刘鸿文主编_材料力学课件全套-1

合集下载

材料力学-刘鸿文-第4版(一)

材料力学-刘鸿文-第4版(一)
Resultant Moment)
F1
F2
F3
Fn
内力主矢与主矩
分布内力
F1
FR
F3
M
41
内力分量(Components of the Internal Forces)
FQ
FR
FN MB
Mx M
在确定的坐标系中,轴力、剪力、扭矩、 弯矩及其可能产生的变形效应。
42
内力的正负号规则(Sign Rule of Internal
58
补充: 1.一点的应力状态:过一点有无数的截面,这一点的各个截面
上的应力情况,称为这点的应力状态。
2、单元体:单元体—构件内的点的代表物,是包围被研究点的
无限小的几何体,常用的是正六面体。
单元体的性质—a、平行面上,应力均布;
M P
b、平行面上,应力相等。
3、拉压杆内一点M 的应力单元体:
59
其他塑性材料
对没有明显屈服极限的塑性材料, 可以用产生0.2%塑性变
形时的应力作为屈服指标, 并用 p0.2 来表示.
铸铁和玻璃钢
只有一个强度指标b. 并用割线的斜率作为弹性模量.
卸载定律: 卸载过程中应力和应变按直线变化
弹性阶段: 弹性现象, 弹性极限 e elastic limit
3. 加载-卸载-重新加载实验
冷作硬化现象 Phenomenon of Cold-working :
试件加载超过屈服极限,卸载后重新加载引起比例极限增加和残余变形减少
的现象.
62
2、其他材料的拉伸实验

F1
F2
F3
Fn
46
正应力和切应力
垂直于截面的应力称为“正应力”

材料力学(刘鸿文版)全套课件 PPT

材料力学(刘鸿文版)全套课件 PPT

850 750 650 550
104
105
106
107
108
N
从图可以得出三点结论:
(1)对于疲劳,决定寿命的 最重要因素是应力幅 。
(2)材料的疲劳寿命N 随应力幅 的增大而减小。
(3)存在这样一个应力幅,低于该应力幅,疲劳破坏不会发生,该应力幅
称为疲劳极限,记为 -1 。
目录
对于铝合金等有色金属,其S-N曲线没有明显的水平部分,一般规定
Δ
max
m in
O t
目录
通常用以下参数描述循环应力的特征
(1)应力比 r
r min max
r = -1 :对称循环 ; r = 0 :脉动循环 。
r < 0 :拉压循环 ; r > 0 :拉拉循环 或压压循环。
(2)应力幅
max min
(3)平均应力 m
B L
解: ⑴ 弯矩方程
F
A
M (x) M e Fx
Me
⑵ 变形能
V

L
M 2 (x) dx 2EI
L
1 2EI
(M
e
Fx)2 dx

M
2 e
L

M e FL2

F 2 L2
2EI 2EI 6EI
B L
F
⑶ 当F和M0分别作用时
A M0
V 1

MeL 2EI
F 2 L3 V 2 6EI
例:试求图示悬臂梁的应变能,并利用功
能原理求自由端B的挠度。
F
解:
l
x
M (x) F x
V

刘鸿文版材料力学课件全套

刘鸿文版材料力学课件全套

pq
Me
x
圆轴扭转的平面假设:
pq
圆轴扭转变形前原为平面的横截面,变形后仍 保持为平面,形状和大小不变,半径仍保持为直线; 且相邻两截面间的距离不变。
§3.4 圆轴扭转时的应力
Me
pq
Me
_ 扭转角(rad)
pq p
q
d
a
d
c
a' O b
R
p
b′ q
dx
d _ dx微段两截面的
x
相对扭转角
边缘上a点的错动距离:
§3.4 圆轴扭转时的应力
例题3.4
已知:P=7.5kW, n=100r/min,最大切应力不 得超过40MPa,空心圆轴的内外直径之比 = 0.5。二轴长度相同。
求: 实心轴的直径d1和空心轴的外直径D2;确 定二轴的重量之比。
解: 首先由轴所传递的功率计算作用在轴上的扭矩
P 7 .5 M x T 9 5 4 9 n 9 5 4 9 1 0 0 7 1 6 .2 N m
d
T GI p dx
G
d
dx
T Ip
§3.4 圆轴扭转时的应力
公式适用于:
1)圆杆
2) max
p
横截面上某点的切应力的方向与扭矩 方向相同,并垂直于半径。切应力的大 小与其和圆心的距离成正比。

Wt
Ip R
抗扭截面系数
m ax
T Wt
在圆截面边缘上, 有最大切应力
§3.4 圆轴扭转时的应力
个平面的交线,
方向则共同指向
各个截面上只有切应
或共同背离这一 力没有正应力的情况称为
交线。
纯剪切
§3.3 纯剪切

刘鸿文版材料力学课件

刘鸿文版材料力学课件
EIiy'M 'i(x)
n
由弯矩的叠加原理知:Mi(x)M(x)
i1
n
n
所以, E Iy''i E( I yi)''M (x)
i1
i1
7-4
目录
§6-4 用叠加法求弯曲变形
n

y'' ( yi )''
i 1
由于梁的边界条件不变,因此
n
y yi i 1
重要结论:
n
§6-1 工程中的弯曲变形问题
目录
§6-2 挠曲线的微分方程
1.基本概念 y
x
转角
挠度
y
挠曲线
x
挠曲线方程:
y y(x)
挠度y:截面形心 在y方向的位移
y向上为正
转角θ:截面绕中性轴转过的角度。 逆时针为正
由于小变形,截面形心在x方向的位移忽略不计
挠度转角关系为: tan dy
yC1
yC2 yC3
3) 应用叠加法,将简单载荷作用时的结 果求和
yC

3 i1
yCi
5ql4 ql4 ql4 384EI 48EI 16EI
11ql4 ( ) 384EI
B

3 i1
Bi

ql3 24EI
ql3
16EI
ql3
3EI
11ql3 ( ) 48EI
目录
§6-3 用积分法求弯曲变形
3)列挠曲线近似微分方程并积分
AC 段: 0x1 a
EIdd2yx121 M(x1)Fl bx1
Ed d I1 1x yEI(x1)F 2l x b1 2C1

材料力学全套刘鸿文版

材料力学全套刘鸿文版

2020年3月4日星期三
材料力学
Mechanics of Materials
§1-1 材料力学的任务
材料力学研究什么?
工程材料的力学性能和构件的安全问题。
工程结构或机械的各组成部分统称为构件
1. 材料力学主要研究构件的强度、刚度和稳定性等 问题,
2. 以理论分析为基础,培养学生将工程实际问题提 炼成力学问题(即力学建模),
Mechanics of Materials
三、应力:内力系在某点
的内力集度,反映内力系
在该点的强弱。
FN
C
A
p FN m A
p

lim
A0
pm

lim
A0
FN A

dFN dA
2020年3月4日星期三
材料力学
Mechanics of Materials
应力p可分解:
正应力—— ; 切应力——。
p


应力单位:牛/米2(N/m2),称为帕斯卡或简称帕 ( Pa ) 。 通 常 使 用 的 是 兆 帕 , 即 MPa ( 1MPa=106Pa)
2020年3月4日星期三
材料力学
Mechanics of Materials
§1-5 变形和应变
y
L’
M’ M
L
M’
N’
x+ s
M x N
x
2020年3月4日星期三
到了很大的简化。
B
C
δ2
F
2020年3月4日星期三
材料力学
Mechanics of Materials

FN1
FN2

P
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档