公式

合集下载

数学方程式公式大全

数学方程式公式大全

数学方程式公式大全
以下是一些常见的数学方程式公式:
1. 抛物线标准方程:y^2=2px,其中p为焦距。

2. 抛物线顶点式方程:y=a(x+h)^2+k,其中(h,k)为顶点坐标。

3. 抛物线开口方向由系数a决定:a>0时,抛物线开口向上;a<0时,抛
物线开口向下。

4. 抛物线对称轴为x=-h。

5. 抛物线与x轴交点为y=0时的x值。

6. 直角三角形中,有一个角为90度的三角形,叫做直角三角形。

7. 三角形中线:连结三角形一个顶点和它对边中点的线段叫做三角形的中线。

8. 三角形的高:三角形一个顶点到它的对边所在直线的垂线段,叫做三角形的高。

9. 三角形的中位线:连结三角形两边中点的线段,叫做三角形的中位线。

10. 内心:角平分线的交点叫做内心;内心到三角形三边的距离相等。

11. 重心:中线的交点叫做重心;重心到每边中点的距离等于这边中线的三
分之一。

12. 垂线:高线的交点叫做垂线;三角形的一个顶点与垂心连线必垂直于对边。

13. 外心:三角形三边的垂直平分线的交点,叫做三角形的外心。

外心到三角形的三个顶点的距离相等。

以上是一些常见的数学方程式公式,希望能对你有所帮助。

所有换算公式表大全

所有换算公式表大全

所有换算公式表大全以下是一些常见的换算公式表,包括长度、面积、体积、重量、温度、压力、时间、速度、电压、电流、频率等方面的换算。

1. 长度换算公式:米(m)、千米(km)、分米(dm)、厘米(cm)、毫米(mm)之间的换算关系如下:1 km = 1000 m1 m = 10 dm1 dm = 10 cm1 cm = 10 mm2. 面积换算公式:平方米(m²)、公顷(hm²)、平方分米(dm²)、平方厘米(cm²)、平方毫米(mm²)之间的换算关系如下:1 hm² = 10000 m²1 m² = 100 dm²1 dm² = 100 cm²1 cm² = 100 mm²3. 体积换算公式:立方米(m³)、立方分米(dm³)、立方厘米(cm³)、立方毫米(mm³)之间的换算关系如下:1 L = 1 dm³1 cm³ = 1 mm³4. 重量换算公式:克(g)、千克(kg)、公斤(kg)、磅(lb)、盎司(oz)之间的换算关系如下:1 kg = 1000 g1 g = 0.001 kg1 lb = 0.45359237 kg1 oz = 0.028********* kg5. 温度换算公式:摄氏度(℃)和华氏度([UNK])之间的换算关系如下:[UNK] = ℃ × 1.8 + 32℃= [UNK] × 59 - 156. 压力换算公式:帕斯卡(Pa)、巴(Bar)、托(Torr)之间的换算关系如下:1 Pa = 0.1 Bar = 133.3223675 Torr1 Bar = 100000 Pa1 Torr = 133.3223675 × 10^-3 Pa7. 时间换算公式:秒(s)、分钟(min)、小时(h)之间的换算关系如下:1 h = 60 min = 3600 s8. 速度换算公式:米每秒(m/s)、千米每小时(km/h)之间的换算关系如下:1 km/h = 0.27777777777777777 m/s1 m/s = 3.6 km/h9. 电压换算公式:伏特(V)、千伏(kV)、毫伏(mV)之间的换算关系如下:1 kV = 1000 V1 V = 1000 mV10. 电流换算公式:安培(A)、毫安(mA)、微安(μA)之间的换算关系如下:1 A = 1000 mA1 mA = 1000 μA11. 频率换算公式:赫兹(Hz)、千赫兹(kHz)、兆赫兹(MHz)之间的换算关系如下:1 kHz = 1000 Hz1 MHz = 1000 kHz以上是一些常见的换算公式表,希望对你有所帮助。

初中函数公式大全

初中函数公式大全

初中函数公式大全
初中学习阶段中,涉及到的主要函数公式如下:
1. 线性函数公式:y=kx+b (k、b 为常数)
2. 平方函数公式:y=ax²+b (a、b 为常数,a≠0)
3. 立方函数公式:y=ax³+b (a、b 为常数)
4. 开平方函数公式:y=√x (x≥0)
5. 反比例函数公式:y=k/x (k 为常数,x≠0)
6. 正比例函数公式:y=kx (k 为常数)
7. 初中还会涉及到一些三角函数,如正弦函数、余弦函数、正切函数等,在此不再一一列举。

