高中数学 1.2.1任意角的三角函数(二)课时跟踪检测 新人教A版必修4

合集下载

三年级【数学】1.2.1 任意角的三角函数(人教A版必修4)2---新编版

三年级【数学】1.2.1 任意角的三角函数(人教A版必修4)2---新编版

例4 判断满足以下条件的角的终边所在的位置: ①sinθ<0 且 tanθ>0
②cosθ<0 且 tanθ<0
③cosθ>0 且 sinθ<0 ④cosθ≤0 且 tanθ≥0
(1). 若sinα=1/3,且α的终边经过点p(—1,y), 则α是第几象限的角?并求cosα,tanα的值。
y 2 ,r 3 2
3、
(1)求函数y
1
1 sin
x
的定义域。
解:∵1+sinx≠0, ∴ sinx≠-1
即角x的终边不能在y轴的负半轴上。

x 2k 3
2
,k∈Z,
故函数的定义域是
{x|x∈R,且
x 2k
3
2
,k∈Z}
(2)求 y cos x tan x 的定义域.
(3)求 y sin x lg cos x 的定义域.
r x2 y2
三角函数
定义域
sin
R
cos tan
R
{ k ,(k Z)
}
2
小结
小结 三角函数值的符号: “第一象限全为正,二正三切四余弦”
sinx
Tanx cotx
cosx
诱导公式一
sin( k 2 ) sin cos( k 2 ) cos tan( k 2 ) tan
例2.已知角α=
4
3
,分别求sinα,
cosα,tanα.
在直角坐标系中,我们称以原点O为圆心,以单
位长度为半径的圆为单位圆(unit circle).
y
B
AOB的终边与单位圆的交点坐标为
1
O
x
1 2

2014年人教A版必修四教案 1.2.1任意角的三角函数(2)

2014年人教A版必修四教案 1.2.1任意角的三角函数(2)

课 题:1.2.1 任意角的三角函数(二)教学目标:(1)掌握三角函数的符号;(2)根据定义理解与运用公式一,把求任意角的三角函数值转化为求0°~360°间的三角函数值.(3)初步应用定义分析与解决与三角函数值有关的一些简单问题. 教学重点:三种三角函数的定义域和函数值在各象限的符号;终边相同的角的同一三角函数值相等(公式一).教学难点: 理解转化,灵活运用诱导公式(一). 教学设想: 一、复习回顾:任意角的三角函数定义是什么? 二、探究新知:1.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例1.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.练习:书P15练习42.提问:角的终边落在坐标轴上三个三角函数值是多少? 完成书上P15练习33.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=, cos(2)cos k απα+=,tan(2)tan k απα+= (其中k Z ∈)利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值.例2.确定下列三角函数值的符号:(1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan 3π练习: tan(-666°36’)、tan113π例3.求下列三角函数值:(1)9cos4π; (2)11tan()6π-三、学习小结(1)你能准确判断三角函数值在各象限内的符号吗?(2)请写出各三角函数的定义域;(3)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?。

高中数学 1.2 任意角的三角函数习题课课件 新人教A版必修4

高中数学 1.2 任意角的三角函数习题课课件 新人教A版必修4

角度与弧度的互化
设 α1=-570°,α2=750°,β1=35π,β2=-π3. (1)将 α1,α2 用弧度制表示出来,并指出它们各自的终边所 在的象限; (2)将 β1,β2 用角度制表示出来,并在-720°~0°范围内找 出与它们终边相同的所有角.
思路点拨:(1)
α1,α2
角 度―度 的―与 互→弧 化
任意角三角函数的定义
已 知 角 α 的 终 边 经 过 点 P( - 4a,3a)(a≠0),求sin α、cos α、tan α的值.
思路点拨: 求|OP| 任―意―角 的―三 定 ――角 义―函→数 sin α、cos α与tan α
解:r= -4a2+3a2=5|a|. 若 a>0,则 r=5a,角 α 是第二象限角, sin α=yr=35aa=35, cos α=xr=-54aa=-45, tan α=yx=-3a4a=-34. 若 a<0,则 r=-5a,角 α 是第四象限角, sin α=-35,cos α=45,tan α=-34.
α1,α2的 弧度数
将―角 分―进 解→行
分别表示为β+2kπ的 形式,其中β∈[0,2π
―→
结果
(2)
β1,β2
角度与―弧 ―→度互化
β1,β2的 角度数
―将 分―角 解→
写出适合 条件的角
解:(1)∵180°=π rad, ∴α1=-570°=-517800π=-196π=-2×2π+56π, α2=750°=715800π=256π=2×2π+π6. ∴α1 的终边在第二象限,α2 的终边在第一象限.
第一章 三角函数 习题课(一) 任意角的三角函数
1.能进行弧度与角度的互化,认识终边相同的角并会简单 运用.

