人教版九年级上册数学专题复习(九个专题)
人教版九年级中考数学 考点复习 全等三角形 专题练习

人教版九年级中考数学考点复习全等三角形专题练习一.选择题(本大题共10道小题)1. 已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°2. 如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D3. 如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD4. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC5. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F.若∠BCE=65°,则∠CAF的度数为( )A.30°B.25°C.35°D.65°6. 在正方形网格中,∠AOB的位置如图所示,则下列各点中到∠AOB两边距离相等的点是( )A.点QB.点NC.点RD.点M7. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS8. 如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36o.连接AC、BD交于点M,连接OM.下列结论:①∠AMB=36o;②AC=BD;③OM平分∠AOD;④MO平分∠AMD其中正确的结论个数有( )个.A.4B.3C.2D.19. 下面是黑板上出示的尺规作图题需要回答横线上符号代表的内容.如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法:(1)以△为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,○长为半径画弧交EG于点D;(3)以点D为圆心,* 长为半径画弧交前弧于点F;(4)作⊕,则∠DEF即为所求作的角.A.△表示点EB.○表示PQC.*表示EDD.⊕表示射线EF10. 如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二.填空题(本大题共6道小题)11. 如图,点B 、F 、C 、E 在一条直线上,已知FB=CE,AC ∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF.12. 如图,四边形ABCD 中,∠BAC =∠DAC,请补充一个条件 ,使得△ABC ≌△ADC.13. 如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)14. 如图,AC=AD,∠1=∠2,要使ABC AED ≌△△,应添加的条件是______(只需写出一个条件即可)15. 如图,点P 为定角∠AOB 的平分线上的一个定点,点M,N 分别在射线OA,OB 上(都不与点O 重合),且∠MPN 与∠AOB 互补.若∠MPN 绕着点P 转动,那么以下四个结论:①P M =PN 恒成立;②MN 的长不变;③OM+ON 的值不变;④四边形PMON 的面积不变.其中正确的为_____.(填番号)16. 如图,在△ABC 中,AB =AC,点D 在BC 上(不与点B,C 重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是 (写出一个即可).三.解答题(本大题共6道小题)17. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.18. 如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.19. 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20. 如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21. 在Rt△ABC中,∠ACB=90°,CB=CA=22,点D是射线AB上一点,连接CD,在CD右侧作∠DCE =90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.22. 如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.。
人教版九年级上册数学期末考试考前复习高频考点专题练习一遍过《一元二次方程》及答案

人教版九年级数学上册期末考试考前复习高频考点专题练习一遍过《一元二次方程》高频考点一:一元二次方程的定义1. 下列方程中,一元二次方程共有()个①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.A.1 B.2 C.3 D.42.把方程x(x+2)=5(x﹣2)化成一般式,则a、b、c的值分别是()A.1,﹣3,10 B.1,7,﹣10 C.1,﹣5,12 D.1,3,23. 方程(4-a2)x2+(a+2)x+1=0,当a________时,它是一元二次方程,当a=________时,它是一元一次方程.4. 数学兴趣小组对关于x的方程(m+1)x m2+1+(m-2)x-1=0提出了下列问题:(1)是否存在m的值,使方程为一元二次方程?若存在,求出m的值,并写出方程.(2)是否存在m的值,使方程为一元一次方程?若存在,求出m的值,并解此方程.高频考点二:解一元二次方程1. 用配方法解一元二次方程x2+4x﹣3=0时,原方程可变形为()A.(x+2)2=1 B.(x+2)2=7 C.(x+2)2=13 D.(x+2)2=192. 已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是()A.7 B.﹣1 C.7或﹣1 D.﹣5或33. 已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足x1-x2=3,则k的值是.4. 已知代数式7x(x+5)+10与代数式9x﹣9的值互为相反数,则x=.5. 现定义运算“★”,对于任意实数a、b,都有a★b=a2﹣3a+b,如:3★5=32﹣3×3+5,若x★2=6,则实数x的值是.6. 解方程:(1)(2x﹣3)2=x2.(2)x2+4x﹣1=0.高频考点三:一元二次方程与参数问题1. 若关于x的方程mx2-2x+3=0有两个不相等的实数根,则m的取值范围是()A.m<-13B.m≤13,且m≠0 C.m<13,且m≠0D.m>132. 若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1C.k≤5,且k≠1D.k>53. 关于x的一元二次方程(a﹣1)x2+x+a2﹣1=0的一个根是0,则a的值为.4. 如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是.5. 已知关于x的一元二次方程x2﹣2x﹣k=0有两个相等的实数根,则k值为.6. 已知关于x的一元二次方程x2+(2m-1)x+m2-3=0有实数根.(1)求实数m的取值范围;(2)当m取满足条件的最大整数时,求方程的解.高频考点四:一元二次方程的综合应用1.三角形两边的长是3和4,第三边的长是方程x2﹣12x+35=0的根,则该三角形的周长为()A.14 B.12 C.12或14 D.以上都不对2. 某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是()A.560(1+x)2=315 B.560(1﹣x)2=315C.560(1﹣2x)2=315 D.560(1﹣x2)=3153. 如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则b=.4. 要组织一场篮球联赛,赛制为单循环形式,即每两队之间都赛一场,计划安排28场比赛,应邀请多少个球队参加比赛?5. 某小区在绿化工程中有一块长为18m、宽为6m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为60m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.6. 在△ABC中,∠B=90°,AB=6cm,BC=3cm,点P从A点开始沿着AB边向点B以1cm/s的速度移动,点Q从B 点开始沿BC边向点C以2cm/s的速度移动,如果P,Q分别从A,B同时出发:(1)经过多长时间,S△PQB=1S△ABC?2(2)经过多长时间,P,Q间的距离等于4√2cm?。
人教版九年级数学复习教案

人教版九年级数学复习教案教案目标本教案旨在帮助九年级学生复数学知识,巩固基本概念和技能,为期末考试做好准备。
教学内容1. 单元一:整式与分式- 整式的定义和性质- 分式的概念和运算法则- 整式与分式的化简与运算- 整式方程与分式方程的应用2. 单元二:二次根式与高次方根- 二次根式的概念和性质- 二次根式的加减乘除运算- 高次方根的化简与运算- 二次根式与高次方根的应用3. 单元三:一元一次方程与一元二次方程- 一元一次方程的概念和解法- 一元一次方程的应用- 一元二次方程的概念和解法- 一元二次方程的应用4. 单元四:平面向量- 平面向量的概念和表示- 平面向量的加法和减法- 平面向量的数量积和向量积- 平面向量的应用教学方法1. 结合理论和实践,通过举例和应用题,帮助学生理解和掌握数学知识。
2. 引导学生独立思考和解决问题,培养他们的数学思维和解决问题的能力。
3. 设计练题和题集,供学生进行自主练和巩固知识。
教学评价1. 通过课堂参与情况、小测试和实际考试结果等方式,对学生的掌握情况进行评估。
2. 鼓励学生互相交流和合作,提高研究效果。
3. 及时反馈学生的研究进展和问题,给予个性化指导和支持。
教学资源1. 教材:人教版九年级数学教材2. 题集:人教版九年级数研究题集3. 多媒体设备:投影仪、电脑等4. 参考资料:数学网站、数学工具软件等教学计划本教案按照每个单元的教学内容和时长进行安排,具体安排如下:教学建议1. 鼓励学生主动参与课堂讨论和提问,增加他们的研究兴趣和积极性。
2. 组织小组活动和竞赛,培养学生的团队协作和竞争意识。
3. 关注学生的研究动态和心理健康,及时帮助他们解决研究和生活中的问题。
以上是本教案的内容和建议,希望能对九年级数学复习教学有所帮助。
祝您教学顺利!。
人教版九年级上册数学教材复习题21课件

复习巩固
解:梯形的中位线长为 1 ×(100 + 180) = 140(m).
2
设甬道的宽为 x m,根据题意,得
1 × 1 (100 + 180)×80 = 2×80x + 140x – 2x².
62
整理,得 3x²– 450x + 2800 = 0.
5
解得
x1
=
75
5 3
1689 ≈ 6.50.
Δ = b²– 4ac = 3²– 4×2×(–3) = 33 > 0.
∴ 原方程有两个不等的实数根 x = 3 33 ,
22
即
x1 =
3 4
33
,x2
=
3
4
33
.
复习巩固
1. 解下列方程: (5)x2 – 2x + 1 = 25;
解:原方程可化为 x²– 2x – 24 = 0. 因式分解,得 (x – 6)(x + 4) = 0. ∴ x – 6 = 0,或 x + 4 = 0. ∴ x1 = 6,x2 = –4.
8. 如下图,利用一面墙(墙的长度不限),用 20 m 长的篱笆,怎样围成一个面积为 50 cm2 的矩形场地?
综合运用
解:设与墙垂直的一边篱笆长为 x m,则与墙平 行的篱笆 为 (20 – 2x) m.根据题意,得
x(20 – 2x) = 50. 整理,得 x²– 10x + 25 = 0,解得 x1 = x2 = 5. ∴ 20 – 2x = 10(m). 答:用 20 m 长的篱笆围成一个长为 10 m,宽为 5 m 的矩形场地(其中一边长为 10 m,另两边长 均为 5 m),即可使其面积为 50 cm2.