初中阶段,主要是学习这些常见函数的概念、图像和性质,以及用函数公式来解决各种问题。

需要逐一理解并自己动手多练习,才能真正掌握这些函数。

数学分数公式大全

数学分数公式大全

数学分数公式大全
以下是一些数学分数的公式:
1. 分数的加法公式:同分母的分数相加,分母不变,分子相加。

能约分的要约分。

2. 分数的减法公式:同分母的分数相减,分母不变,分子相减。

能约分的要约分。

3. 分数与整数的乘法公式:分数与整数相乘,分子乘以整数作新分子,分母不变。

4. 分数与分数的乘法公式:分子相乘作新分子,分母相乘作新分母。

5. 分数除以整数的公式:等于分数乘以这个整数的倒数。

6. 真分数:分子比分母小的分数叫做真分数。

7. 假分数:分子比分母大或者分子和分母相等的分数叫做假分数。

假分数大于或等于1。

8. 带分数:把假分数写成整数和真分数的形式,叫做带分数。

9. 分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。

10. 一个数除以分数,等于这个数乘以分数的倒数。

11. 甲数除以乙数(0除外),等于甲数乘以乙数的倒数。

以上是数学中常用的分数公式,掌握这些公式对于解决数学问题非常重要。

解方程的公式。

解方程的公式。

解方程的公式。

解方程是数学中的基本技能之一,它是数学中的一种基本运算,也是数学中的一种基本思维方式。

解方程的公式是解决方程的一种方法,它是通过一系列的数学运算,将方程中的未知数求出来的过程。

在解方程的过程中,我们需要运用一些基本的数学知识和技巧,如代数运算、因式分解、配方法、移项等。

一元一次方程的解法一元一次方程是指只有一个未知数,并且未知数的最高次数为一的方程。

一元一次方程的一般形式为ax+b=0,其中a和b为已知数,x为未知数。

解一元一次方程的公式为:x=-b/a其中,x为方程的解,a和b为方程中的系数。

这个公式的意义是将方程中的常数项b除以系数a,得到的结果就是未知数x的值。

例如,解方程2x+3=7,我们可以将方程变形为2x=4,然后将两边都除以2,得到x=2。

因此,方程的解为x=2。

一元二次方程的解法一元二次方程是指只有一个未知数,并且未知数的最高次数为二的方程。

一元二次方程的一般形式为ax^2+bx+c=0,其中a、b和c为已知数,x为未知数。

解一元二次方程的公式为:x=(-b±√(b^2-4ac))/2a其中,x为方程的解,a、b和c为方程中的系数,±表示两个解,√表示开方。

这个公式的意义是将方程中的系数代入公式中,求出未知数x的值。

例如,解方程x^2-3x+2=0,我们可以将方程中的系数代入公式中,得到x=(3±√(3^2-4×1×2))/2×1。

化简后,得到x=1或x=2。

因此,方程的解为x=1或x=2。

高次方程的解法高次方程是指未知数的最高次数大于二的方程。

高次方程的解法比较复杂,需要运用一些高级的数学知识和技巧。

其中,常见的解法有因式分解、配方法、换元法、求根公式等。

因式分解是指将方程中的多项式分解成若干个一次或二次的因式的乘积,然后再求出未知数的值。

例如,解方程x^3-3x^2+2x=0,我们可以将方程中的多项式分解成x(x-1)(x-2)=0,然后求出未知数的值,得到x=0、x=1或x=2。

数学公式大全

数学公式大全

1.三角形的面积=底×高÷2。

公式S= a×h÷22.正方形的面积=边长×边长公式S= a×a3.长方形的面积=长×宽公式S= a×b4.平行四边形的面积=底×高公式S= a×h5.梯形的面积=(上底+下底)×高÷2 公式S=(a+b)h÷26.内角和:三角形的内角和=180度。

7.长方体的体积=长×宽×高公式:V=abh8.长方体(或正方体)的体积=底面积×高公式:V=abh9.正方体的体积=棱长×棱长×棱长公式:V=aaa10.圆的周长=直径×π公式:L=πd=2πr11.圆的面积=半径×半径×π公式:S=πr212.圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。

公式:S=ch=πdh=2πrh13.圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。

公式:S=ch+2s=ch+2πr214.圆柱的体积:圆柱的体积等于底面积乘高。

公式:V=Sh15.圆锥的体积=1/3底面×积高。

公式:V=1/3Sh16.分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。

异分母的分数相加减,先通分,然后再加减。

17.分数的乘法则:用分子的积做分子,用分母的积做分母。

18.分数的除法则:除以一个数等于乘以这个数的倒数。

19.读懂理解会应用以下定义定理性质公式20.一、算术方面21.1、加法交换律:两数相加交换加数的位置,和不变。

22.2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。

23.3、乘法交换律:两数相乘,交换因数的位置,积不变。

24.4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。

数学公式大全(最全面,最详细)