高中数学 课时跟踪训练1 任意角 新人教A版必修4-新人教A版高一必修4数学试题

高中数学 课时跟踪训练1 任意角 新人教A版必修4-新人教A版高一必修4数学试题

课时跟踪训练(一)(时间45分钟) 题型对点练(时间20分钟)题组一 任意角的概念 1.给出下列说法: ①锐角都是第一象限角; ②第一象限角一定不是负角; ③第二象限角是钝角;④小于180°的角是钝角、直角或锐角.其中正确命题的序号为________(把正确命题的序号都写上).[解析]①正确;②错,若顺时针旋转终边落在第一象限,则为负角;③错,第二象限角不都是钝角,钝角都是第二象限角;④错,小于180°的角包括负角和零角.[答案]①2.将时钟拨快20分钟,则分针转过的度数是________.[解析] 时钟拨快20分钟,相当于转了13小时.因为时针转过1小时,分针转-360°,所以时针转13小时,分针转过的度数为13×(-360°)=-120°.[答案] -120°3.写出图(1),(2)中的角α,β,γ的度数.[解] 题干图(1)中,α=360°-30°=330°; 题干图(2)中,β=-360°+60°+150°=-150°;γ=360°+60°+(-β)=360°+60°+150°=570°.题组二 终边相同的角与象限角4.与405°角终边相同的角是( )A .k ·360°-45°,k ∈ZB .k ·180°-45°,k ∈ZC .k ·360°+45°,k ∈ZD .k ·180°+45°,k ∈Z[解析] 因为405°=360°+45°,所以与405°终边相同的角为k ·360°+45°,k ∈Z .[答案] C5.-435°角的终边所在的象限是( ) A .第一象限 B .第二象限 C .第三象限D .第四象限[解析] 因为-435°=-360°-75°,而-75°为第四象限角,所以-435°为第四象限角.[答案] D6.若角α,β的终边相同,则α-β的终边在( ) A .x 轴的非负半轴 B .y 轴的非负半轴 C .x 轴的非正半轴D .y 轴的非正半轴[解析]∵角α,β终边相同,∴α=k ·360°+β(k ∈Z ),∴α-β=k ·360°(k ∈Z ),故α-β的终边在x 轴的非负半轴上.[答案] A题组三 角αn,(n ∈N *)所在象限的确定7.已知α为第一象限角,则α2所在的象限是( )A .第一象限或第二象限B .第一象限或第三象限C .第二象限或第四象限D .第二象限或第三象限[解析] 由于k ·360°<α<k ·360°+90°,k ∈Z , 得k ·180°<α2<k ·180°+45°,当k 为偶数时,α2为第一象限角;当k 为奇数时,α2为第三象限角.[答案] B8.已知角2α的终边在x 轴的上方,那么α是( ) A .第一象限角 B .第一、二象限角 C .第一、三象限角D .第一、四角限角[解析] 由题意知k ·360°<2α<180°+k ·360°(k ∈Z ),故k ·180°<α<90°+k ·180°(k ∈Z ),按照k 的奇偶性进行讨论.当k =2n (n ∈Z )时,n ·360°<α<90°+n ·360°(n ∈Z ),∴α在第一象限;当k =2n +1(n ∈Z )时,180°+n ·360°<α<270°+n ·360°(n ∈Z ),∴α在第三象限.故α在第一或第三象限.[答案] C综合提升练(时间25分钟)一、选择题1.给出下列四个命题:①-75°角是第四象限角;②225°角是第三象限角;③475°角是第二象限角;④-315°角是第一象限角,其中真命题有( )A .1个B .2个C .3个D .4个[解析]①正确;②正确;③中475°=360°+115°,因为115°为第二象限角,所以475°也为第二象限角,正确;④中-315°=-360°+45°,因为45°为第一象限角,所以-315°也为第一象限角,正确.[答案] D2.终边在直线y =-x 上的所有角的集合是( ) A .{α|α=k ·360°+135°,k ∈Z } B .{α|α=k ·360°-45°,k ∈Z } C .{α|α=k ·180°+225°,k ∈Z } D .{α|α=k ·180°-45°,k ∈Z }[解析] 因为直线y =-x 为二、四象限角平分线,所以角终边落到第四象限可表示为k ·360°-45°=2k ·180°-45°,k ∈Z ;终边落到第二象限可表示为k ·360°-180°-45°=(2k -1)·180°-45°,k ∈Z ,综上可得终边在直线y =-x 上的所有角的集合为{α|α=k ·180°-45°,k ∈Z }.[答案] D3.若φ是第二象限角,那么φ2和90°-φ都不是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角[解析]∵φ是第二象限角,∴k ·360°+90°<φ<k ·360°+180°,k ∈Z , ∴k ·180°+45°<φ2<k ·180°+90°,k ∈Z ,∴φ2是第一或第三象限角,而-φ是第三象限角, ∴90°-φ是第四象限角,故选B. [答案] B 二、填空题4.与角-1560°终边相同的角的集合中,最小正角是________,最大负角是________. [解析] 由于-1560°÷360°=-4×360°-120° 即最大负角为-120°,最小正角为240°. [答案] 240° -120°5.若α,β两角的终边互为反向延长线,且α=-120°,则β=________. [解析] 由题意知,β角的终边与60°角终边相同,则β=k ·360°+60°,k ∈Z . [答案]k ·360°+60°,k ∈Z 三、解答题6.已知α,β都是锐角,且α+β的终边与-280°角的终边相同,α-β的终边与670°角的终边相同,求角α,β的大小.[解] 由题意可知,α+β=-280°+k ·360°,k ∈Z ,∵α,β都是锐角,∴0°<α+β<180°. 取k =1,得α+β=80°.① ∵α-β=670°+k ·360°,k ∈Z .∵α,β都是锐角,∴{ 0°<α<90°-90°<-β<0°, ∴-90°<α-β<90°.取k =-2,得α-β=-50°.② 由①②,得α=15°,β=65°.7.如图,分别写出适合下列条件的角的集合:(1)终边落在射线OB上;(2)终边落在直线OA上;(3)终边落在阴影区域内(含边界).[解](1)终边落在射线OB上的角的集合为S1={α|α=60°+k·360°,k∈Z}.(2)终边落在直线OA上的角的集合为S2={α|α=30°+k·180°,k∈Z}.(3)终边落在阴影区域内(含边界)的角的集合为S3={α|30°+k·180°≤α≤60°+k·180°,k∈Z}.。

