有两个不相等的实数根(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程x2﹣4x+k=0与x2+mx﹣1=0有一个相同的根,求此时m的值.19.(8分)如图,有长为24m的篱笆,现一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数关系式及x值的取值范围;(2)要围成面积为45m2的花圃,AB的长是多少米?20.(10分)如图,已知直线P A交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠P AE,过C作CD⊥P A,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.五.(本大题共2小题,每小题9分,共18分)21.(9分)如果关于x的一元二次方程ax2+bx+c=0(a≠0)有两个实数根,且其中一个根为另一个根的2倍,那么称这样的方程为“倍根方程”.例如,一元二次方程x2﹣6x+8=0的两个根是2和4,则方程x2﹣6x+8=0就是“倍根方程”.(1)若一元二次方程x2﹣3x+c=0是“倍根方程”,则c=;(2)若(x﹣2)(mx﹣n)=0(m≠0)是“倍根方程”,求代数式的值;(3)若方程ax2+bx+c=0(a≠0)是倍根方程,且不同的两点M(k+1,5),N(3﹣k,5)都在抛物线y=ax2+bx+c上,求一元二次方程ax2+bx+c=0(a≠0)的根.22.(9分)在Rt△ABC中,∠ACB=90°,∠A=30°,点D是AB的中点,DE⊥BC,垂足为点E,连接CD.(1)如图1,DE与BC的数量关系是;(2)如图2,若P是线段CB上一动点(点P不与点B、C重合),连接DP,将线段DP 绕点D逆时针旋转60°,得到线段DF,连接BF,请猜想DE、BF、BP三者之间的数量关系,并证明你的结论;(3)若点P是线段CB延长线上一动点,按照(2)中的作法,请在图3中补全图形,并直接写出DE、BF、BP三者之间的数量关系.六、(本大题共12分)23.(9分)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.2018-2019学年江西省赣州市南康区五校九年级(上)期中数学试卷参考答案与试题解析一、填空题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.【解答】解:根据中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,可知A、B、C是中心对称图形;D不是中心对称图形.故选:D.2.【解答】解:由题意,得m2﹣2=2,且m﹣2≠0,解得m=﹣2,故选:A.3.【解答】解:∵方程x2﹣2x﹣4=0的根的判别式△=(﹣2)2﹣4×1×(﹣4)=20>0,∴方程x2﹣2x﹣4=0有两个不相等的实数根,两根之和为2;∵方程x2﹣4x+2=0的根的判别式△=(﹣4)2﹣4×1×2=8>0,∴方程x2﹣4x+2=0有两个不相等的实数根,两根之和为4.∵2+4=6,∴两方程所有的实数根之和是6.故选:C.4.【解答】解:将抛物线y=x2向右平移2个单位可得y=(x﹣2)2,再向上平移3个单位可得y=(x﹣2)2+3,故选:B.5.【解答】解:设点E是优弧AB上的一点,连接EA,EB∵∠AOB=80°∴∠E=∠AOB=40°∴∠ACB=180°﹣∠E=140°.故选:B.6.【解答】解:由对称轴为直线x=2,得到﹣=2,即b=﹣4a,∴4a+b=0,故(1)正确;当x=﹣2时,y=4a﹣2b+c<0,即4a+c<2b,故(2)错误;当x=﹣1时,y=a﹣b+c=0,∴b=a+c,∴﹣4a=a+c,∴c=﹣5a,∴5a+3c=5a﹣15a=﹣10a,∵抛物线的开口向下∴a<0,∴﹣10a>0,∴5a+3c>0;故(3)正确;∵方程ax2+bx+c(a≠0)=0的两根为x1=﹣1,x2=5,∴方程a(x﹣1)2+b(x﹣1)+c=0的两根是x1=0,x2=6,故(4)正确.故选:C.二、填空题(本大题共6小题,每小题3分,共18分)7.【解答】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1∴原式=3(2m2﹣3m)+2015=2018故答案为:20188.【解答】解:∵二次函数y=(x+1)2+m,∴当x>﹣1时,y随x的增大而增大,当x<﹣1时,y随x的增大而减小,函数有最小值,顶点坐标为(﹣1,m),∵点A(﹣2,y1),B(﹣1,y2),C(1,y3)两点都在二次函数y=(x+1)2+m的图象上,﹣1﹣(﹣2)=1,﹣1﹣(﹣1)=0,1﹣(﹣1)=2,∴y2<y1<y3,故答案为:y2<y1<y3.9.【解答】解:由题意可得∠AOB+∠COD=180°,又∠AOB+∠COD=∠AOC+2∠COB+∠BOD=∠AOD+∠COB,∵∠AOD=110°,∴∠COB=70°.故答案为:70.10.【解答】解:设半圆圆心为O,连OA,OB,如图,∵∠ACB=∠AOB,而∠AOB=86°﹣30°=56°,∴∠ACB=新人教版九年级第一学期期中模拟数学试卷(答案)一、选择题(共30分,每小题3分)1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定4.右面的三视图对应的物体是()A.B.C.D.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y26.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.547.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.208.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.69.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.二、填空题(共12分,每小题3分)11.方程x2=x的根是.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN=.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ最小值是.