数学公式⼤全(最全⾯,最详细)⾼中数学公式⼤全(最全⾯,最详细)⾼中数学公式⼤全抛物线:y = ax *+ bx + c就是y等于ax 的平⽅加上bx再加上ca > 0时开⼝向上a < 0时开⼝向下c = 0时抛物线经过原点b = 0时抛物线对称轴为y轴还有顶点式y = a(x+h)* + k就是y等于a乘以(x+h)的平⽅+k-h是顶点坐标的xk是顶点坐标的y⼀般⽤于求最⼤值与最⼩值抛物线标准⽅程:y^2=2px它表⽰抛物线的焦点在x的正半轴上,焦点坐标为(p/2,0) 准线⽅程为x=-p/2由于抛物线的焦点可在任意半轴,故共有标准⽅程y^2=2px y^2=-2px x^2=2py x^2=-2py 圆:体积=4/3(pi)(r^3)⾯积=(pi)(r^2)周长=2(pi)r圆的标准⽅程(x-a)2+(y-b)2=r2 注:(a,b)是圆⼼坐标圆的⼀般⽅程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0(⼀)椭圆周长计算公式椭圆周长公式:L=2πb+4(a-b)椭圆周长定理:椭圆的周长等于该椭圆短半轴长为半径的圆周长(2πb)加上四倍的该椭圆长半轴长(a)与短半轴长(b)的差。