高中数学 1.2.1任意角的三角函数课件 新人教A版必修4

高中数学 1.2.1任意角的三角函数课件 新人教A版必修4
设角 是一个任意角,P(x, y)是终边上的任意一点,
点 P与原点的距离 r x2 y2 0
那么① ②
y 叫做
的正弦,即
r
x r
叫做
的余弦,即
sin y
r
cos x
r

y x
叫做 的正弦,即
tan y x 0
x
任意角 的三角函数值仅与 有关,而与点 P在角的终边上
的位置无关.
ppt精选
13
? 同一三角函数值有何关系?
终边相同的角的同一三角函数值相等(公式一)
sin( k 2 ) sin cos( k 2 ) cos
tan( k 2 ) tan
其中 k z
利用公式一,可以把求任意角的三角函数值,转化为
求 0到2 或0到360角的三角函数值 .
ppt精选
15
(3)因为
4
是第四象限角,所以
sin 0
4
练习 确定下列三角函数值的符号
cos 16
5
sin( 4 )
3
tan(17 )
8
ppt精选
16
例3 求下列三角函数值:
(1)
cos 9
4
(2)
tan( 11 )
6
解:(1)
cos
9
4
cos(
4
2 ) cos
4
2 2
(2)tan( 11 ) tan( 2 ) tan tan 3
例2 确定下列三角函数值的符号:
(1)cos 250(2)tan( 672() 3) sin
解: (1)因为
250是第三象限角,所以 co2s5 00
4

高中数学 第一章 三角函数 1.2.1 任意角的三角函数(1)

高中数学 第一章 三角函数 1.2.1 任意角的三角函数(1)