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD 在路灯光下的影长分别为BM、DN,在图中作出EF的影长.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;23.(8分)小红有青、白、黄、黑四件衬衫,又有米色、白色、蓝色三条裙子,她最喜欢的搭配是白色衬衫配米色裙子,最不喜欢青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子.(1)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配的概率是多少?(2)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会是否相等?画树状图加以分析说明.24.(10分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF•AB;(2)求证:AD•BE=DE•AB.25.(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.参考答案一、选择题1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)【分析】将(﹣2,3)代入y=即可求出k的值,再根据k=xy解答即可.解:设反比例函数解析式为y=,将点(﹣2,3)代入解析式得k=﹣2×3=﹣6,符合题意的点只有点A:k=2×(﹣3)=﹣6.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm【分析】根据平行线分线段成比例定理得出=,代入求出即可.解:∵DE∥BC,∴=,∵,AE=2cm,∴=,∴AC=6(cm),故选:C.【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的线段对应成比例.3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定【分析】把x=1代入方程,即可得到一个关于m的方程,即可求解.解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选:B.【点评】本题主要考查了方程的解的定义,正确理解定义是关键.4.右面的三视图对应的物体是()A.B.C.D.【分析】因为主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.所以可按以上定义逐项分析即可.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D 满足这两点,故选:D.【点评】本题主要考查学生对图形的三视图的了解及学生的空间想象能力.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.6.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【分析】由△ABC∽△DEF,S△ABC:S△DEF=9,根据相似三角形的面积比等于相似比的平方,即可求得△ABC与△DEF的相似比,又由相似三角形的周长的比等于相似比,即可求得△ABC与△DEF的周长比为:3:1,又由△ABC的周长为18厘米,即可求得△DEF 的周长.解:∵△ABC∽△DEF,S△ABC:S△DEF=9,∴△ABC与△DEF的相似比为:3:1,∴△ABC与△DEF的周长比为:3:1,∵△ABC的周长为18厘米,∴,∴△DEF的周长为6厘米.故选:C.【点评】此题考查了相似三角形的性质.解题的关键是掌握相似三角形的面积比等于相似比的平方与相似三角形的周长的比等于相似比定理的应用.7.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.20【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.解:根据题意得,=,解得,m=20.故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.8.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.6【分析】由矩形的性质和已知条件可求出∠AFE=∠AEF,进而推出AE=AF,求出BE,根据勾股定理求出AE,即可求出AF,即可求出答案.解:∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∴∠AFE=∠FEC,∵EF平分∠AEC,∴∠AEF=∠FEC,∴∠AFE=∠AEF,∴AE=AF,∵E为BC中点,BC=8,∴BE=4,在Rt△ABE中,A B=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD﹣AF=8﹣5=3,故选:A.【点评】本题考查了矩形性质,勾股定理的运用,平行线性质,等腰三角形的性质和判定的应用,注意:矩形的对边相等且平行是解题的关键.9.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对【分析】首先由四边形ABCD是正方形,得出∠D=∠C=90°,AD=DC=CB,又由DE =CE,FC=BC,证出△ADE∽△ECF,然后根据相似三角形的对应边成比例与相似三角形的对应角相等,证明出△AEF∽△ADE,则可得△AEF∽△ADE∽△ECF,进而可得出结论.解:图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.故选:C.【点评】此题考查了相似三角形的判定与性质,以及正方形的性质.此题难度适中,解题的关键是证明△ECF∽△ADE,在此基础上可证△AEF∽△ADE.10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.【分析】AF交GC于点K.根据△ADK∽△FGK,求出KF的长,再根据△CHK∽△FGK,求出CH的长.解:∵CD=BC=1,∴GD=3﹣1=2,∵△ADK∽△FGK,∴,即,∴DK=DG,∴DK=2×=,GK=2×=,∴KF=,∵△CHK∽△FGK,∴,∴,∴CH=.方法二:连接AC、CF,利用面积法:CH=;故选:A.【点评】本题考查了勾股定理,利用勾股定理求出三角形的边长,再构造相似三角形是解题的关键.