(⼆)椭圆⾯积计算公式椭圆⾯积公式:S=πab椭圆⾯积定理:椭圆的⾯积等于圆周率(π)乘该椭圆长半轴长(a)与短半轴长(b)的乘积。

以上椭圆周长、⾯积公式中虽然没有出现椭圆周率T,但这两个公式都是通过椭圆周率T推导演变⽽来。

常数为体,公式为⽤。

椭圆形物体体积计算公式椭圆的长半径*短半径*PAI*⾼三⾓函数:两⾓和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)倍⾓公式tan2A=2tanA/(1-tan2A) cot2A=(cot2A-1)/2cotacos2a=cos2a-sin2a=2cos2a-1=1-2sin2asinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0四倍⾓公式:sin4A=-4*(cosA*sinA*(2*sinA^2-1))cos4A=1+(-8*cosA^2+8*cosA^4)tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)五倍⾓公式:sin5A=16sinA^5-20sinA^3+5sinAcos5A=16cosA^5-20cosA^3+5cosAtan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)六倍⾓公式:sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1))tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)七倍⾓公式:sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)⼋倍⾓公式:sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8 )九倍⾓公式:sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tan A^6+9*tanA^8)⼗倍⾓公式:sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4) )cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^ 4+210*tanA^6-45*tanA^8+tanA^10)·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]半⾓公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBcotA+cotBsin(A+B)/sinAsinB -cotA+cotBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/61^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^21*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3正弦定理a/sinA=b/sinB=c/sinC=2R 注:其中R 表⽰三⾓形的外接圆半径余弦定理b2=a2+c2-2accosB 注:⾓B是边a和边c的夹⾓乘法与因式分a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b(a2+ab+b2)三⾓不等式|a+b|≤|a|+|b| |a-b|≤|a|+|b| |a|≤b<=>-b≤a≤b|a-b|≥|a|-|b| -|a|≤a≤|a|⼀元⼆次⽅程的解-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系x1+x2=-b/a x1*x2=c/a 注:韦达定理判别式b2-4a=0 注:⽅程有相等的两实根b2-4ac>0 注:⽅程有两个不相等的个实根b2-4ac<0 注:⽅程有共轭复数根公式分类公式表达式圆的标准⽅程(x-a)2+(y-b)2=r2 注:(a,b)是圆⼼坐标圆的⼀般⽅程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准⽅程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧⾯积S=c*h 斜棱柱侧⾯积S=c'*h正棱锥侧⾯积S=1/2c*h' 正棱台侧⾯积S=1/2(c+c')h'圆台侧⾯积S=1/2(c+c')l=pi(R+r)l 球的表⾯积S=4pi*r2圆柱侧⾯积S=c*h=2pi*h 圆锥侧⾯积S=1/2*c*l=pi*r*l弧长公式l=a*r a是圆⼼⾓的弧度数r >0 扇形⾯积公式s=1/2*l*r锥体体积公式V=1/3*S*H 圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L 注:其中,S'是直截⾯⾯积,L是侧棱长柱体体积公式V=s*h 圆柱体V=pi*r2h图形周长⾯积体积公式长⽅形的周长=(长+宽)×2正⽅形的周长=边长×4长⽅形的⾯积=长×宽正⽅形的⾯积=边长×边长三⾓形的⾯积已知三⾓形底a,⾼h,则S=ah/2已知三⾓形三边a,b,c,半周长p,则S=√[p(p - a)(p - b)(p - c)] (海伦公式)(p=(a+b+c)/2)和:(a+b+c)*(a+b-c)*1/4已知三⾓形两边a,b,这两边夹⾓C,则S=absinC/2设三⾓形三边分别为a、b、c,内切圆半径为r则三⾓形⾯积=(a+b+c)r/2设三⾓形三边分别为a、b、c,外接圆半径为r则三⾓形⾯积=abc/4r已知三⾓形三边a、b、c,则S=√{1/4[c^2a^2-((c^2+a^2-b^2)/2)^2]} (“三斜求积” 南宋秦九韶)| a b 1 |S△=1/2 * | c d 1 || e f 1 |【| a b 1 || c d 1 | 为三阶⾏列式,此三⾓形ABC在平⾯直⾓坐标系内A(a,b),B(c,d), C(e,f),这⾥ABC| e f 1 |选区取最好按逆时针顺序从右上⾓开始取,因为这样取得出的结果⼀般都为正值,如果不按这个规则取,可能会得到负值,但不要紧,只要取绝对值就可以了,不会影响三⾓形⾯积的⼤⼩!】秦九韶三⾓形中线⾯积公式:S=√[(Ma+Mb+Mc)*(Mb+Mc-Ma)*(Mc+Ma-Mb)*(Ma+Mb-Mc)]/3其中Ma,Mb,Mc为三⾓形的中线长.