1.2.1 任意角的三角函数(一)课时目标 1.借助单位圆理解任意角的三角函数(正弦、余弦、正切)定义.2.熟记正弦、余弦、正切函数值在各象限的符号.3.掌握诱导公式(一)及其应用.1.任意角三角函数的定义设角α终边上任意一点的坐标为(x ,y ),它与原点的距离为r ,则sin α=________,cos α=________,tan α=________.2.正弦、余弦、正切函数值在各象限的符号3.诱导公式一终边相同的角的同一三角函数的值________,即:sin(α+k ·2π)=______,cos(α+k ·2π)=________, tan(α+k ·2π)=________,其中k ∈Z .一、选择题1.sin 780°等于( )A.32 B .-32 C.12 D .-122.点A (x ,y )是300°角终边上异于原点的一点,则y x的值为( )A. 3 B .- 3 C.33 D .-333.若sin α<0且tan α>0,则α是( ) A .第一象限角 B .第二象限角 C .第三象限角 D .第四象限角4.角α的终边经过点P (-b,4)且cos α=-35,则b 的值为( )A .3B .-3C .±3 D.55.已知x 为终边不在坐标轴上的角,则函数f (x )=|sin x |sin x +cos x |cos x |+|tan x |tan x的值域是( )A .{-3,-1,1,3}B .{-3,-1}C .{1,3}D .{-1,3}6.已知点P ⎝ ⎛⎭⎪⎫sin 34π,cos 34π落在角θ的终边上,且θ∈[0,2π),则θ的值为( )A.π4B.3π4C.5π4D.7π4二、填空题7.若角α的终边过点P (5,-12),则sin α+cos α=______. 8.已知α终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则a 的取值范围为________. 9.代数式:sin 2cos 3tan 4的符号是________.10.若角α的终边与直线y =3x 重合且sin α<0,又P (m ,n )是α终边上一点,且|OP |=10,则m -n =________.三、解答题11.求下列各式的值.(1)cos ⎝ ⎛⎭⎪⎫-233π+tan 174π; (2)sin 630°+tan 1 125°+tan 765°+cos 540°.12.已知角α终边上一点P (-3,y ),且sin α=34y ,求cos α和tan α的值.能力提升13.若θ为第一象限角,则能确定为正值的是( )A .sin θ2B .cos θ2C .tan θ2D .cos 2θ14.已知角α的终边上一点P (-15a,8a ) (a ∈R 且a ≠0),求α的各三角函数值.1.三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.2.符号sin α、cos α、tan α是一个整体,离开“α”,“sin”、“cos”、“tan”不表示任何意义,更不能把“sin α”当成“sin”与“α”的乘积. 3.诱导公式一的实质是说终边相同的角的三角函数值相等.作用是把求任意角的三角函数值转化为求0~2π(或0°~360°)角的三角函数值.§1.2 任意角的三角函数 1.2.1 任意角的三角函数(一)答案知识梳理 1.y r x ryx3.相等 sin α cos α tan α作业设计 1.A 2.B3.C [∵sin α<0,∴α是第三、四象限角.又tan α>0, ∴α是第一、三象限角,故α是第三象限角.]4.A [r =b 2+16,cos α=-b r =-b b 2+16=-35.∴b =3.]5.D [若x 为第一象限角,则f (x )=3;若x 为第二、三、四象限,则f (x )=-1.∴函数f (x )的值域为{-1,3}.]6.D [由任意角三角函数的定义,tan θ=y x =cos 34πsin 34π=-2222=-1.∵sin 34π>0,cos 34π<0,∴点P 在第四象限.∴θ=74π.故选D.]7.-7138.-2<a ≤3 解析 ∵sin α>0,cos α≤0,∴α位于第二象限或y 轴正半轴上,∴3a -9≤0,a +2>0, ∴-2<a ≤3. 9.负号解析 ∵π2<2<π,∴sin 2>0,∵π2<3<π,∴cos 3<0,∵π<4<32π,∴tan 4>0. ∴sin 2cos 3tan 4<0. 10.2解析 ∵y =3x ,sin α<0,∴点P (m ,n )位于y =3x 在第三象限的图象上,且m <0,n <0, n =3m .∴|OP |=m 2+n 2=10|m |=-10m =10. ∴m =-1,n =-3,∴m -n =2.11.解 (1)原式=cos ⎣⎢⎡⎦⎥⎤π3+-4×2π+tan ⎝ ⎛⎭⎪⎫π4+2×2π=cos π3+tan π4=12+1=32. (2)原式=sin(360°+270°)+tan(3×360°+45°)+tan(2×360°+45°)+cos(360°+180°)=sin 270°+tan 45°+tan 45°+cos 180° =-1+1+1-1=0.12.解 sin α=y3+y2=34y . 当y =0时,sin α=0,cos α=-1,tan α=0.当y ≠0时,由y 3+y 2=3y 4,解得y =±213. 当y =213时,P ⎝⎛⎭⎪⎫-3,213,r =433. ∴cos α=-34,tan α=-73.当y =-213时,P (-3,-213),r =433, ∴cos α=-34,tan α=73.13.C [∵θ为第一象限角,∴2k π<θ<2k π+π2,k ∈Z .∴k π<θ2<k π+π4,k ∈Z .当k =2n (n ∈Z )时,2n π<θ2<2n π+π4 (n ∈Z ).∴θ2为第一象限角,∴sin θ2>0,cos θ2>0,tan θ2>0.当k =2n +1 (n ∈Z )时,2n π+π<θ2<2n π+54π (n ∈Z ).∴θ2为第三象限角,∴sin θ2<0,cos θ2<0,tan θ2>0,从而tan θ2>0,而4k π<2θ<4k π+π,k ∈Z , cos 2θ有可能取负值.]14.解 ∵x =-15a ,y =8a ,∴r =-15a 2+8a 2=17|a | (a ≠0). (1)若a >0,则r =17a ,于是sin α=817,cos α=-1517,tan α=-815.(2)若a <0,则r =-17a ,于是sin α=-817,cos α=1517,tan α=-815.。