人教版九年级数学上册各章节知识点总结

人教版九年级数学上册知识点总结第二^一章一元二次方程21.1一元二次方程知识点一一元二次方程的定义等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2 (二次)的方程,叫做一元二次方程。
注意一下几点:①只含有一个未知数;②未知数的最高次数是2;③是整式方程。
知识点二一元二次方程的一般形式一般形式:ax2+ bx + c = 0(a 丰0).其中,ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
知识点三一元二次方程的根使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根。
方程的解的定义是解方程过程中验根的依据。
典型例题:1、已知关于x的方程(m+ J3)x + (m-3 )-1=0是一元二次方程,求m的值。
21.2降次一一解一元二次方程21.2.1配方法知识点一直接开平方法解一元二次方程(1 )如果方程的一边可以化成含未知数的代数式的平方,另一边是非负数,可以直接开平方。
一般地,对于形如x2=a(a > 0)的方程,根据平方根的定义可解得x1= a ,x2= - - a .(2)直接开平方法适用于解形如x2=p或(mx+a) 2=p(m乒0)形式的方程,如果p >0,就可以利用直接开平方法。
(3)用直接开平方法求一元二次方程的根,要正确运用平方根的性质,即正数的平方根有两个,它们互为相反数;零的平方根是零;负数没有平方根。
(4)直接开平方法解一元二次方程的步骤是:①移项;②使二次项系数或含有未知数的式子的平方项的系数为1;③两边直接开平方,使原方程变为两个一元二次方程;④解一元一次方程,求出原方程的根。
知识点二配方法解一元二次方程通过配成完全平方形式来解一元二次方程的方法,叫做配方法,配方的目的是降次,把一个一元二次方程转化为两个一元一次方程来解。
配方法的一般步骤可以总结为:一移、二除、三配、四开。
(1 )把常数项移到等号的右边;(2)方程两边都除以二次项系数;(3)方程两边都加上一次项系数一半的平方,把左边配成完全平方式;(4)若等号右边为非负数,直接开平方求出方程的解。
人教版版九年级上册数学期中常考题《二次函数的图像和性质》专项复习(word版含答案)

人教版九年级上册数学期中常考题《二次函数的图像和性质》专项复习一.选择题(共5小题)1.(日喀则市一模)下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣32.(舒城县期末)下列y关于x的函数中,属于二次函数的是()A.y=x﹣1B.y=C.y=(x﹣1)2﹣x2D.y=﹣2x2+13.(阜宁县期末)下列函数中,不是二次函数的是()A.y=1﹣x2B.y=2(x﹣1)2+4C.y=(x﹣1)(x+4)D.y=(x﹣2)2﹣x24.(中江县模拟)二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一平面直角坐标系中的图象大致是()A.B.C.D.5.(合川区校级期末)二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A .B .C .D .二.填空题(共5小题)6.(林州市期中)当m=时,y =(m 2﹣1)是二次函数.7.(仙游县期中)若y =(m +1)x 2+mx ﹣1是关于x 的二次函数,则m 满足 . 8.如果函数y =(m +1)x+2是二次函数,那么m = .9.已知两个二次函数的图象如图所示,那么a 1 a 2(填“>”、“=”或“<”).10.用“描点法”画二次函数y =ax 2+bx +c (a ≠0)的图象时,列出了如下表格:x … 1 2 3 4 … y =ax 2+bx +c…﹣13…那么该二次函数在x =0时,y = .三.解答题(共5小题)11.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?12.已知y=(m﹣1)x是关于x的二次函数,求m的值.13.已知二次函数y=﹣x2+4x.(1)写出二次函数y=﹣x2+4x图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(3)根据图象,写出当y<0时,x的取值范围.14.小明利用函数与不等式的关系,对形如(x﹣x1)(x﹣x2)…(x﹣x n)>0(n为正整数)的不等式的解法进行了探究.(1)下面是小明的探究过程,请补充完整:①对于不等式x﹣3>0,观察函数y=x﹣3的图象可以得到如表格:x的范围x>3x<3y的符号+﹣由表格可知不等式x﹣3>0的解集为x>3.②对于不等式(x﹣3)(x﹣1)>0,观察函数y=(x﹣3)(x﹣1)的图象可以得到如表表格:x的范围x>31<x<3x<1y的符号+﹣+由表格可知不等式(x﹣3)(x﹣1)>0的解集为.③对于不等式(x﹣3)(x﹣1)(x+1)>0,请根据已描出的点画出函数y=(x﹣3)(x﹣1)(x+1)的图象;观察函数y=(x﹣3)(x﹣1)(x+1)的图象补全下面的表格:x的范围x>31<x<3﹣1<x<1x<﹣1y的符号+﹣由表格可知不等式(x﹣3)(x﹣1)(x+1)>0的解集为.……小明将上述探究过程总结如下:对于解形如(x﹣x1)(x﹣x2)……(x﹣x n)>0(n为正整数)的不等式,先将x1,x2…,x n按从大到小的顺序排列,再划分x的范围,然后通过列表格的办法,可以发现表格中y的符号呈现一定的规律,利用这个规律可以求这样的不等式的解集.(2)请你参考小明的方法,解决下列问题:①不等式(x﹣6)(x﹣4)(x﹣2)(x+2)>0的解集为.②不等式(x﹣9)(x﹣8)(x﹣7)2>0的解集为.15.下表给出一个二次函数的一些取值情况:x…01234…y…30﹣103…(1)请在直角坐标系中画出这个二次函数的图象;(2)根据图象说明:当x取何值时,y的值大于0?参考答案一.选择题(共5小题)1.(日喀则市一模)下列函数中是二次函数的为()A.y=3x﹣1B.y=3x2﹣1C.y=(x+1)2﹣x2D.y=x3+2x﹣3【考点】二次函数的定义.【分析】根据二次函数的定义,可得答案.【解答】解:A、y=3x﹣1是一次函数,故A错误;B、y=3x2﹣1是二次函数,故B正确;C、y=(x+1)2﹣x2不含二次项,故C错误;D、y=x3+2x﹣3是三次函数,故D错误;故选:B.【点评】本题考查了二次函数的定义,形如y=ax2+bx+c(a≠0)是二次函数,要先化简再判断.2.(舒城县期末)下列y关于x的函数中,属于二次函数的是()A.y=x﹣1B.y=C.y=(x﹣1)2﹣x2D.y=﹣2x2+1【考点】二次函数的定义.【专题】函数思想.【分析】整理成一般形式,根据二次函数定义即可解答.【解答】解:A、该函数中自变量x的次数是1,属于一次函数,故本选项错误;B、该函数是反比例函数,故本选项错误;C、由已知函数关系式得到:y=﹣2x+1,属于一次函数,故本选项错误;D、该函数符合二次函数定义,故本选项正确.故选:D.【点评】考查了二次函数的定义:一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.其中x、y是变量,a、b、c是常量,a是二次项系数,b是一次项系数,c是常数项.y═ax2+bx+c(a、b、c是常数,a≠0)也叫做二次函数的一般形式.3.(阜宁县期末)下列函数中,不是二次函数的是()A.y=1﹣x2B.y=2(x﹣1)2+4C.y=(x﹣1)(x+4)D.y=(x﹣2)2﹣x2【考点】二次函数的定义.【分析】将各函数整理成一般式后根据二次函数定义判断即可.【解答】解:A、y=1﹣x2是二次函数;B、y=2(x﹣1)2+4=2x2﹣4x+6,是二次函数;C、y=(x﹣1)(x+4)=x2+x﹣2,是二次函数;D、y=(x﹣2)2﹣x2=﹣4x+4,是一次函数;故选:D.【点评】本题主要考查二次函数的定义,掌握二次函数的定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做二次函数是解题的关键.4.(中江县模拟)二次函数y=ax2+bx+c与一次函数y=ax+c,它们在同一平面直角坐标系中的图象大致是()A.B.C.D.【考点】正比例函数的图象;二次函数的图象.【分析】根据二次函数的开口方向,与y轴的交点;一次函数经过的象限,与y轴的交点可得相关图象.【解答】解:∵一次函数和二次函数都经过y轴上的(0,c),∴两个函数图象交于y轴上的同一点,排除B、C;当a>0时,二次函数开口向上,一次函数经过一、三象限,排除D;当a<0时,二次函数开口向下,一次函数经过二、四象限,A正确;故选:A.【点评】考查二次函数及一次函数的图象的性质;用到的知识点为:二次函数和一次函数的常数项是图象与y轴交点的纵坐标;一次函数的一次项系数大于0,图象经过一、三象限;小于0,经过二、四象限;二次函数的二次项系数大于0,图象开口向上;二次项系数小于0,图象开口向下.5.(合川区校级期末)二次函数y=ax2+bx+c的图象如图所示,那么一次函数y=ax+b的图象大致是()A.B.C.D.【考点】一次函数的图象;二次函数的图象.【专题】一次函数及其应用;二次函数图象及其性质;几何直观;推理能力.【分析】由y=ax2+bx+c的图象判断出a<0,b<0,于是得到一次函数y=ax+b的图象经过二,三,四象限,即可得到结论.【解答】解:∵y=ax2+bx+c的图象的开口向下,∴a<0,∵对称轴在y轴的左侧,∴b<0,∴一次函数y=ax+b的图象经过二,三,四象限.