平⾏四边形的⾯积=底×⾼梯形的⾯积=(上底+下底)×⾼÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的⾯积=圆周率×半径×半径长⽅体的表⾯积=(长×宽+长×⾼+宽×⾼)×2长⽅体的体积=长×宽×⾼正⽅体的表⾯积=棱长×棱长×6正⽅体的体积=棱长×棱长×棱长圆柱的侧⾯积=底⾯圆的周长×⾼圆柱的表⾯积=上下底⾯⾯积+侧⾯积圆柱的体积=底⾯积×⾼圆锥的体积=底⾯积×⾼÷3长⽅体(正⽅体、圆柱体)的体积=底⾯积×⾼平⾯图形名称符号周长C和⾯积S正⽅形a—边长C=4aS=a2长⽅形a和b-边长C=2(a+b)S=ab三⾓形a,b,c-三边长h-a边上的⾼s-周长的⼀半A,B,C-内⾓其中s=(a+b+c)/2 S=ah/2=ab/2?sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)1 过两点有且只有⼀条直线2 两点之间线段最短3 同⾓或等⾓的补⾓相等4 同⾓或等⾓的余⾓相等5 过⼀点有且只有⼀条直线和已知直线垂直6 直线外⼀点与直线上各点连接的所有线段中,垂线段最短7 平⾏公理经过直线外⼀点,有且只有⼀条直线与这条直线平⾏8 如果两条直线都和第三条直线平⾏,这两条直线也互相平⾏9 同位⾓相等,两直线平⾏10 内错⾓相等,两直线平⾏11 同旁内⾓互补,两直线平⾏12两直线平⾏,同位⾓相等13 两直线平⾏,内错⾓相等14 两直线平⾏,同旁内⾓互补15 定理三⾓形两边的和⼤于第三边16 推论三⾓形两边的差⼩于第三边17 三⾓形内⾓和定理三⾓形三个内⾓的和等于180°18 推论1 直⾓三⾓形的两个锐⾓互余19 推论2 三⾓形的⼀个外⾓等于和它不相邻的两个内⾓的和20 推论3 三⾓形的⼀个外⾓⼤于任何⼀个和它不相邻的内⾓21 全等三⾓形的对应边、对应⾓相等22边⾓边公理(sas) 有两边和它们的夹⾓对应相等的两个三⾓形全等23 ⾓边⾓公理( asa)有两⾓和它们的夹边对应相等的两个三⾓形全等24 推论(aas) 有两⾓和其中⼀⾓的对边对应相等的两个三⾓形全等25 边边边公理(sss) 有三边对应相等的两个三⾓形全等26 斜边、直⾓边公理(hl) 有斜边和⼀条直⾓边对应相等的两个直⾓三⾓形全等27 定理1 在⾓的平分线上的点到这个⾓的两边的距离相等28 定理2 到⼀个⾓的两边的距离相同的点,在这个⾓的平分线上29 ⾓的平分线是到⾓的两边距离相等的所有点的集合30 等腰三⾓形的性质定理等腰三⾓形的两个底⾓相等(即等边对等⾓)31 推论1 等腰三⾓形顶⾓的平分线平分底边并且垂直于底边32 等腰三⾓形的顶⾓平分线、底边上的中线和底边上的⾼互相重合33 推论3 等边三⾓形的各⾓都相等,并且每⼀个⾓都等于60°34 等腰三⾓形的判定定理如果⼀个三⾓形有两个⾓相等,那么这两个⾓所对的边也相等(等⾓对等边)35 推论1 三个⾓都相等的三⾓形是等边三⾓形36 推论2 有⼀个⾓等于60°的等腰三⾓形是等边三⾓形37 在直⾓三⾓形中,如果⼀个锐⾓等于30°那么它所对的直⾓边等于斜边的⼀半38 直⾓三⾓形斜边上的中线等于斜边上的⼀半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和⼀条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同⼀条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直⾓三⾓形两直⾓边a、b的平⽅和、等于斜边c的平⽅,即a^2+b^2=c^2 47勾股定理的逆定理如果三⾓形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三⾓形是直⾓三⾓形48定理四边形的内⾓和等于360°49四边形的外⾓和等于360°50多边形内⾓和定理n边形的内⾓的和等于(n-2)×180°51推论任意多边的外⾓和等于360°52平⾏四边形性质定理1 平⾏四边形的对⾓相等53平⾏四边形性质定理2 平⾏四边形的对边相等54推论夹在两条平⾏线间的平⾏线段相等55平⾏四边形性质定理3 平⾏四边形的对⾓线互相平分56平⾏四边形判定定理1 两组对⾓分别相等的四边形是平⾏四边形57平⾏四边形判定定理2 两组对边分别相等的四边形是平⾏四边形58平⾏四边形判定定理3 对⾓线互相平分的四边形是平⾏四边形59平⾏四边形判定定理4 ⼀组对边平⾏相等的四边形是平⾏四边形60矩形性质定理1 矩形的四个⾓都是直⾓61矩形性质定理2 矩形的对⾓线相等62矩形判定定理1 有三个⾓是直⾓的四边形是矩形63矩形判定定理2 对⾓线相等的平⾏四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对⾓线互相垂直,并且每⼀条对⾓线平分⼀组对⾓66菱形⾯积=对⾓线乘积的⼀半,即s=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对⾓线互相垂直的平⾏四边形是菱形69正⽅形性质定理1 正⽅形的四个⾓都是直⾓,四条边都相等70正⽅形性质定理2正⽅形的两条对⾓线相等,并且互相垂直平分,每条对⾓线平分⼀组对⾓71定理1 关于中⼼对称的两个图形是全等的72定理2 关于中⼼对称的两个图形,对称点连线都经过对称中⼼,并且被对称中⼼平分73逆定理如果两个图形的对应点连线都经过某⼀点,并且被这⼀点平分,那么这两个图形关于这⼀点对称74等腰梯形性质定理等腰梯形在同⼀底上的两个⾓相等75等腰梯形的两条对⾓线相等76等腰梯形判定定理在同⼀底上的两个⾓相等的梯形是等腰梯形77对⾓线相等的梯形是等腰梯形78平⾏线等分线段定理如果⼀组平⾏线在⼀条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形⼀腰的中点与底平⾏的直线,必平分另⼀腰80 推论2 经过三⾓形⼀边的中点与另⼀边平⾏的直线,必平分第三边81 三⾓形中位线定理三⾓形的中位线平⾏于第三边,并且等于它的⼀半82 梯形中位线定理梯形的中位线平⾏于两底,并且等于两底和的⼀半l=(a+b)÷2 s=l×h83 (1)⽐例的基本性质如果a:b=c:d,那么ad=bc 如果ad=bc,那么a:b=c:d84 (2)合⽐性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等⽐性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平⾏线分线段成⽐例定理三条平⾏线截两条直线,所得的对应线段成⽐例87 推论平⾏于三⾓形⼀边的直线截其他两边(或两边的延长线),所得的对应线段成⽐例88 定理如果⼀条直线截三⾓形的两边(或两边的延长线)所得的对应线段成⽐例,那么这条直线平⾏于三⾓形的第三边89 平⾏于三⾓形的⼀边,并且和其他两边相交的直线,所截得的三⾓形的三边与原三⾓形三边对应成⽐例90 定理平⾏于三⾓形⼀边的直线和其他两边(或两边的延长线)相交,所构成的三⾓形与原三⾓形相似91 相似三⾓形判定定理1 两⾓对应相等,两三⾓形相似(asa)92 直⾓三⾓形被斜边上的⾼分成的两个直⾓三⾓形和原三⾓形相似93 判定定理2 两边对应成⽐例且夹⾓相等,两三⾓形相似(sas)94 判定定理3 三边对应成⽐例,两三⾓形相似(sss)95 定理如果⼀个直⾓三⾓形的斜边和⼀条直⾓边与另⼀个直⾓三⾓形的斜边和⼀条直⾓边对应成⽐例,那么这两个直⾓三⾓形相似96 性质定理1 相似三⾓形对应⾼的⽐,对应中线的⽐与对应⾓平分线的⽐都等于相似⽐97 性质定理2 相似三⾓形周长的⽐等于相似⽐98 性质定理3 相似三⾓形⾯积的⽐等于相似⽐的平⽅99 任意锐⾓的正弦值等于它的余⾓的余弦值,任意锐⾓的余弦值等于它的余⾓的正弦值100任意锐⾓的正切值等于它的余⾓的余切值,任意锐⾓的余切值等于它的余⾓的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆⼼的距离⼩于半径的点的集合103圆的外部可以看作是圆⼼的距离⼤于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆⼼,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知⾓的两边距离相等的点的轨迹,是这个⾓的平分线108到两条平⾏线距离相等的点的轨迹,是和这两条平⾏线平⾏且距离相等的⼀条直线109定理不在同⼀直线上的三点确定⼀个圆。