二、填空题(共12分,每小题3分)11.方程x2=x的根是x 1=0,x2=.【分析】方程整理后,利用因式分解法求出解即可.解:方程整理得:x(x﹣)=0,可得x=0或x﹣=0,解得:x 1=0,x2=.故答案为:x 1=0,x2=【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为 4 .【分析】在Rt△AEB中,由∠AEB=90°,AB=2BE,推出∠EAB=30°,设BE=a,则AB=2a,由题意2a×a=8,推出a2=,可得k=a2=4.解:在Rt△AEB中,∵∠AEB=90°,AB=2BE,∴∠EAB=30°,设BE=a,则AB=2a,OE=a,由题意2a×a=8,∴a2=,∴k=a2=4,故答案为4.【点评】本题考查反比例函数系数的几何意义、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN= 3 .【分析】首先证明△ACB∽△AMN,可得AC:CB=AM:MN,代入数值求解即可.解:∵∠C=∠AMN=90°,∠A为△ACB和△AMN的公共角,∴△ACB∽△AMN,∴AC:CB=AM:MN,在直角△ABC中,由勾股定理得AB2=AC2+BC2,即AB=10;又∵AC=8,CB=6,AM=AB﹣6=4,∴=,即MN=3.【点评】本题主要考查相似三角形的判定和性质,涉及到勾股定理的运用.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ 最小值是3+.【分析】作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.利用勾股定理求出PQ″即可解决问题;解:作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.在Rt△PHQ″中,PQ″==,∴PM+MN+NQ的最小值=3+.故答案为3+.【点评】本题考查轴对称﹣最短问题,矩形的性质等知识,解题的关键是正确寻找PM+MN+NQ最小时点M的位置,属于中考常考题型.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.【分析】此题可以采用配方法和公式法,解题时要正确理解运用每种方法的步骤.解法一:原式可以变形为,,,∴,∴,.解法二:a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=.【点评】公式法和配方法适用于任何一元二次方程,解题时要细心.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD 在路灯光下的影长分别为BM、DN,在图中作出EF的影长.【分析】直接利用已知路灯的影子得出灯的位置,进而得出EF的影长.解:如图所示:【点评】此题主要考查了中心投影,正确得出灯的位置是解题关键.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.【分析】(1)利用位似图形的性质得出C,D两点坐标在A,B坐标的基础上,同乘以﹣2,进而得出坐标画出图形即可;(2)利用位似图形的性质得出C,D点坐标.解:(1)如图所示:;(2)如图所示:D(﹣4,2),C(﹣6,﹣2).【点评】此题主要考查了位似变换,得出对应点坐标是解题关键.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.【分析】由二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出结论.解:∵关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,∴,解得:k=﹣2.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.【分析】(1)根据邻边相等的平行四边形是菱形即可证明;(2)如图,作FH⊥BC交BC的延长线于H.在Rt△BFH中,根据勾股定理计算即可.(1)证明:∵AF∥CD,∴∠EAF=∠ECD,∵E是AC中点,∴AE=EC,在△AEF和△CED中,,∴△AEF≌△CED,∴AF=CD,∴四边形AFCD是平行四边形,∵∠ACB=90°,AD=DB,∴CD=AD=BD,∴四边形AFCD是菱形.(2)解:如图,作FH⊥BC交BC的延长线于H.∵四边形AFCD是菱形,∴AC⊥DF,EF=DE=BC=,∴∠H=∠ECH=∠CEF=90°,∴四边形FHCE是矩形,∴FH=EC=2,EF=CH=,BH=CH+BC=,在Rt△BHF中,BF==.【点评】本题考查菱形的判定和性质、三角形的中位线定理、直角三角形斜边中线的性质、矩形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.【分析】易知△EDC∽△EBA,△FHG∽△FBA,可得=,=,因为DC=HG,推出=,列出方程求出CA=106(米),由=,可得=,由此即可解决问题.解:∵△EDC∽△EBA,△FHG∽△FBA,∴=,=,∵DC=HG,∴=,∴=,∴CA=106(米),∵=,∴=,∴AB=55(米),答:舍利塔的高度AB为55米.【点评】本题考查解直角三角形的应用、相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考常考题型.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?【分析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=14求出即可.解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=14,解得:x1=1,x2=4.因为要且尽可能地减少成本,所以x2=4舍去,x+3=4.答:每盆植4株时,每盆的盈利14元.【点评】此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页(共26页) 2015-2016学年山东省日照市五莲县九年级(上)期中数学试卷 一、选择题:每小题3分,共36分。 1.(3分)方程x2﹣4=0的解是( ) A.4 B.±2 C.2 D.﹣2 2.(3分)下列图案中,既是轴对称图形又是中心对称图形的是( )