【点评】本题考查了二次函数和一次函数的图象,解题的关键是明确二次函数的性质,由函数图象可以判断a、b的取值范围.二.填空题(共5小题)6.(林州市期中)当m=2时,y=(m2﹣1)是二次函数.【考点】二次函数的定义.【专题】二次函数图象及其性质;模型思想.【分析】利用二次函数定义可得m2﹣m=2,且m2﹣1≠0,再解出m的值即可.【解答】解:由题意得:m2﹣m=2,且m2﹣1≠0,解得:m=2,故答案为:2.【点评】此题主要考查了二次函数定义,关键是注意二次函数的二次项系数不为零.7.(仙游县期中)若y=(m+1)x2+mx﹣1是关于x的二次函数,则m满足m≠﹣1.【考点】二次函数的定义.【专题】二次函数图象及其性质;模型思想.【分析】利用二次函数定义可得m+1≠0,再解不等式即可.【解答】解:由题意得:m+1≠0,解得:m≠﹣1,故答案为:m≠﹣1.【点评】此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a ≠0)的函数,叫做二次函数.8.如果函数y=(m+1)x+2是二次函数,那么m=2.【考点】二次函数的定义.【专题】二次函数图象及其性质;符号意识.【分析】直接利用二次函数的定义得出m的值.【解答】解:∵函数y=(m+1)x+2是二次函数,∴m2﹣m=2,(m﹣2)(m+1)=0,解得:m1=2,m2=﹣1,∴m≠﹣1,故m=2.故答案为:2.【点评】此题主要考查了二次函数的定义,正确得出m的方程是解题关键.9.已知两个二次函数的图象如图所示,那么a1>a2(填“>”、“=”或“<”).【考点】二次函数的图象.【专题】二次函数图象及其性质;几何直观;推理能力.【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案.【解答】解:如图所示y=a1x2的开口大于y=a2x2的开口,开口向下,则a2<a1<0,故答案为:>.【点评】此题主要考查了二次函数的图象,正确记忆开口大小与a的关系是解题关键.10.用“描点法”画二次函数y=ax2+bx+c(a≠0)的图象时,列出了如下表格:x…12 3 4…y=…0﹣1 0 3 …ax2+bx+c那么该二次函数在x=0时,y=3.【考点】二次函数的图象.【分析】根据题目提供的满足二次函数解析式的x、y的值,确定二次函数的对称轴,利用抛物线的对称性找到当x=0时,y的值即可.【解答】解:由上表可知函数图象经过点(1,0)和点(3,0),∴对称轴为x=2,∴当x=4时的函数值等于当x=0时的函数值,∵当x=4时,y=3,∴当x=0时,y=3.故答案是:3.【点评】本题考查了二次函数的图象的性质,利用表格找到二次函数的对称点是解决此题的关键.三.解答题(共5小题)11.已知函数y=(m2﹣m)x2+(m﹣1)x+m+1.(1)若这个函数是一次函数,求m的值;(2)若这个函数是二次函数,则m的值应怎样?【考点】一次函数的定义;二次函数的定义.【专题】函数思想.【分析】(1)根据二次项的系数等于零,一次项的系数不等于零,可得方程和不等式,根据解方程和不等式,可得答案;(2)根据二次项的系数不等于零,可得不等式,根据不等式,可得答案.【解答】解:(1)依题意得∴∴m=0;(2)依题意得m2﹣m≠0,∴m≠0且m≠1.【点评】本题考查了二次函数的定义,二次函数的二次项的系数不等于零是解题关键.12.已知y=(m﹣1)x是关于x的二次函数,求m的值.【考点】二次函数的定义.【专题】常规题型.【分析】根据二次函数定义可得m2+2m﹣1=2且m﹣1≠0,再解即可.【解答】解:∵y=(m﹣1)x是关于x的二次函数,∴m2+2m﹣1=2,解得m=1或﹣3,∵m﹣1≠0,∴m≠1,∴m=﹣3.【点评】此题主要考查了二次函数定义,关键是掌握形如y=ax2+bx+c(a、b、c是常数,a ≠0)的函数,叫做二次函数.13.已知二次函数y=﹣x2+4x.(1)写出二次函数y=﹣x2+4x图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);(3)根据图象,写出当y<0时,x的取值范围.【考点】二次函数的图象;二次函数的性质.【分析】(1)把一般式化成顶点式即可求得;(2)首先列表求出图象上点的坐标,进而描点连线画出图象即可.(3)根据图象从而得出y<0时,x的取值范围.【解答】解:(1)∵y=﹣x2+4x=﹣(x﹣2)2+4,∴对称轴是过点(2,4)且平行于y轴的直线x=2;(2)列表得:x…﹣1012345…y…﹣503430﹣5…描点,连线.(3)由图象可知,当y<0时,x的取值范围是x<0或x>4.【点评】本题考查了二次函数的图象和二次函数的性质,要会利用数形结合的思想把代数和几何图形结合起来,利用二次函数的图象,从而求出y<0时,x的取值.14.小明利用函数与不等式的关系,对形如(x﹣x1)(x﹣x2)…(x﹣x n)>0(n为正整数)的不等式的解法进行了探究.(1)下面是小明的探究过程,请补充完整:①对于不等式x﹣3>0,观察函数y=x﹣3的图象可以得到如表格:x的范围x>3x<3y的符号+﹣由表格可知不等式x﹣3>0的解集为x>3.②对于不等式(x﹣3)(x﹣1)>0,观察函数y=(x﹣3)(x﹣1)的图象可以得到如表表格:x的范围x>31<x<3x<1y的符号+﹣+由表格可知不等式(x﹣3)(x﹣1)>0的解集为x>3或x<1.③对于不等式(x﹣3)(x﹣1)(x+1)>0,请根据已描出的点画出函数y=(x﹣3)(x﹣1)(x+1)的图象;观察函数y=(x﹣3)(x﹣1)(x+1)的图象补全下面的表格:x的范围x>31<x<3﹣1<x<1x<﹣1y的符号+﹣+﹣由表格可知不等式(x﹣3)(x﹣1)(x+1)>0的解集为x>3或﹣1<x<1.……小明将上述探究过程总结如下:对于解形如(x﹣x1)(x﹣x2)……(x﹣x n)>0(n为正整数)的不等式,先将x1,x2…,x n按从大到小的顺序排列,再划分x的范围,然后通过列表格的办法,可以发现表格中y的符号呈现一定的规律,利用这个规律可以求这样的不等式的解集.(2)请你参考小明的方法,解决下列问题:①不等式(x﹣6)(x﹣4)(x﹣2)(x+2)>0的解集为x>6或2<x<4或x<﹣2.②不等式(x﹣9)(x﹣8)(x﹣7)2>0的解集为x>9或x<8且x≠7.【考点】一次函数的图象;一次函数与一元一次不等式;二次函数的图象.【专题】一元一次不等式(组)及应用;一次函数及其应用;二次函数图象及其性质.【分析】(1)②根据表格中的数据可以直接写出不等式的解集;③根据表格中的数据可以直接写出不等式的解集;(2)①根据小明的方法,可以直接写出该不等式的解集;②根据小明的方法,可以直接写出该不等式的解集.【解答】解:(1)②由表格可知不等式(x﹣3)(x﹣1)>0的解集为x>3或x<1,故答案为:x>3或x<1;③图象如右图所示,当﹣1<x<1时,(x﹣3)(x﹣1)(x+1)>0,当x<﹣1时,(x﹣3)(x﹣1)(x+1)<0,由表格可知不等式(x﹣3)(x﹣1)(x+1)>0的解集为x>3或﹣1<x<1,故答案为:+,﹣,x>3或﹣1<x<1;(2)①不等式(x﹣6)(x﹣4)(x﹣2)(x+2)>0的解集为x>6或2<x<4或x<﹣2,故答案为:x>6或2<x<4或x<﹣2;②不等式(x﹣9)(x﹣8)(x﹣7)2>0的解集为x>9或x<8且x≠7,故答案为:x>9或x<8且x≠7【点评】本题考查二次函数的图象、一次函数的图象、一次函数与一元一次不等式,解答本题的关键是明确题意,写出相应的不等式的解集.15.下表给出一个二次函数的一些取值情况:x…01234…y…30﹣103…(1)请在直角坐标系中画出这个二次函数的图象;(2)根据图象说明:当x取何值时,y的值大于0?【考点】二次函数的图象.【专题】常规题型.【分析】(1)先利用描点、连线的方法画出图形;(2)找出函数图象位于x轴上方时,自变量x的范围即可.【解答】解:(1)描点、连线得:(2)由函数图象可知:当x<1或x>3时,y>0.【点评】本题主要考查的是二次函数的图形,数形结合是解题的关键.。
人教版九年级上册数学解答题专题训练50题(含答案)
人教版九年级上册数学解答题专题训练50题含答案一、解答题1.解方程:2630x x +-=.2.如图所示,正方形网格中,ABC 为格点三角形(即三角形的顶点都在格点上).(1)把ABC 沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的111A B C △;(2)把111A B C △绕点1A 按逆时针方向旋转90︒,在网格中画出旋转后的22A B C 1△.【答案】(1)见解析(2)见解析【分析】(1)利用平移的性质画图,即对应点都移动相同的距离;(2)利用旋转的性质画图,对应点都旋转相同的角度.【详解】(1)解:如图所示:111A B C △即为所求;(2)如图所示:22A B C 1△即为所求.【点睛】本题主要考查了平移变换、旋转变换作图,做这类题时,理解平移、旋转的性质是关键.3.如图,杠杆绕支点转动撬起重物,杠杆的旋转中心在哪里?旋转角是哪个角?【答案】杠杆的旋转中心是点O ,旋转角是∵BOB ′(或∵AOA ′)【分析】根据旋转的定义即可得到杠杆绕支点转动撬起重物的旋转中心,旋转角.【详解】解:杠杆绕支点转动撬起重物,杠杆绕点O 旋转,所以杠杆的旋转中心是点 O ,旋转角是∵BOB ′(或∵AOA ′).【点睛】本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角.4.已知,如图,直线AB 经过点()0,6B ,点()4,0A ,与抛物线22y ax =+在第一象限内相交于点P ,又知AOP 的面积为6.