函数除法公式

函数除法公式
函数除法公式是数学中常见的一种运算,用于计算两个函数相除的结果。

它的表达式为: f(x) / g(x) = (f(x) * 1/g(x)),其中“/”表示除法,“*”表示乘法,“f(x)”和“g(x)”分别表示两个函数。

在使用函数除法公式时,需要注意以下几点:
1. 分母函数g(x)不能为0,否则结果不存在;
2. 如果分母函数g(x)在某些点上等于0,则该点处的结果也不存在,称为奇点;
3. 如果分子函数f(x)和分母函数g(x)都能被同一个非零的常
数整除,则可以约分,化简结果。

举个例子,如果有两个函数f(x) = x^2 - 1 和g(x) = x - 1,那么它们的函数除法结果为:
f(x) / g(x) = (x^2 - 1) / (x - 1) = ((x + 1) * (x - 1)) / (x - 1) = x + 1 (去掉了分母中的x-1,化简结果)
函数除法公式在数学中应用广泛,特别是在微积分中的导数和极限运算中有着重要的作用。

因此,熟练掌握函数除法公式对于学习数学和应用数学都非常重要。

- 1 -。

高中数学基本公式

高中数学基本公式数学是一门基础学科,它对于多数学科的学习具有重要的帮助作用。

高中数学作为学习数学的一个重要阶段,其中包含了许多基本公式。

这些公式是我们将来学习和工作中必须掌握的基本工具。

下面我们就来介绍一些高中数学中的基本公式。

一、代数公式1. 平方差公式(x+y)²=x²+2xy+y²(x-y)²=x²-2xy+y²2. 立方差公式(x+y)³=x³+3x²y+3xy²+y³(x-y)³=x³-3x²y+3xy²-y³x³+y³+z³-3xyz=(x+y+z)(x²+y²+z²-xy-xz-yz)3. 四次方差公式(x+y)⁴=x⁴+4x³y+6x²y²+4xy³+y⁴(x-y)⁴=x⁴-4x³y+6x²y²-4xy³+y⁴4. 二次方程根的求解公式对于a≠0,二次方程ax²+bx+c=0的根公式为:x1= (-b+√(b²-4ac))/(2a)x2= (-b-√(b²-4ac))/(2a)二、三角公式1. 正弦定理在任意三角形中,三角形中某一角的对边与此角的正弦值成正比。

即sinA/a=sinB/b=sinC/c2. 余弦定理在任意三角形中,三角形中某一角的对边的平方等于斜边的平方减去另外两边的平方,这个不等式被称为余弦定理。

即c²=a²+b²-2abcosC3. 正切定理在任意三角形中,两角的正切值之差,等于这两角相差的弧所对的三角形于对侧的比。

即(tan(A-B))/(1+tanAtanB)=tan(A-B)三、微积分公式1. 极限公式limf(x)=L 当且仅当:对任意ε>0,存在N使得当n≥N时,|f(x)-L|<ε成立。

24个基本积分公式

24个基本积分公式24个基本积分公式是数学中常用的工具,它能帮助我们快速解决复杂的积分问题。

1.一个公式:恒积分公式,它是所有积分公式中最基本也是最重要的公式,它表示对某一函数$f(x)$的某一闭区间$[a,b]$进行积分,其公式如下:$$int_a^bf(x)dx=F(b)-F(a)$$其中$F(x)$是$f(x)$的上原函数。

2.二个公式:幂积分公式,它也是一种常用的公式,它描述了当变量$x$的幂次为$n$时,$f(x)$的积分的公式如下:$$int x^nf(x)dx=frac{x^{n+1}}{n+1}f(x)-frac{n}{n+1}int x^{n-1}f(x)dx$$3.三个公式:复合公式,有时候积分可能会变得更加复杂,它描述了一种复合积分形式,其公式如下:$$int int_Rf(x,y)dydx=iint_Rf(x,y)dxdy$$其中$R$表示一个积分区域,$f(x,y)$表示函数。