高中数学 1.2.1 任意角的三角函数能力提升(含解析)新

【优化方案】2013-2014学年高中数学 1.2.1 任意角的三角函数能力提升(含解析)新人教A 版必修41.设α角属于第二象限,且|cos α2|=-cos α2,则α2角属于( ) A .第一象限 B .第二象限C .第三象限D .第四象限解析:选C.2k π+π2<α<2k π+π(k ∈Z ),k π+π4<α2<k π+π2(k ∈Z ).当k =2n (n ∈Z )时,α2终边在第一象限;当k =2n +1(n ∈Z )时,α2终边在第三象限.而|cos α2|=-cos α2⇒cos α2≤0,∴α2终边在第三象限.2.已知角α的终边过点(-3cos θ,4cos θ),其中θ∈(π2,π),则cos α=________.解析:∵θ∈(π2,π),∴cos θ<0,r =5|cos θ|=-5cos θ,∴cos α=-3cos θ-5cos θ=35.答案:353.(1)求函数y =2cos x -1的定义域;(2)求满足tan x =-1的角x 的集合.解:(1)如图,∵2cos x -1≥0,∴cos x ≥12. ∴函数定义域为[2k π-π3,2k π+π3](k ∈Z ).(2)在单位圆过点A (1,0)的切线上取AT =-1,连结OT ,OT 所在直线与单位圆交于P 1、P 2,则OP 1或OP 2是角α的终边,则α的取值集合是{α|α=3π4+2k π或α=7π4+2k π,k ∈Z }.如图.4.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限;(2)若角α的终边与单位圆相交于点M (35,m ),求m 的值及sin α的值. 解:(1)由1|sin α|=-1sin α可知sin α<0, ∴α是第三或第四象限角或y 轴的负半轴上的角.由lg(cos α)有意义可知cos α>0,∴α是第一或第四象限角或x 轴的正半轴上的角.综上可知角α是第四象限的角.(2)∵点M (35,m )在单位圆上, ∴(35)2+m 2=1,解得m =±45. 又α是第四象限角,故m <0,从而m =-45. 由正弦函数的定义可知sin α=-45.。

高中数学 第一章 三角函数 1.2.1 任意角的三角函数(1)课时训练(含解析)新人教A版必修4(

高中数学第一章三角函数1.2.1 任意角的三角函数(1)课时训练(含解析)新人教A版必修4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学第一章三角函数1.2.1 任意角的三角函数(1)课时训练(含解析)新人教A版必修4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学第一章三角函数1.2.1 任意角的三角函数(1)课时训练(含解析)新人教A版必修4的全部内容。

1.2。

1 任意角的三角函数(一)课时目标1。

借助单位圆理解任意角的三角函数(正弦、余弦、正切)定义.2。

熟记正弦、余弦、正切函数值在各象限的符号.3.掌握诱导公式(一)及其应用.1.任意角三角函数的定义设角α终边上任意一点的坐标为(x,y),它与原点的距离为r,则sin α=________,cos α=________,tan α=________。

2.正弦、余弦、正切函数值在各象限的符号3.诱导公式一终边相同的角的同一三角函数的值________,即:sin(α+k·2π)=______,cos(α+k·2π)=________,tan(α+k·2π)=________,其中k∈Z。

一、选择题1.sin 780°等于()A。

错误! B.-错误! C。

错误! D.-错误!2.点A(x,y)是300°角终边上异于原点的一点,则错误!的值为()A。

错误! B.-错误! C。

错误! D.-错误!3.若sin α<0且tan α>0,则α是( )A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角4.角α的终边经过点P(-b,4)且cos α=-错误!,则b的值为( )A.3 B.-3 C.±3 D.55.已知x为终边不在坐标轴上的角,则函数f(x)=错误!+错误!+错误!的值域是() A.{-3,-1,1,3} B.{-3,-1}C.{1,3} D.{-1,3}6.已知点P错误!落在角θ的终边上,且θ∈[0,2π),则θ的值为()A。