(1)求a 的值;(2)若将抛物线22y ax =+沿y 轴向下平移,则平移多少个单位才能使得平移后的抛物线经过点A .AOP∆的面积∴=,y3y=再把3P所以(2,3)P代入到把(2,3)5.某商店购进一批小玩具,每个成本价为20元,经调查发现售价为32元时,每天可售出20个,若售价每增加5元,每天销售量减少2个;售价每减少5元,每天销售量增加2个,商店同一天内售价保持不变.(1)若售价增加x元,则销售量是(______________)个(用含x的代数式表示);(2)某日商店销售该玩具的利润为384元,求当天的售价是多少元?(利润=售价-进价)6.2022年3月,举世瞩目的北京冬奥会、冬残奥会胜利闭幕.以下是2022年北京冬奥运会会徽—冬梦、冬残奥会会徽—飞跃、冬奥会吉祥物—冰墩墩及冬残奥会吉祥物—雪容融的卡片,四张卡片分别用编号A,B,C,D来表示,这4张卡片背面完全相同,现将这四张卡片背面朝上,洗匀放好.(1)从中任意抽取一个张卡片,恰好是“冬梦”的概率为;(2)将A冬梦和C冰墩墩的组合或B飞跃和D雪容融的组合称为“一套”,小明和小红依次从中随机抽取一张卡片(不放回),请你用列表或画树状图的方法求他们抽到的两张卡片恰好一套的概率.7.今年是中国共产党建党100周年,中华人民共和国成立72周年!在国庆前夕,社区便民超市调查了某种水果的销售情况获得如下信息:信息一:进价是每千克12元;信息二:当销售价为每千克27元时,每天可售出120千克;若每千克售价每降低2元,则每天的销售量将增加80千克.根据以上信息解答问题:该超市每天想要获得3080元的销售利润,又要尽可能让顾客得到实惠,求这种水果的销售单价应为多少元.【答案】这种水果的销售单价为19元【分析】设这种水果的销售单价为x 元,则有销售量为()120040x -千克,然后根据利润=销售量×单个利润即可求解.【详解】解:设这种水果的销售单价为x 元,由题意得:8.已知抛物线23y ax bx =++经过点()3,0A 和点()4,3B .(1)求这条抛物线所对应的二次函数的关系式;(2)直接写出它的开口方向、对称轴、顶点坐标和最大值(或最小值). 【答案】(1)243y x x =-+(2)开口向上,对称轴为直线2x =,顶点坐标为()21-,,最小值为1-【分析】(1)由条件可知点A 和点B 的坐标,代入解析式可得到关于a 和b 的二元一次方程组,解得a 和b ,可写出二次函数解析式;(2)根据a 的值可确定开口方向,并将抛物线的解析式配方后可得对称轴、顶点坐标和二次函数的最值.【详解】(1)解:将点()3,0A 和点()4,3B 代入23y ax bx =++中,得933016433a b a b ++=⎧⎨++=⎩, 解得:14a b =⎧⎨=-⎩, ∵243y x x =-+(2)解:∵243y x x =-+()221x =--,1a =0>, ∵开口向上,对称轴为直线2x =,顶点坐标为()21-,,最小值为1-. 【点睛】本题考查二次函数的性质、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,学会利用配方法确定二次函数的顶点坐标和对称轴.9.在一个不透明的盒子里装有黑、白两种颜色的球共30只,这些球除颜色外其余完全相同.搅匀后,小明做摸球实验,他从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据.(1)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为(精确到0.1)(2)盒子里白色的球有只;(3)若将m个完全一样的白球放入这个盒子里并摇匀,随机摸出1个球是白球的概率是0.8,求m的值.10.(1)2(1)4x-=;(2)2430-+=;x xx x-=.(3)230x-+=;(4)(6)611.解方程:(用适当的方法解方程)(1)2430x x --=(2)2(1)(1)0x x x ---=(3)2542x x =-(4)2)(35)1x x --=(12.我国快递行业迅速发展,经调查,某快递公司今年2月份投递快递总件数为20万件,4月份投递快递总件数33.8万件,假设该公司每月投递快递总件数的增长率相同.(1)求该公司投递快递总件数的月增长率;(2)若该公司每月投递快递总件数的增长率保持不变,那么5月份投递快递总件数是否达到45万件?答:若该公司每月投递快递总件数的增长率保持不变,那么5月份投递快递总件数不能达到45万件.【点睛】本题主要考查了一元二次方程应用题中的平均增长率问题,如何正确根据题意列出一元二次方程是解题的关键.13.已知关于x的一元二次方程20ax bx c++=(a≠0)的一个根为,则244ac ba-=_____.14.列方程解应用题:口罩是一种卫生用品,正确佩戴口罩能阻挡有害气体、飞沫、病毒等物质,对进入肺部的空气有一定的过滤作用.据调查,2021年1月份某厂家口罩产量为80万只,2月份比1月份增加了25%,4月份口罩产量为196万只.(1)该厂家2月份的口罩产量为______万只;(2)该厂家2月份到4月份口罩产量的月平均增长率是多少?【答案】(1)100(2)40%【分析】(1)用1月份的产量乘以(1+25%)即可求解;(2)设月平均增长率为x,根据题意列出一元二次方程,解方程即可求解.(1)2月份的产量为:80×(1+25%)=100(万只),故答案为:100;(2)设月平均增长率为x,根据题意有:100×(1+x)2=196,解得:x=40%,(负值舍去),故2月份到4月份的平均增长率为40%.【点睛】本题考查了一元二次方程的应用,根据题意列出一元二次方程是解答本题的关键.15.“2019淮安清江浦国际半程马拉松赛”的赛事共有三项:A.“半程马拉松2019”、B.“纪念2019”、C.“爱跑2019”.小明和小丽参与了该项赛事的志愿者服务工作,组委会随机将志愿者分配到三个项目组.(1)小明被分配到“爱跑2019”项目组的概率为____________;(2)用树状图或列表法求小明和小丽被分配到不同项目组的概率.16.如图,∵ABC三个顶点的坐标分别为A(0,1),B(4,2),C(1,3).(1)将∵ABC 向右、向下分别平移1个单位长度和5个单位长度得到∵A 1B 1C 1,请画出∵A 1B 1C 1,并写出点A 1,C 1的坐标;(2)请画出∵ABC 关于原点O 成中心对称的∵A 2B 2C 2.【答案】(1)见解析,点A 1的坐标为(1,﹣4),点C 1的坐标为(2,﹣2);(2)见解析.【分析】(1)利用点平移的坐标变换规律得出对应点的坐标,描点画出图形即可; (2)根据关于原点对称的点的坐标特征得出对应点的坐标,描点画出图形即可. 【详解】(1)如图,∵A 1B 1C 1为所作,点A 1的坐标为(1,﹣4),点C 1的坐标为(2,﹣2);(2)如图,∵A 2B 2C 2为所作.【点睛】本题考查坐标与图形变换-平移、坐标与图形变换-旋转,熟练掌握坐标与图形变换的规律,正确得出对应点的坐标是解答的关键. 17.解方程 (1)2430x x -+= (2)()()2323x x -=- 【答案】(1)11x =,23x =. (2)13x =,25x =.【分析】(1)先把方程左边分解因式化为()()130x x --=,再化为两个一次方程,再解一次方程即可;(2)先移项,把方程左边分解因式化为()()350x x --=,再化为两个一次方程,再解一次方程即可.【详解】(1)解:2430x x -+=, ∵()()130x x --=, ∵10x -=或30x -=, 解得:11x =,23x =. (2)()()2323x x -=-, 移项得:()()23230x x ---=, ∵()()350x x --=, ∵30x -=,50x -=, 解得:13x =,25x =.【点睛】本题考查的是一元二次方程的解法,掌握“利用因式分解的方法解一元二次方程”是解本题的关键.18.某校团委决定从4名学生会干部(小明、小华、小丽和小颖)中抽签确定2名同学去进行宣传活动,抽签规则:将4名同学姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,既然从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小明被抽中的概率.由表可知,共有12种等可能结果,其中小明被抽中的有6种结果,所以小明被抽中的概率为:61 122.【点睛】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.如图1所示,是一块边长为2的正方形瓷砖,其中瓷砖的阴影部分是半径为1 的扇形.请你用这种瓷砖拼出两种不同的图案,使拼成的图案即是轴对称图形又是中心对称图形,并把它们分别画在下面边长为4的正方形中(要求用圆规画图).图1图2图3【答案】通过对轴对称图形分析作图【详解】试题分析:图形(1)既轴对称(对称轴为正方形对角线所在的直线),又中心对称(对称中心为正方形的中心),根据小正方形的对称性,将小正方形换动不同方向,得出既轴对称图形又中心对称的图形既轴对称图形又中心对称的图形如图所示考点:旋转作图点评:本题考查了运用旋转,轴对称方法设计图案的问题.关键是熟悉有关图形的对称性,利用中心对称性拼图20.如图,△ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,4)(1)请画出将△ABC 向左平移4个单位长度后得到的图形111A B C ∆,直接写出点1A 的坐标;(2)请画出△ABC 绕原点O 顺时针旋转90∘的图形222A B C ∆,直接写出点2A 的坐标; (3)在x 轴上找一点P ,使PA+PB 的值最小,请直接写出点P 的坐标.