4.四个公式:变量替代公式,当我们积分时,有时可能会用到变量替代的方法。

此时对于积分$int f(x)dx$,用变量$t$替代$x$,变量$t$的关于$x$的函数表达式为$t=t(x)$,当$x$的范围从$[a,b]$变为$[t_a,t_b]$时,这时需要用到变量替代公式,其公式如下:$$int_a^bf(x)dx=int_{t_a}^{t_b}f(t(x))t(x)dx$$ 其中$t(x)$表示$t$关于$x$的微分。

5.五个公式:指数积分公式,当我们积分某一函数$f(x)$关于$x$的幂为$n$时,能够用到指数积分公式,其公式如下:$$int x^ne^xdx=x^ne^x-nint x^{n-1}e^xdx$$6.六个公式:对数积分公式,当我们积分某一函数$f(x)$的流函数是一个对数函数的时候,可以用到对数积分公式,它的公式如下: $$int frac{1}{x}dx=ln|x|+C$$其中$C$是常量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 1×1=1 1×2=2 2×2=4 1×3=3 2×3=6 3×3=9 1×4=4 2×4=8 3×4=12 4×4=16 1×5=5 2×5=10 3×5=15 4×5=20 5×5=25 1×6=6 2×6=12 3×6=18 4×6=24 5×6=30 6×6=36 1×7=7 2×7=14 3×7=21 4×7=28 5×7=35 6×7=42 7×7=49 1×8=8 2×8=16 3×8=24 4×8=32 5×8=40 6×8=48 7×8=56 8×8=64 1×9=9 2×9=18 3×9=27 4×9=36 5×9=45 6×9=54 7×9=63 8×9=72 9×9=81 第一单元 分数乘法概念总结 1.分数乘整数的意义和整数乘法的意义相同,就是求几个相同加数的和的简便运算。 例如: 的意义是: 表示求5个 的和是多少。 2.分数乘整数的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。(为了计算简便,能约分的要先约分,然后再乘。) 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 3.一个数与分数相乘,可以看作是求这个数的几分之几是多少。 例如: 的意义是:表示求 5 的 是多少。 4.分数乘分数的计算法则:分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。(为了计算简便,可以先约分再乘。) 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 5.整数乘法的交换律、结合律和分配律,对分数乘法同样适用。 6.乘积是1的两个数互为倒数。 7.求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 1的倒数是1。0没有倒数。 真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。 注意:倒数必须是成对的两个数,单独的一个数不能称做倒数。 8.一个数(0除外)乘以一个真分数,所得的积小于它本身。例如: 9.一个数(0除外)乘以一个假分数,所得的积等于或大于它本身。例如: 10.一个数(0除外)乘以一个带分数,所得的积大于它本身。例如: 11.乘法应用题有关注意概念。

小刚家有鸭45只,鸡的只数是鸭只数的 35 ,鸡有多少只?

小刚家有鸭45只,鸡的只数比鸭的只数多 13 ,鸡有多少只? 2

第二单元 分数除法概念总结 1.分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。 例如: 表示:已知两个数的积是 与其中一个因数 ,求另一个因数是多少。 或 是 的几倍? 是 的几分之几? 2.分数除以整数(0除外),等于分数乘这个整数的倒数。整数除以分数等于整数乘以这个分数的倒数。 3.一个数除以分数的计算法则:一个数除以分数,等于这个数乘以分数的倒数。 4.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。 5.两个数相除又叫做两个数的比。比的前项除以后项所得的商,叫做比值。 6.比值通常用分数、小数和整数表示。 7.比的后项不能为0。 8.同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商; 9.根据分数与除法的关系,比的前项相当于分子,比的后项相当于分母,比值相当于分数的值。 10.比的基本性质:比的前项和后项同时乘上或者同时除以相同的数(0除外),比值不变。 11.在工农业生产中和日常生活中,常常需要把一个数量按照一定的比来进行分配。这种方法通常叫做按比例分配。 12.一个数(0除外)除以一个真分数,所得的商大于它本身。 13.一个数(0除外)除以一个假分数,所得的商小于或等于它本身。 14.一个数(0除外)除以一个带分数,所得的商小于它本身。 解分数应用题注意事项:

小刚家有鸡45只,鸡的只数是鸭只数的 35 ,鸡有多少只?