高中数学1.1.1任意角课时跟踪检测新人教A版必修4

【优化指导】2015年高中数学 1.1.1任意角课时跟踪检测新人教A版必修41.下列各角中,与60°角终边相同的角是( )A.-300°B.-60°C.600°D.1 380°解析:与60°角终边相同的角α=k·360°+60°,k∈Z,令k=-1,则α=-300°,故选A.答案:A2.若α是第一象限角,则下列各角中属于第四象限角的是( )A.90°-αB.90°+αC.360°-αD.180°+α解析:特值法,取α=30°,可知C正确.答案:C3.角α的终边经过点C(-1,0),则α是( )A.第二象限角B.第三象限角C.终边落在x轴非正半轴上的角D.既是第二象限角又是第三象限角解析:点C(-1,0)在x轴的非正半轴上,故选C.答案:C4.若α=k·180°+45°,k∈Z,则α是第________象限角.解析:当k=0时,α=45°为第一象限角,当k=1时,α=225°为第三象限角.答案:一或三5.若角α和β的终边满足下列位置关系,试写出α和β的关系式: (1)重合:___________________________________________________________; (2)关于x 轴对称:____________________________________________________. 解析:据终边相同角的概念,数形结合可得:(1)α=k ·360°+β(k ∈Z ),(2)α=k ·360°-β(k ∈Z ).答案:α=k ·360°+β(k ∈Z ) α=k ·360°-β(k ∈Z )6.已知角x 的终边落在图示阴影部分区域(包括边界),写出角x 组成的集合.解:(1){x |k ·360°-135°≤x ≤k ·360°+135°,k ∈Z }. (2){x |k ·360°+30°≤x ≤k ·360°+60°,k ∈Z }∪ {x |k ·360°+210°≤x ≤k ·360°+240°,k ∈Z } ={x |2k ·180°+30°≤x ≤2k ·180°+60°或(2k +1)·180°+30°≤x ≤(2k +1)·180°+60°,k ∈Z } ={x |k ·180°+30°≤x ≤k ·180°+60°,k ∈Z }.7.在(-360°,0°)内与角1 250°终边相同的角是( ) A .170° B .190° C .-190°D .-170°解析:与1 250°角的终边相同的角α=1 250°+k ·360°,∵-360°<α<0°,∴-16136<k <-12536.∵k ∈Z ,∴k =-4.∴α=-190°.答案:C8.已知角2α的终边在x 轴上方,那么α是( ) A .第一象限角 B .第一或第二象限角 C .第一或第三象限角 D .第一或第四象限角 解析:∵角2α的终边在x 轴上方,∴k ·360°<2α<k ·360°+180°,∴k ·180°<α<k ·180°+90°(k ∈Z ).当k 为奇数时,α在第三象限;当k 为偶数时,α在第一象限.答案:C9.若将时钟拨快了10分钟,则分针转过了______度.解析:将时钟拨快10分钟,分针按顺时针方向转动,故为负角.分针转过的角度数是:-360°6=-60°.答案:-6010.已知有锐角α,它的10倍与它本身的终边相同,求角α. 解:与角α终边相同的角连同角α在内可表示为 {β|β=α+k ·360°,k ∈Z }.∵锐角α的10倍角的终边与其终边相同, ∴10α=α+k ·360°,α=k ·40°,k ∈Z . 又α为锐角,∴α=40°或80°.11.已知集合A ={α|k ·180°+30°≤α≤k ·180°+90°,k ∈Z },集合B ={β|k ·360°-45°<β<k ·360°+45°,k ∈Z },求A ∩B .解:如图所示,集合A 中角的终边是30°至90°角的终边或210°至270°角的终边,集合B 中角的终边是-45°至45°角的终边,∴A ∩B 的角的终边是30°至45°角的终边.∴A ∩B ={α|k ·360°+30°≤α<k ·360°+45°,k ∈Z }.12.已知角α是第二象限角,求: (1)角α2是第几象限的角;(2)角2α终边的位置.解:(1)∵k ·360°+90°<α<k ·360°+180°,k ∈Z , ∴k ·180°+45°<α2<k ·180°+90°,k ∈Z .当k 为偶数时, α2在第一象限,当k 为奇数时,α2在第三象限,即α2为第一或第三象限角.(2)∵2k ·360°+180°<2α<2k ·360°+360°,k ∈Z , ∴2α的终边在x 轴的下方.本课时是在初中学习角的概念的基础上,拓展角的范围,即任意实数大小的角.利用数形结合法理解各个概念是学习本节的关键.1.任意角包括正角、负角和零角,区分它们的关键是看角的终边按逆时针还是顺时针方向旋转.2.象限角和轴线角对于象限角的理解,要注意角的顶点必须为坐标原点,同时角的始边要与x轴的非负半轴重合,否则不能判断角是哪一个象限角.如果角的终边在坐标轴上,称这样的角为轴线角.3.终边相同的角终边相同的角是本课时的重点和难点,在理解时应注意:(1)终边相同的角不一定相等,但相等的角终边一定相同.(2)终边相同的角有无数个,它们相差360°的整数倍.(3)为了使用方便,经常使角α在0°~360°之间,因此求终边相同的角时,可用此角减去360°的整数倍,使差在0°~360°之间.。

【同步练习】必修四 1.2.1 任意角的三角函数-高一数学人教版(必修4)(解析版)