A. B. C. D. 3.(3分)平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是( ) A.(3,﹣2) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3) 4.(3分)如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )

A.120° B.90° C.60° D.30° 5.(3分)下列命题中假命题的个数是( ) ①三点确定一个圆; ②三角形的内心到三边的距离相等; ③相等的圆周角所对的弧相等; ④平分弦的直径垂直于弦; ⑤垂直于半径的直线是圆的切线. A.4 B.3 C.2 D.1 6.(3分)如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD=( ) 第2页(共26页)

A.160° B.100° C.80° D.20° 7.(3分)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当﹣5≤x≤0时,下列说法正确的是( )

A.有最小值﹣5、最大值0 B.有最小值﹣3、最大值6 C.有最小值0、最大值6 D.有最小值2、最大值6 8.(3分)为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m2提高到12.1m2.若每年的年增长率相同,则年增长率为( ) A.9% B.10% C.11% D.12% 9.(3分)已知抛物线y=ax2+bx+c的图象如图所示,那么下列四个结论:1)a+b+c<0;2)a﹣b+c<0;3)ac>0;4)b+2a>0.正确的个数是( )

A.1个 B.2个 C.3个 D.4个 10.(3分)若小李同学掷出的铅球在场地航砸出一个直径为10厘米,深2厘米的小坑,则该铅球的直径为( ) A.20厘米 B.19.5厘米 C.14.5厘米 D.10厘米 第3页(共26页)

11.(3分)二次函数y=2x2+mx+8的图象如图所示,则m的值是( ) A.﹣8 B.8 C.±8 D.6 12.(3分)在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是( )

A. B. C. D. 二、填空题:每小题4分,共16分。 13.(4分)某蔬菜基地的圆弧形蔬菜大棚的剖面如图所示,已知AB=16m,半径OA=10m,则中间柱CD的高度为 m.

14.(4分)关于方程x2﹣ax﹣2a=0的两根的平方和是5,则a的值是 . 15.(4分)如图,AB为⊙O的直径,P点在AB的延长线上,PM切⊙O于点M.若 第4页(共26页)

OA=a,PM=,那么△PMB的周长是 . 16.(4分)如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,已知∠P=50°,则∠ACB= 度.

三、解答题:本部分共7小题。 17.(10分)解下列一元二次方程. (1)x2﹣5x+1=0; (2)3(x﹣2)2=x(x﹣2). 18.(8分)如图,△ABC为等腰三角形,AB=AC,O是底边BC的中点,⊙O与腰AB相切于点D,求证:AC与⊙O相切.

19.(8分)如图,在10×10正方形网格中,每个小正方形的边长均为1个单位.将△ABC向下平移4个单位,得到△A′B′C′,再把△A′B′C′绕点C′′顺时针旋转90°,得到△A′′B′′C′′,请你画出△A′′B′′C′′和△A′′B′′C′′(不要求写画法). 第5页(共26页)

20.(10分)某商场将每件进价为80元的某种商品原来按每件100元出售,每天可售出100件,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经过市场调查,发现这种商品售价每降低1元,商场销售量平均每天可增加10件,若商场经营该商品一天要获利润2160元,且让顾客得到实惠,则每件商品应降价多少元? 21.(10分)如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃.设花圃的一边AB为xm,面积为ym2. (1)求y与x的函数关系式; (2)如果要围成面积为63m2的花圃,AB的长是多少? (3)能围成比63m2更大的花圃吗?如果能,请求出最大面积;如果不能,请说明理由.