【答案】(1)1(3,1)A -,作图见解析,(2)2(1,1)A -,作图见解析,(3)(2,0)P ,作图见解析.【分析】(1)根据网格结构找出点A 、B 、C 平移后的对应点的位置,然后顺次连接即可;(2)找出点A 、B 、C 绕原点O 顺时针旋转90°的对称点的位置,然后顺次连接即可;(3)找出A 的对称点A′,连接BA′,与x 轴交点即为P . 【详解】解:(1)如图所示:点1A 的坐标(-3,1); (2)如图所示:点2A 的坐标(1,-1);(3)找出A 的对称点A′(1,-1), 连接BA′,与x 轴交点即为P ;则',PA PA = ('2,A A 重合),'',PA PB PA PB BA ∴+=+=则P 即为所求作的点,如图所示:点P 坐标为(2,0).【点睛】本题考查了利用平移,旋转变换作图、轴对称-最短路线问题;熟练掌握网格结构准确找出对应点的位置是解题的关键.21.已知关于x 的方程2390x x k --+=的两个实根为1x ,2x .且满足122x x =-,试求这个方程的两个实根及k 的值.22.嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2﹣4ac >0的情况,她是这样做的:(下页) 解:由于a ≠0,方程ax 2+bx +c =0变形为: x 2+b ax =﹣ca ,…第一步x 2+b ax +(2b a )2=﹣c a +(2ba )2,…第二步(x +2b a )2=2244b ac a -,…第三步x +2b a =(b 2﹣4ac ≥0),…第四步x 1…第五步(1)嘉淇的解法从第 步开始出现错误;事实上,当b 2﹣4ac ≥0时,方程ax 2+bx +c =0(a ≠0)的求根公式是 . (2)用配方法解方程:2x 2﹣4x +1=0.23.如图,AB 是∵O 的直径,点D 在∵O 上,∵DAB=45°,BC∵AD ,CD∵AB .(1)判断直线CD 与∵O 的位置关系,并说明理由;(2)若∵O的半径为1,求图中阴影部分的面积(结果保留π).24.如图,∵O是△ABC的外接圆,AB是∵O的直径,延长AB到点E,连接EC,使得∵BCE=∵BAC(1)求证:EC是∵O的切线;(2)过点A作AD∵EC的延长线于点D,若AD=5,DE=12,求∵O的半径.25.如图O 是ABD △的外接圆,AB 为直径,点C 是AD 的中点,连结,OC BC 分别交AD 于点F ,E .(1)求证:2ABD C ∠=∠.(2)若10,8AB BC ==,求BD 的长. 【答案】(1)见解析;(2)2.8【分析】(1)由圆周角定理得出ABC CBD ∠=∠,由等腰三角形的性质得出ABC C ∠=∠,则可得出结论;(2)连接AC ,由勾股定理求出6AC =,得出222256(5)OF OF -=--,求出 1.4OF =,则可得出答案.【详解】解:(1)证明:C 是AD 的中点, ∴AC DC =,ABC CBD ∴∠=∠,OB OC =, ABC C ∴∠=∠,ABC CBD C ∴∠=∠=∠,2ABD ABC CBD C ∴∠=∠+=∠;(2)连接AC ,AB 为O 的直径,C 是AD OC ∴⊥2OA OF ∴-25OF ∴- 1.4OF ∴=又O 是AB 2BD OF ==【点睛】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系定理,勾股定理,以及三角形的外接圆与圆心,熟练掌握性质及定理是解决本题的关键.26.用公式法解方程:210x x --=.【答案】x =27.疫情期间,学校按照防疫要求,学生在进校时必须排队接受体温检测.某校统计了学生早晨到校情况,发现学生到校的累计人数y (单位:人)随时间x (单位:分钟)的变化情况如图所示,当010x ≤≤时,y 可看作是x 的二次函数,其图象经过原点,且顶点坐标为(10,500);当1012x <≤时,累计人数保持不变.(1)求y 与x 之间的函数表达式;(2)如果学生一进校就开始测量体温,校门口有2个体温检测棚,每个检测点每分钟可检测20人.校门口排队等待体温检测的学生人数最多时有多少人?全部学生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在8分钟内让全部学生完成体温检测,从一开始就应该至少增加几个检测点?【答案】(1)25100(010),500(1012)y x x x y x =-+≤≤=<≤;(2)排队人数最多时有180人,全部考生都完成体温检测需要12.5分钟;(3)2个【分析】(1)当010x ≤≤时,y 可看作是x 的二次函数,由于抛物线的顶点为(10,500),设y 与x 之间的函数解析式为:y =a (x -10)2+500,把O 点的坐标(0,0)代入即可求得a ;当1012x <≤时,累计人数保持不变,问题即可解决;(2)设第x 分钟时的排队人数为w 人,到校人数减去检测人生,即可得到w 与x 的函数解析式,根据二次函数解析式可求得其最大值=180;要全部学生都完成体温检测,根据题意得500400x -=,求解即可;(3)设从一开始就应该增加m 个检测点,由“在8分钟内让全部考生完成体温检测”,列出不等式,可求解.【详解】解:(1)当010x ≤≤时,设y 与x 之间的函数关系式为:2(10)500y a x =-+,把(0,0)代入上式得:20(010)500a =-+,解得:5a =-,故函数关系式为:25(10)500(010)y x x =--+≤≤当1012x <≤时,累计人数保持不变,即y =500.∵25100(010),500(1012)y x x x y x =-+≤≤=<≤(2)设第x 分钟时的排队等待人数为w 人,由题意可得:40w y x =-∵010x ≤≤时,2225100405605(6)180w x x x x x x =-+-=-+=--+,∵当6x =时,w 的最大值180=,∵当1012x <≤时,50040,w w x =-随x 的增大而减小,20100w ∴≤<,∵排队人数最多时是180人,要全部学生都完成体温检测,根据题意得:500400x -=解得:12.5x =答:排队人数最多时有180人,全部考生都完成体温检测需要12.5分钟;(3)设从一开始就应该增加m 个检测点,28.已知:如图.∵ABC和∵DEC都是等边角形.D是BC延长线上一点,AD与BE 相交于点P.AC、BE相交于点M,AD、CE相交于点N.(1)在图∵中,求证:AD=BE;(2)当∵CDE绕点C沿逆时针方向旋转到图∵时,∵APB=.【答案】(1)见解析(2)60°【分析】(1)根据等边三角形性质得出AC=BC,CE=CD,∵ACB=∵ECD=60°,求出∵BCE=∵ACD,根据SAS推出两三角形全等即可;(2)证明∵ACD∵∵BCE(SAS),得到AD=BE,∵DAC=∵EBC,根据三角形的内角和定理,即可解答.【详解】(1)证明:∵∵ABC和∵CDE为等边三角形,∵AC=BC,CD=CE,∵BCA=∵DCE=60°,∵∵ACD=∵BCE,在∵ACD和∵BCE中,AC=BC,∵ACD=∵BCE,CD=CE,∵∵ACD∵∵BCE(SAS),∵AD=BE;(2)解:∵∵ABC和∵CDE都是等边三角形,∵AC=BC,CD=CE,∵ACB=∵DCE=60°,∵∵ACB +∵BCD =∵DCE +∵BCD ,即∵ACD =∵BCE ,在∵ACD 和∵BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∵∵ACD ∵∵BCE (SAS ),∵∵DAC =∵EBC , ∵∵AMP =∵BMC ,∵∵APB =∵ACB =60°.故答案为:60°.【点睛】本题考查了旋转的性质、等边三角形的性质、全等三角形的判定与性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.29.图1,图2是小明家厨房的效果图和装修平面图(长方形),设计师将厨房按使用功能分为三个区域,区域∵摆放冰箱,区域∵为活动区,区域∵为台面区,其中区域∵、区域∵为长方形.现测得FG 与墙面BC 之间的距离等于HG 与墙面CD 之间的距离,比EF 与墙面AB 之间的距离少0.1m .设AE 为x (m ),回答下列问题:(1)用含x 的代数式表示FG ,则FG = m .(2)当AE 为何值时,区域∵的面积能达到2.34m 2?(3)测得JF =0.35m ,在(2)的条件下,在下列几款冰箱中选择安装,要求机身左右和背面与墙面之间的距离至少预留20mm 的散热空间,则选择购买 款冰箱更合适.【答案】(1)3.2-2x(2)0.7(3)B【分析】(1)用含x 的代数式表示出DH 的长,根据FG =AD -AE -DH ,代入化简,可表示出FG 的长.(2)用含x的代数式表示出GH的长,再根据长方形的面积=长×宽,可得到关于x的方程,解方程求出x的值.(3)将x的值代入计算求出EF,EJ的长,根据要求机身左右和背面与墙面之间的距离至少预留20mm的散热空间,利用A,B,C三款冰箱的尺寸,可得答案.【详解】(1)3100mm=3.1m,1900mm=1.9m∵AE=xm,DH=(x-0.1)m,∵FG=AD-AE-DH=3.1-x-(x-0.1)=3.2-2x故答案为:3.2-2x(2)解:GH=1.9-(x-0.1)=(2-x)m,∵(3.2-2x)(2-x)=2.34解之:x1=0.7,x2=2.9(舍去)∵x=0.7,∵当AE=0.7时,区域∵的面积能达到2.34m2.(3)由(2)得EF=GH=2-x=2-0.7=1.3mEJ=EF-JF=1.3-0.35=0.95m,EJ=950mm,AE=0.7=700mm,950-2×20=910mm,∵910>908且700-20>677,∵应该选择B冰箱更合适.