小刚家有鸡45只,鸡的只数比鸭的只数多 13 ,鸡有多少只 李老师有45颗糖,分给张华和王兵两个同学,张华和五兵得的糖颗数比为7:2,他们俩各得多少颗糖? 3

■运算定律 加减法的关系:1.求两个数的和用加法计算,求两个数的差用减法计算,减法是加法的逆运算。 公式:一个加数=和-另一个加数 被减数=差+减数 除数=被减数-差 加法运算律:公式:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法性质 a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法交换律:a·b=b·a 乘法结合律:〔a·b〕·c=a·〔b·c〕 乘法分配律:〔a+b〕·c=a·c+b·c 除法性质 a÷(b×c)=a÷b÷c a÷(b÷c)=a÷b×c (a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c 商不变性质m≠0 a÷b=(a×m)÷(b×m) =(a÷m)÷(b÷m) ■解方程的方法 1、直接运用四则运算中各部分之间的关系去解。如x-8=12 加数+加数= 和 因数×因数=积 加数=和-另一个加数 因数=积÷另一个因数 和

加数 加数 积

因数 因数 4

被减数-减数=差 被除数÷除数=商 被减数=差+减数 除数=被除数÷商 减数=被减数-差 被除数=除数×商

2、先把含有未知数x的项看作一个数,然后再解。如3x+20=41 先把3x看作一个数,然后再解。 3、按四则运算顺序先计算,使方程变形,然后再解。如2.5×4-x=4.2, 要先求出2.5×4的积,使方程变形为10-x=4.2,然后再解。 4、利用运算定律或性质,使方程变形,然后再解。如: 2.2x+7.8x=20 (2.2+7.8)x=20 10x=20,

■常用计算公式表 1、平面图形一周的长度叫做周长。 2、平面图形或物体表面的大小叫做面积。 3、常见图形的周长和面积计算公式如下: (1)长方形面积=长×宽,计算公式s=a b (2)正方形面积=边长×边长,计算公式s=a × a (3)长方形周长:(长+宽)× 2,计算公式s=(a+b)× 2 (4)正方形周长=边长× 4,计算公式s= 4a i (5)平形四边形面积=底×高,计算公式s=a h. (6)三角形面积=底×高÷2,计算公式s=a×h÷2 (7)梯形面积=(上底+下底)×高÷2,计算公式s=(a+b)×h÷2 (8)直径 :d = 2r 半径 :r = d÷2 圆的周长:C圆= πd d = C÷π C圆= 2πr r = C÷π÷2 圆的面积 :S 圆= πr2 圆环的面积:S环 = π×(R2–r2) 半圆的周长:C半圆 =πr+2r 半圆的面积:S半圆=πr2÷2 (10)正方体体积=棱长×棱长×棱长,计算公式v=a (11)长方体和正方体的体积都可以写成底面积×高,计算公式v=sh (12)圆柱的体积=底面积×高,计算公式v=s h

■1年12个月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11.月份,平年2月28天,闰年2月29天 ■闰年年份是4的倍数,整百年份须是400的倍数。 ■平年一年365天,闰年一年366天。 ■公元1年—100年是第一世纪,公元1901—2000是第二十世纪。 ■周长和面积 每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数 速度×时间=路程

被减数 减数 差 被除数

除数 商 5 路程÷速度=时间 路程÷时间=速度 单价×数量=总价 总价÷单价=数量 总价÷数量=单价 工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 11、角的大小分类,从小到大是:锐角、直角、钝角、平角、周角 12、锐角是小于90度的角,直角是90度,钝角是大于90度而小于平角的角,平角是180度的角,周角是360度的角。 13、三角形按角分类:锐角三角形,直角三角形,钝角三角形 14、三个角都是锐角是锐角的三角形叫锐角三角形;有一个角是直角的三角形叫直角三角形;有一个角是钝角的三角形叫钝角三角形。 15、三角形按边分类有:不等边三角形,等腰三角形,等边三角形 两条直线相交成直角时,这两条直线就互相垂直,其中的一条直线叫做另一条垂线的垂足。 在同一平面内,不相交的两条直线叫做平行线,组成平行线的两条直线互相平行。

17、小数的计数单位是十分之一,百分之一,千分之一--------记作0.1,0.01,0.001----- 18、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。 20、1平角=2直角 1周角=2平角=4直角 21、三角形具有稳定性 22、三角形任意两边之和大于第三边

23、三角形的内角和是180度 26、单位换算

长度单位:1米=10分米 1分米=10厘米 1厘米=10毫米 1米=10分米=100厘米=1000毫米 质量单位:1千克=1000克 1吨=1000千克=1000000克 钱的换算:1元=10角=100分 1角=10分 时间单位:1时=60分=3600秒 1分=60秒 1年=12月=365天或366天 1天=24小时 一三五七八十腊,三十一天永不差。四六九十一三十,平年二月二十八,闰年二月二十九。 面积单位:1平方米=100平方分米 1平方分米=100平方厘米 1平方米=10000平方厘米 1公顷=10000平方米 1平方千米=100公顷=1000000平方米 数的整除 ■整除的意义 整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a) 除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。 ■约数和倍数

相关文档
最新文档