第一章 三角函数1.2.1 任意角的三角函数一、选择题1.已知sin α+cos α=–15,α∈(0,π),则tan α的值为A .–43或–34B .–43C .–34D .34【答案】C【解析】∵sin α+cos α=–15,α∈(0,π),∴α为钝角,结合sin 2α+cos 2α=1,∴sin α=35,cos α=–45,则tan α=sin cos αα=–34,故选C . 2.若点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,则sin α的值为A .12-B .12C .3D 3 【答案】C【解析】因为点5π5πsin cos 66⎛⎫ ⎪⎝⎭,在角α的终边上,即点132⎛- ⎝⎭,在角α的终边上,则3sin α=,故选C .3.若角α的终边过点P (3,–4),则cos α等于A .35B .34-C .45-D .45【答案】A【解析】∵角α的终边过点P (3,–4),∴r =5,∴cos α=35,故选A .4.如果角θ的终边经过点(3,–4),那么sin θ的值是A .35B .35-C .45D .45-【答案】D【解析】∵角θ的终边经过点(3,–4),∴x =3,y =–4,r 22x y +,∴sin θ=y r=–45,故选D .5.若sinαtanα<0,且costanαα<0,则角α是A.第一象限B.第二象限C.第三象限D.第四象限【答案】C【解析】∵sinαtanα<0,可知α是第二或第三象限角,又costanαα<0,可知α是第三或第四象限角.∴角α是第三象限角.故选C.6.已知点P(x,3)是角θ终边上一点,且cosθ=–45,则x的值为A.5 B.–5 C.4 D.–4 【答案】D【解析】∵P(x,3)是角θ终边上一点,且cosθ=–45,∴cosθ=29x+=–45,∴x=–4.故选D.7.若点P(sinα,tanα)在第三象限,则角α是A.第一象限角B.第二象限角C.第三象限角D.第四象限角【答案】D【解析】∵点P(sinα,tanα)在第三象限,∴sinα<0,tanα<0.∴角α是第四象限角.故选D.8.如果角α的终边过点(2sin60°,–2cos60°),则sinα的值等于A.12B.–12C.–3D.–3【答案】B【解析】角α的终边过点(2sin60°,–2cos60°),即(31-,),由任意角的三角函数的定义可知:sinα=()()221 231=-+-.故选B.9.若角120°的终边上有一点(–4,a),则a的值是A.43B.43-C.43±D.310.已知4sin5α=,并且P(–1,m)是α终边上一点,那么tanα的值等于A .43-B .34-C .34D .43【答案】A 【解析】∵4sin5α=,并且P (–1,m )是α45=,∴m =43,那么tan α=1m-= –m =–43,故选A . 11.已知sin α<0,且tan α>0,则α的终边所在的象限是A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】∵sin α<0,∴α的终边在第三、第四象限或在y 轴负半轴上,∵tan α>0,∴α的终边在第一或第三象限,取交集可得,α的终边所在的象限是第三象限角.故选C . 12.若角α终边经过点P (sin2π2πcos 33,),则sin α=A .12BC .12-D . 【答案】C【解析】∵角α终边经过点P (sin 2π2πcos 33,),即点P ,–12),∴x ,y =–12,r =|OP |=1,则sin α=y r=y =–12,故选C .13.已知角α的终边过点12P ⎛ ⎝⎭,,则sin α=A .12B C D . 【答案】C【解析】由题意可得,x =12,y ,r =|OP |=1,∴sin α=y r,故选C .14.已知角α的终点经过点(–3,4),则–cos α=A .35B .–35C .45D .–45【答案】A【解析】∵角α的终点经过点(–3,4),∴x =–3,y =4,r =|OP |=5,则–cos α=–35x r =,故选A . 二、填空题15.若角α的终边与单位圆交于P (–35,45),则sin α=45;cos α=___________;tan α=___________.【答案】45;35-;43- 【解析】∵角α的终边与单位圆交于P (–35,45),|OP |=223455⎛⎫⎛⎫-+ ⎪ ⎪⎝⎭⎝⎭=1,∴由任意角的三角函数的定义可知:sin α=44515=,同理可得cos α=35-;tan α=445335=--;故答案为:45;35-;43-.16.已知23cos 4a x a-=-,x 是第二、三象限角,则a 的取值范围是__________.17.已知角α的终边经过点P (–2,4),则sin α–cos α的值等于__________.35【解析】∵角α的终边经过点P (–2,4),∴x =–2,y =4,r =|OP 5,∴sin α=25y r =,cos α=xr= 5,则sin α–cos α3535. 18.适合条件|sin α|=–sin α的角α是__________.【答案】[2k π–π,2k π],k ∈Z【解析】∵|sin α|=–sin α,∴–sin α≥0,∴sin α≤0,由正弦曲线可以得到α∈[2k π–π,2k π],k ∈Z ,故答案为:[2k π–π,2k π],k ∈Z .19.若角α的终边经过点(–1,–2),则tan α=___________.【答案】2【解析】∵角α的终边经过点(–1,–2),∴由三角函数定义得tan α=21--=2.故答案为:2. 20.已知角θ的终边经过点P (x ,2),且1cos 3θ=,则x =___________.2 【解析】∵角θ的终边经过点P (x ,2),且21cos 34x θ==+,解得x 22.21.若sinθ<0,cosθ>0,则θ在第___________象限.【答案】四【解析】由sinθ<0,可知θ为第三、第四象限角或终边在y轴负半轴上的角.由cosθ<0,可知θ为第一、第四象限角或终边在x轴正半轴上的角.取交集可得,θ在第四象限.故答案为:四.三、解答题22.已知点P(3m,–2m)(m<0)在角α的终边上,求sinα,cosα,tanα.【解析】因为点P(3m,–2m)(m<0)在角α的终边上,所以x=3m,y=–2m,r=–13m,sinα=21313yr==,cosα=31313xr=-=-,tanα=32yx=-.23.确定下列各式的符号:(1)sin 103°·cos 220°;(2)cos 6°·tan 6.24.已知角α的终边在直线y=2x上,分别求出sinα,cosα及tanα的值.【解析】当角α的终边在第一象限时,在角α的终边上任意取一点P(1,2),则x=1,y=2,r=|OP5,∴sinα=255yr==cosα=55xr=,tanα=yx=2;当角α的终边在第三象限时,在角α的终边上任意取一点P(–1,–2),则x=–1,y=–2,r=|OP|=5,∴sinα=yr=5=25,cosα=xr=5=5,tanα=yx=2.25.已知角α的终边上一点P (m )(m ≠0),且sin α=4,求cos α,tan α的值.【解析】设P (x ,y ).由题设知x=y=m ,所以r 2=|OP|2=(2+m 2(O 为原点),,所以sin α=mr =4,所以=,3+m 2=8,解得当r=,x=所以cos =,tan当m=r=,x=y=所以cos =,tan26.已知角α终边上一点P (m ,1),cos α=–13.(1)求实数m 的值; (2)求tan α的值.【解析】(1)角α终边上一点P (m ,1),∴x =m ,y =1,r =|OP∴cos α=–13,解得m =.(2)由(1)可知tan α=1m。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【优化指导】2015年高中数学 1.2.1任意角的三角函数(二)课时
跟踪检测 新人教A版必修4
考查知识点及角度
难易度及题号
基础 中档 稍难
三角函数线的概念问题 1、2、3
三角函数线的应用 4、5、6 8、9
其他问题 7、10 11