故答案为:B.【点睛】一元二次方程的实际应用-几何问题,解题的关键是读懂题意,看清图形,根据题意设未知数,根据等量关系列一元二次方程.30.我们把能二等分多边形面积的直线称为多边形的“好线”.请用无刻度的直尺画出图(1)、图(2)的“好线”.其中图(1)是一个平行四边形,图(2)由一个平行四边形和一个矩形组成(保留画图痕迹,不写画法)【答案】见解析【分析】图(1)过平行四边形的中心O画直线MN即可,图(2)过平行四边形和矩形的中心O,O′画直线MN即可.【详解】解:如图(1),直线MN即为所求(答案不唯一).如图(2),直线MN即为所求.【点睛】本题考查了利用中心对称图形的性质进行作图及平行四边形和矩形的性质,掌握中心对称图形的性质是解题的关键.31.幻方是一种将数字排在正方形格子中,使每行、每列和每条对角线上的数字和都相等的模型.数学课上,老师在黑板上画出一个幻方如图所示,并设计游戏:一人将一颗能粘在黑板上的磁铁豆随机投入幻方内,另一人猜数,若所猜数字与投出的数字相符,则猜数的人获胜,否则投磁铁豆的人获胜.猜想的方法从以下两种中选一种:()1猜“是大于5的数”或“不是大于5的数”;()2猜“是3的倍数”或“不是3的倍数”;如果轮到你猜想,那么为了尽可能获胜,你将选择哪--种猜数方法?怎么猜?为什么?254>>399∵为了尽可能获胜,我会选猜法(【点睛】本题主要考查等可能事件的概率,掌握概率公式,是解题的关键.32.已知关于x的一元二次方程2x2﹣3mx+m2+m﹣3=0(m为常数).(1)求证:无论m为何值,方程总有两个不相等的实数根:(2)若x=2是方程的根,则m的值为_____.33.在平面直角坐标系xOy中,已知抛物线22=-+-+-(m是常数).y x mx m m22(1)求该抛物线的顶点坐标(用含m 代数式表示);(2)如果该抛物线上有且只有两个点到直线1y =的距离为1,直接写出m 的取值范围;(3)如果点1(,)A a y ,2(2,)B a y +都在该抛物线上,当它的顶点在第四象限运动时,总有12y y >,求a 的取值范围. 【答案】(1)抛物线的顶点坐标(m ,m -2);(2)2<m <4;(3)a ≥1.【分析】(1)将二次函数解析式化为顶点式求解.(2)由抛物线上有且只有两个点到直线1y =的距离为1,及抛物线开口向下可得顶点在直线y =0和直线y =2之间,进而求解.(3)由顶点在第四象限可得m 的取值范围,由y 1<y 2可得点B 到对称轴距离大于点A 到对称轴距离,进而求解.(1)∵22222()2y x mx m m x m m =-+-+-=--+-,∵抛物线的顶点坐标(m ,m -2);(2)∵抛物线开口向下,顶点坐标为(m ,m -2),∵0<m -2<2,解得2<m <4;(3)∵抛物线顶点在第四象限,∵020m m ⎧⎨-⎩><,解得0<m <2,∵抛物线开口向下,对称轴为直线x =m 且y 1>y 2,∵2(2,)B a y +在对称轴右侧,∵a +2-m >|a -m |,即a +2-m >a -m 或a +2-m >m -a ,解得a >m -1,∵0<m <2,∵a ≥1.【点睛】本题考查二次函数的综合应用,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.34.解方程.21122x x --=-35.如图,半圆O 的直径AB=18,将半圆O 绕点B 顺针旋转45°得到半圆O′,与AB 交于点P .(1)求AP 的长.(2)求图中阴影部分的面积(结果保留π)36.某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:根据图表解答下列问题:(1)在女生的频数分布表中,m= ,n= ;(2)此次调查共抽取了多少名学生?(3)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?12337.操作发现:(1)数学活动课上,小明将已知△ABO(如图1)绕点O旋转180°得到△CDO(如图2).小明发现线段AB与CD有特殊的关系,请你写出:线段AB与CD的关系是.(2)连结AD(如图3),观察图形,试说明AB+AD>2AO.(3)连结BC(如图4),观察图形,直接写出图中全等的三角形:(写出三对即可).【答案】(1)AB=CD,AB//CD;(2)证明见解析;(3)ΔABO≅ΔCDO,ΔADO≅ΔCBO,ΔABC≅ΔCDA,ΔABD≅ΔCDB【详解】分析:(1)根据图形旋转的性质即可得出结论;(2)根据三角形三边不等关系得AD+CD>AC,再由旋转的性质得AC=2AO,从而得出结论;(3)根据三角形全等的判定条件可得出结论.详解:(1)根据旋转的性质可得:ΔABO≅ΔCDO,∵AB=CD,∵ABO=∵CDO,∵AB//CD,故线段AB与CD的关系是:AB=CD,AB//CD;(2)在ΔACD中,AD+CD>AC又因为AB=CD,AO=OC所以AB+AD>2AO(3)ΔABO≅ΔCDO,ΔADO≅ΔCBO,ΔABC≅ΔCDA,ΔABD≅ΔCDB.点睛:本题考查了旋转的性质,全等三角形的判定和性质等知识点.旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.38.某学校为了解学生的体能情况,组织了体育测试,测试项目有A “立定跳远”、B “掷实心球”、C “耐久跑”、D“快速跑”四个.规定:每名学生测试三项,其中A、B为必测项目,第三项C、D中随机抽取,每项10分,满分30分.(1)请用列表或树状图,求甲、乙两同学测试的三个项目完全相同的概率;(2)据统计,九(1)班有8名女生抽到了C“耐久跑”项目,她们的成绩如下:7,6,8,9,10,5,8,7∵这组成绩的中位数是_________,平均数是________;∵该班女生丙因病错过了测试,补测抽到了C “耐久跑”项目,加上丙同学的成绩后,发现这组成绩的众数与中位数相等,但平均数比∵中的平均数大,则丙同学“耐久跑”的成绩为________;(3)九(1)班有50名学生,下表是单项目成绩统计,请计算出该班此次体能测试的平均成绩39.如图,AC是∵O的弦,过点O作OP∵OC交AC于点P,在OP的延长线上取点B,使得BA=BP.(1)求证:AB是∵O的切线;(2)若∵O的半径为4,PC=AB的长.AB=.对称的点为B.(1)求点B的坐标;∠度数.(2)求AOB41.如图,在平面直角坐标系中,Rt∵ABC的顶点分别是A(﹣3,2)B(0,4)C (0,2).(1)将∵ABC以点C为旋转中心旋转180°,画出旋转后对应的∵A1B1C1;(2)分别连接AB1,BA1后,求四边形AB1A1B的面积.42.某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.(1)∵求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;∵求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?【答案】(1)∵y=﹣10x+1000;∵w=﹣10x2+1400x﹣40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元【分析】(1)根据题意可以得到月销售利润w (单位:元) 与售价x (单位:元/千克)之间的函数解析式;(2)根据题意可以得到方程和相应的不等式,从而可以解答本题; (3)根据(1)中的关系式化为顶点式即可解答本题.【详解】解:(1)∵由题意可得:y =500﹣(x ﹣50)×10=﹣10x +1000; ∵w =(x ﹣40)[﹣10x +1000]=﹣10x 2+1400x ﹣40000; (2)设销售单价为a 元,210140040000800040(101000)10000a a x ⎧-+-=⎨-+≤⎩, 解得,a =80,答:商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)∵y =﹣10x 2+1400x ﹣40000=﹣10(x ﹣70)2+9000, ∵当x =70时,y 取得最大值,此时y =9000,答:当售价定为70元时会获得最大利润,最大利润是9000元;【点睛】本题考查了二次函数的实际应用,掌握解二次函数的方法、二次函数的性质是解题的关键.43.如图所示,直角梯形ABCD 中,ABDC ,7cm AB =,4cm BC CD ==,以AB所在直线为轴旋转一周,得到一个几何体,求它的全面积.【答案】68π【分析】所得几何体为圆锥和圆柱的组合图形,表面积为底面半径为4,母线长的平方等于42+32的圆锥的侧面积和底面半径为4,高为4的圆柱的侧面积和下底面积之和.【详解】解:∵Rt∵AOD 中,AO =7-4=3cm ,OD =4cm , ∵AD 2=42+32=25 ∵AD =5cm ,∵所得到的几何体的表面积为π×4×5+π×4×2×4+π×4×4=68πcm2.故它的全面积为68πcm2.【点睛】本题考查圆锥的计算和圆柱的计算,得到几何体的形状是解决本题的突破点,需掌握圆锥、圆柱侧面积的计算公式.44.某批乒乓球的质量检验结果如下:(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.∵求从袋中摸出一个球是黄球的概率;∵现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于13,问至少取出了多少个黑球?。
中考数学专题复习 开放性问题-人教版初中九年级全册数学试题