22.(12分)已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴. (1)求抛物线的函数关系式; (2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标; (3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由. 第6页(共26页)

23.(10分)已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB. (1)求抛物线的解析式; (2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值. 第7页(共26页)

2015-2016学年山东省日照市五莲县九年级(上)期中数学试卷 参考答案与试题解析

一、选择题:每小题3分,共36分。 1.(3分)方程x2﹣4=0的解是( ) A.4 B.±2 C.2 D.﹣2 【解答】解:x2﹣4=0, ∴x2=4, 开平方得:x=±2. 故选:B.

2.(3分)下列图案中,既是轴对称图形又是中心对称图形的是( )

A. B. C. D. 【解答】解:A、此图形是轴对称图形,不是中心对称图形,故此选项错误; B、此图形是中心对称图形,也是轴对称图形,故此选项正确; C、此图形是中心对称图形,不是轴对称图形,故此选项错误; D、此图形是中心对称图形,不是轴对称图形,故此选项错误. 故选:B.

3.(3分)平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是( ) A.(3,﹣2) B.(2,3) C.(﹣2,﹣3) D.(2,﹣3) 【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3). 故选:D. 第8页(共26页)

4.(3分)如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕B点按顺时针方向转动一个角度到A1BC1的位置,使得点A,B,C1在同一条直线上,那么这个角度等于( )

A.120° B.90° C.60° D.30° 【解答】解:∵∠ABC=60°, ∴旋转角∠CBC1=180°﹣60°=120°. ∴这个旋转角度等于120°. 故选:A.

5.(3分)下列命题中假命题的个数是( ) ①三点确定一个圆; ②三角形的内心到三边的距离相等; ③相等的圆周角所对的弧相等; ④平分弦的直径垂直于弦; ⑤垂直于半径的直线是圆的切线. A.4 B.3 C.2 D.1 【解答】解:①错误,不在同一条直线上的三点确定一个圆; ②正确,三角形的内心到三边的距离相等; ③错误,在同圆或等圆中,相等的圆周角所对的弧相等; ④错误,如果平分的弦是直径,那么平分弦的直径不垂直于弦; ⑤错误,过半径的外端且垂直于半径的直线是圆的切线. 故选:A.

6.(3分)如图,四边形ABCD内接于⊙O,若∠BOD=160°,则∠BCD=( ) 第9页(共26页)

A.160° B.100° C.80° D.20° 【解答】解:∵四边形ABCD内接于⊙O, ∴∠BAD+∠BCD=180°; 又∵∠BAD=∠BOD=80°, ∴∠BCD=180°﹣∠BAD=100°; 故选:B.

7.(3分)已知二次函数y=ax2+bx+c(a<0)的图象如图所示,当﹣5≤x≤0时,下列说法正确的是( )

A.有最小值﹣5、最大值0 B.有最小值﹣3、最大值6 C.有最小值0、最大值6 D.有最小值2、最大值6 【解答】解:由二次函数的图象可知, ∵﹣5≤x≤0, ∴当x=﹣2时函数有最大值,y最大=6; 当x=﹣5时函数值最小,y最小=﹣3. 故选:B.

8.(3分)为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m2提高到12.1m2.若每年的年增长率相同,则年 第10页(共26页)

增长率为( ) A.9% B.10% C.11% D.12% 【解答】解:设每年的增长率为x,根据题意得10(1+x)2=12.1 解得x=0.1或x=﹣(舍去) 故选:B.

9.(3分)已知抛物线y=ax2+bx+c的图象如图所示,那么下列四个结论:1)a+b+c<0;2)a﹣b+c<0;3)ac>0;4)b+2a>0.正确的个数是( )

A.1个 B.2个 C.3个 D.4个 【解答】解:∵抛物线的开口方向向下, ∴a<0, ∵抛物线与y轴的交点在y轴的正半轴上, ∴c>0, 故ac<0, 由图象可知:对称轴x=>0且对称轴x=<1, ∴2a+b<0 由图象可知:当x=﹣1时y<0, ∴a﹣b+c<0; 当x=1时y>0, ∴a+b+c>0. ∴只有②正确. 故选:A.

10.(3分)若小李同学掷出的铅球在场地航砸出一个直径为10厘米,深2厘米

相关文档
最新文档