1.已知MP,OM,AT分别为60°角的正弦线、余弦线和正切线,则下列结论正确的是( )
A.MP<OM<AT B.OM<MP<AT
C.AT<OM<MP D.OM<AT<MP

解析:由于sin 60°=32,cos 60°=12,tan 60°=3,所以OM<MP<AT.故选B.
答案:B
2.有三个命题:

①π6与5π6的正弦线相等;

②π3与4π3的正切线相等;
③π4与5π4的余弦线相等.
其中真命题的个数为( )
A.1 B.2
C.3 D.0
解析:根据三角函数线定义可知,π6与5π6的正弦线相等,π3与4π3的正切线相等,π4与

4
的余弦线相反.

答案:B
3.如果MP、OM分别是角α=3π16的正弦线和余弦线,那么下列结论正确的是( )
A.MPC.MP>OM>0 D.OM>MP>0
解析:如图可知,OM>MP>0.

答案:D
4.若α是三角形的内角,且sin α+cos α=23 ,则这个三角形是( )
A.等边三角形 B.直角三角形
C.锐角三角形 D.钝角三角形

解析:当0<α≤π2时,由单位圆中的三角函数线知,sin α+cos α≥1,而sin
α

+cos α=23,∴α必为钝角.
答案:D
5.角θ(0<θ<2π)的正弦线与余弦线的长度相等且符号相同,则θ的值为________.

解析:由题意,θ的终边在一、三象限的角平分线上,又0<θ<2π,故θ的值为
π
4

或5π4.
答案:π4或5π4
6.利用单位圆中的三角函数线,确定角θ的取值范围:-12≤cos θ<32.
解:图中阴影部分就是满足条件的角θ的范围,即2kπ-23π≤θ<2kπ-π6或2kπ
+π6<θ≤2kπ+23π,k∈Z.

7.a=sin 2π7,b=cos 2π7,c=tan 2π7,则( )
A.a<b<c B.a<c<b
C.b<c<a D.b<a<c

解析:∵π4<2π7<π2,作出角2π7的三角函数线,如图可知cos 2π7<sin 2π7<tan

7
,∴选D.

答案:D
8.在(0,2π)内,使sin x>cos x成立的x的取值范围是( )

A.π4,π2∪π,5π4

B.π4,π
C.π4,5π4
D.π4,π∪5π4,3π2
解析:如图所示,在直角坐标系xOy中,作第一、三象限的角平分线,由阴影部分可知,
答案为C.
答案:C
9.利用单位圆写出满足sin α<22,且α∈(0,π)的角α的集合是__________.
解析:作出正弦线如图.

MP=NQ=22,当sin α<22时,角α对应的正弦线MP、NQ缩短,∴0<α
<π4或

4

<α<π.

答案:0,π4∪3π4,π
10.若α为锐角,则sin α+cos α与1的大小关系是______________.
解析:如图所示,sin α=MP,cos α=OM,在Rt△OMP中,显然有OM+MP>OP,即
sin α+cos α>1.

答案:sin α+cos α>1
11.已知|cos θ|≤|sin θ|,求θ的取值范围.
解:如图所示,

根据|cos θ|=|sin θ|,即θ角正弦线的绝对值和θ角余弦线的绝对值相等,则
θ角的终边落在y=x和y=-x上,满足|cos θ|≤|sin θ|的θ
角的终边落在阴影部分.

∴θ π4+kπ≤θ≤3π4+kπ,k∈Z.
1.三角函数线是利用数形结合的思想解决有关问题的重要工具,利用三角函数线可以
解或证明三角不等式,求函数的定义域及比较大小,三角函数线也是后面将要学习的三角函
数的图象的作图工具.
2.三角函数线是有向线段,字母顺序不能随意调换,正弦线、正切线的正向与y轴的
正向相同,向上为正,向下为负;余弦线的正向与x轴的正向一致,向右为正,向左为负;
当角α的终边与x轴重合时,正弦线、正切线分别变成一个点,此时角α的正弦值和正切
值都为0;当角α的终边与y轴重合时,余弦线变成一个点,正切线不存在.

相关文档
最新文档