开放性问题【专题点拨】开放探索问题是指已知条件、解题依据、解题方法、问题结论这四项要素中,缺少解题要素两个或两个以上,或者条件、结论有待探求、补充等.【解题策略】在解决开放探索问题的时候,需解题者经过探索确定结论或补全条件,将开放性问题转化为封闭性问题,然后选择合适的解题途径完成最后的解答.【典例解析】类型一:条件开放型问题例题1:(2016·某某省滨州市·14分)如图,已知抛物线y=﹣x2﹣x+2与x轴交于A、B两点,与y轴交于点C(1)求点A,B,C的坐标;(2)点E是此抛物线上的点,点F是其对称轴上的点,求以A,B,E,F为顶点的平行四边形的面积;(3)此抛物线的对称轴上是否存在点M,使得△ACM是等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题;函数及其图象.【分析】(1)分别令y=0,x=0,即可解决问题.(2)由图象可知AB只能为平行四边形的边,易知点E坐标(﹣7,﹣)或(5,﹣),由此不难解决问题.(3)分A、C、M为顶点三种情形讨论,分别求解即可解决问题.【解答】解:(1)令y=0得﹣x2﹣x+2=0,∴x2+2x﹣8=0,x=﹣4或2,∴点A坐标(2,0),点B坐标(﹣4,0),令x=0,得y=2,∴点C坐标(0,2).(2)由图象可知AB只能为平行四边形的边,∵AB=EF=6,对称轴x=﹣1,∴点E的横坐标为﹣7或5,∴点E坐标(﹣7,﹣)或(5,﹣),此时点F(﹣1,﹣),∴以A,B,E,F为顶点的平行四边形的面积=6×=.(3)如图所示,①当C为顶点时,CM1=CA,CM2=CA,作M1N⊥OC于N,在RT△CM1N中,==,∴点M1坐标(﹣1,2+),点M2坐标(﹣1,2﹣).②当M3为顶点时,∵直线AC解析式为y=﹣x+1,线段AC的垂直平分线为y=x,∴点M3坐标为(﹣1,﹣1).③当点A为顶点的等腰三角形不存在.综上所述点M坐标为(﹣1,﹣1)或(﹣1,2+)或(﹣1.2﹣).【点评】本题考查二次函数综合题、平行四边形的判定和性质、勾股定理等知识,解题的关键是熟练掌握抛物线与坐标轴交点的求法,学会分类讨论的思想,属于中考压轴题.变式训练1:(2016·某某某某)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,﹣3)(1)求抛物线的解析式;(2)点P在抛物线位于第四象限的部分上运动,当四边形ABPC的面积最大时,求点P 的坐标和四边形ABPC的最大面积.(3)直线l经过A、C两点,点Q在抛物线位于y轴左侧的部分上运动,直线m经过点B和点Q,是否存在直线m,使得直线l、m与x轴围成的三角形和直线l、m与y轴围成的三角形相似?若存在,求出直线m的解析式,若不存在,请说明理由.类型二:结论开放型问题例题2:(2016·某某随州·3分)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c >0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有()A.2个 B.3个 C.4个 D.5个【解析】二次函数图象与系数的关系.(1)正确.根据对称轴公式计算即可.(2)错误,利用x=﹣3时,y<0,即可判断.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),列出方程组求出a、b即可判断.(4)错误.利用函数图象即可判断.(5)正确.利用二次函数与二次不等式关系即可解决问题.【解答】解:(1)正确.∵﹣ =2,∴4a+b=0.故正确.(2)错误.∵x=﹣3时,y<0,∴9a﹣3b+c<0,∴9a+c<3b,故(2)错误.(3)正确.由图象可知抛物线经过(﹣1,0)和(5,0),∴解得,∴8a+7b+2c=8a﹣28a﹣10a=﹣30a,∵a<0,∴8a+7b=2c>0,故(3)正确.(4)错误,∵点A(﹣3,y1)、点B(﹣,y2)、点C(,y3),∵﹣2=,2﹣(﹣)=,∴<∴点C离对称轴的距离近,∴y3>y2,∵a<0,﹣3<﹣<2,∴y1<y2∴y1<y2<y3,故(4)错误.(5)正确.∵a<0,∴(x+1)(x﹣5)=﹣3/a>0,即(x+1)(x﹣5)>0,故x<﹣1或x>5,故(5)正确.∴正确的有三个,故选B.变式训练2:(2016·某某某某·3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值X围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个类型三:解题策略开放型例题3:(2014 年某某襄阳)如图 Z3-1,在△ABC 中,点D,E 分别在边 AC,AB 上,BD 与 CE 交于点 O,给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定△ABC 是等腰三角形?(用序号写出所有成立的情形)(2)选择其中的成立条件进行证明。
人教版九年级 数学上册期末综合复习专题提优训练(三)
九年级(人教版)数学上册期末综合复习专题提优训练(三)一.选择题1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.“翻开数学书,恰好翻到第16页”,这个事件是()A.随机事件B.必然事件C.不可能事件D.确定事件3.一元二次方程x2=3x的解为()A.x=0 B.x=3 C.x=0或x=3 D.x=0 且x=3 4.男篮世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,设该小组有x支球队,则可列方程为()A.x(x﹣1)=6 B.x(x+1)=6 C.D.5.如图,在平面直角坐标系中,直线y=mx+n与抛物线y=ax2+bx+c交于A(﹣1,p),B(2,q)两点,则关于x的不等式mx+n>ax2+bx+c的解集是()A.x<﹣1 B.x>2 C.﹣1<x<2 D.x<﹣1或x>2 6.如图,已知⊙O是正方形ABCD的外接圆,点E是弧AD上任意一点,则∠BEC的度数为()A.30°B.45°C.60°D.90°7.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm8.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①3a+2b+c<0;②3a+c<b2﹣4ac;③方程2ax2+2bx+2c﹣5=0没有实数根;④m(am+b)+b<a(m≠﹣1).其中正确结论的个数是()A.4个B.3个C.2个D.1个二.填空题9.将抛物线y=4x2向左平移3个单位,再向上平移2个单位,所得到图象的函数表达式是.10.要为一幅长29cm,宽22cm的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,设相框边的宽度为x,则可列出关于x的一元二次方程.11.一个圆锥和一个圆柱的底面积相等,已知圆柱的体积是圆锥的9倍,圆锥的高是8.1cm,则这个圆柱的高是cm.12.如图是抛物线y=ax2+bx+c的图象的一部分,请你根据图象写出方程ax2+bx+c=0的两根是.13.如图,在圆心角为90°的扇形OAB中,半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,则图中阴影部分的面积为cm2.14.以原点为中心,把点M(3,4)逆时针旋转90°得到点N,则点N的坐标为.15.已知边长为1的正方形ABCD的顶点A、B在一个半径为1的圆上,使AB边与弦MN重合,如图所示,将正方形在圆中逆时针滚动,在滚动过程中,点M、D之间距离的最小值是.三.解答题16.解下列方程.(1)x2+2x﹣35=0;(2)4x(2x﹣1)=1﹣2x.17.已知x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根.(1)求k的取值范围.(2)是否存在实数k,使得等式+=k﹣2成立?如果存在,请求出k的值;如果不存在,请说明理由.18.如图,正方形ABCD和直角△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF.(1)在图中画出点O和△CDF,并简要说明作图过程;(2)若AE=12,AB=13,求EF的长.19.一只不透明袋子中装有1个白球和若干个红球,这些球除颜色外都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回、搅匀,不断重复这个过程,获得数据如下:摸球的次数200 300 400 1000 1600 2000 摸到白球的频数72 93 130 334 532 667 摸到白球的频率0.3600 0.3100 0.3250 0.3340 0.3325 0.3335 (1)该学习小组发现,摸到白球的频率在一个常数附近摆动,这个常数是.(精确到0.01),由此估出红球有个.(2)现从该袋中摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个白球,1个红球的概率.20.在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴的正半轴交于点C.已知OB=OC,点B的坐标为(3,0),抛物线的顶点为M.(1)求该抛物线的表达式;(2)直接写出点A、M的坐标,并在下图中画出该抛物线的大致图象;A;M.(3)根据图象直接回答:不等式x2+bx+c>3的解集为.21.如图①,一个横截面为抛物线形的隧道,其底部的宽AB为8m,拱高为4m,该隧道为双向车道,且两车道之间有0.4m的隔离带,一辆宽为2m的货车要安全通过这条隧道,需保持其顶部与隧道间有不少于0.5m的空隙,按如图②所建立平面直角坐标系.(1)求该抛物线对应的函数关系式;(2)通过计算说明该货车能安全通过的最大高度.22.如图,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延长CA到O,使AO=AC,以O为圆心,OA长为半径作⊙O交BA延长线于点D,连接CD.(1)求证:CD是⊙O的切线;(2)若AB=4,求图中阴影部分的面积.23.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园的面积为Sm2.(1)若花园的面积为192m2,求x的值;(2)写出花园面积S与x的函数关系式.x为何值时,花园面积S有最大值?最大值为多少?(3)若在P处有一棵树与墙CD,AD的距离分别是a(14≤a≤22)和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),设花园面积S的最大值为y,直接写出y 与a的关系式.24.已知:直线与y轴交于A,与x轴交于D,抛物线y=x2+bx+c与直线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0).(1)求抛物线的解析式;(2)点P是直线AE上一动点,当△PBC周长最小时,求点P坐标;(3)动点Q在x轴上移动,当△QAE是直角三角形时,求点Q的坐标;(4)在y轴上是否存在一点M,使得点M到C点的距离与到直线AD的距离恰好相等?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一.选择题1.解:A、是轴对称图形,又是中心对称图形,故此选项正确;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.2.解:“翻开数学书,恰好翻到第16页”确实有可能刚好翻到第16页,也有可能不是翻到第16页,故这个事件是随机事件.故选:A.3.解:方程移项得:x2﹣3x=0,分解因式得:x(x﹣3)=0,解得:x=0或x=3,故选:C.4.解:设该小组有x支球队,则共有x(x﹣1)场比赛,由题意得:x(x﹣1)=6,故选:C.5.解:观察函数图象可知:当x<﹣1或x>2时,直线y=mx+n在抛物线y=ax2+bx+c 的上方,∴不等式mx+n>ax2+bx+c的解集为x<﹣1或x>2.故选:D.6.解:连接OB,OC,∵⊙O是正方形ABCD的外接圆,∴∠BOC=90°,∴∠BEC=∠BOC=45°.故选:B.7.解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=AB=×8=4(cm),OD=OC=5cm,当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM===3(cm),∴CM=OC+OM=5+3=8(cm),∴AC===4(cm);当C点位置如图2所示时,同理可得OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC===2(cm).故选:C.8.解:由图象可知,当x=1时,y<0,即a+b+c<0,∵对称轴x=﹣=﹣1,a<0,∴b=2a<0,∴a+2a+c<0,即3a+c<0,∴3a+b+c<0,故①正确;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,∴3a+c<0<b2﹣4ac,故②正确;∵2ax2+2bx+2c﹣5=0,∴ax2+bx+c=,结合图象可知,不能确定抛物线y=ax2+bx+c与直线y=的交点情况,故③不正确;∵当x=m(m≠﹣1)时,y=am2+bm+c,且当x=﹣1时,函数y取得最大值,∴a﹣b+c>am2+bm+c,∴m(am+b)+b<a,故④正确;综上,正确结论有①②④共3个,故选:B.二.填空题(共7小题)9.解:由“左加右减”的原则可知,将抛物线y=4x2向左平移3个单位所得直线的解析式为:y=4(x+3)2;由“上加下减”的原则可知,将抛物线y=4(x+3)2向上平移2个单位所得抛物线的解析式为:y=4(x+3)2+2.故平移后的抛物线的函数关系式是:y=4(x+3)2+2.故答案为y=4(x+3)2+2.10.解:设相框边的宽度为xcm,则可列方程为:(29+2x)(22+2x)=×29×22.故答案为:(29+2x)(22+2x)=×29×22.11.解:设这个圆柱的高是xcm,圆锥和圆柱的底面积都为S,根据题意得S•x=9××S×8.1,解得x=24.3(cm),即这个圆柱的高是24.3cm.故答案为24.3.12.解:∵由图可知,抛物线与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,∴设抛物线与x轴的另一交点为(x,0),则=﹣1,解得x=1,∴方程ax2+bx+c=0的两根是x1=﹣3,x2=1.故答案为:x1=﹣3,x2=1.13.解:连结OC,过C点作CF⊥OA于F,∵半径OA=2cm,C为的中点,D、E分别是OA、OB的中点,∴OD=OE=1cm,OC=2cm,∠AOC=45°,∴CF=,∴空白图形ACD的面积=扇形OAC的面积﹣三角形OCD的面积=﹣×=π﹣(cm2)三角形ODE的面积=OD×OE=(cm2),∴图中阴影部分的面积=扇形OAB的面积﹣空白图形ACD的面积﹣三角形ODE的面积=﹣(π﹣)﹣=π+﹣(cm2).故图中阴影部分的面积为(π+﹣)cm2.故答案为:(π+﹣).14.解:如图,∵点M(3,4)逆时针旋转90°得到点N,则点N的坐标为(﹣4,3).故答案为:(﹣4,3).15.解:如图,点D的运动轨迹是图中的红线.观察图象可知M、D之间的最小距离是线段AD′的长=AE﹣D′E=2﹣,故答案为2﹣.三.解答题(共9小题)16.解:(1)x2+2x﹣35=0,(x+7)(x﹣5)=0,x+7=0或x﹣5=0,∴x1=﹣7,x2=5.(2)4x(2x﹣1)=1﹣2x,4x(2x﹣1)+(2x﹣1)=0,(2x﹣1)(4x+1)=0,(2x﹣1)=0或(4x+1)=0,,17.解:(1)∵一元二次方程x2﹣2x+k+2=0有两个实数根,∴△=(﹣2)2﹣4×1×(k+2)≥0,解得:k≤﹣1.(2)∵x1,x2是一元二次方程x2﹣2x+k+2=0的两个实数根,∴x1+x2=2,x1x2=k+2.∵+=k﹣2,∴==k﹣2,∴k2﹣6=0,解得:k1=﹣,k2=.又∵k≤﹣1,∴k=﹣.∴存在这样的k值,使得等式+=k﹣2成立,k值为﹣.18.解:(1)如图所示:连接AC,BD,交于点O.连接EO并延长到点F,使OF=OE,连接DF,CF,(2)如图所示:过点O作OG⊥OE与EB的延长线交于点G,∵四边形ABCD为正方形∴OA=OB,∠AOB=∠EOG=90°∴∠AOE=∠BOG在四边形AEBO中∠AEB=∠AOB=90°∴∠EAO+∠EBO=180°=∠EBO+∠GBO∴∠GBO=∠EAO,∴在△EAO和△GBO中,∵∴△EAO≌△GBO(ASA),∴AE=BG,OE=OG.∴△GOE为等腰直角三角形,∴OE=EG=(EB+BG)=(EB+AE)∵AE=12,AB=13,∴BE=5,∴EB+AE=17,∴OE=∴EF=.19.解:(1)观察表格发现,随着摸球次数的增多,摸到白球的频率逐渐稳定在0.33附近,由此估出红球有2个.故答案为:0.33,2;(2)列表如下:白红红白﹣﹣﹣(红,白)(红,白)红(白,红)﹣﹣﹣(红,红)红(白,红)(红,红)﹣﹣﹣所有等可能的情况有6种,其中恰好摸到1个白球,1个红球的情况有4种,则P(1个白球,1个红球)==;所以从该袋中摸出2个球,恰好摸到1个白球、1个红球的结果的概率为.20.解:(1)∵OB=OC,点B的坐标为(3,0),点C在y轴的正半轴上∴点C的坐标为(0,3),∵抛物线y=x2+bx+c过B、C两点,∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)y=x2﹣4x+3,=(x﹣2)2﹣1,故顶点坐标为:M(2,﹣1),当y=0,则0=x2﹣4x+3,解得:x1=1,x2=3,故A(1,0);如图所示:故答案为:(1,0),(2,﹣1);(3)根据图象即可得出当x<0或x>4,y=x2﹣4x+3>3,即不等式x2+bx+c>3的解集为:x<0或x>4.故答案为:x<0或x>4.21.解:(1)如图②中,A(4,0),C(0,4),设抛物线解析式为y=ax2+k,由题意,得,解得:,∴抛物线表达式为.(2)2+=2.2,当x=2.2时,y=﹣×2.22+4=2.79,当y=2.79时,2.79﹣0.5=2.29 (m).答:该货车能够通行的最大高度为2.29 m.22.(1)证明:连接OD,∵∠BCA=90°,∠B=30°,∴∠OAD=∠BAC=60°,∵OD=OA,∴△OAD是等边三角形,∴AD=OA=AC,∠ODA=∠O=60°,∴∠ADC=∠ACD=∠OAD=30°,∴∠ODC=60°+30°=90°,即OD⊥DC,∵OD为半径,∴CD是⊙O的切线;(2)解:∵AB=4,∠ACB=90°,∠B=30°,∴OD=OA=AC=AB=2,由勾股定理得:CD===2,∴S阴影=S△ODC﹣S扇形AOD=×2×2﹣=2﹣π.23.解:(1)依题意得S=x(28﹣x),当S=192时,有S=x(28﹣x)=192,即x2﹣28x+192=0,解得:x1=12,x2=16,答:花园的面积为192m2,x的值为12m或16m;(2)由题意可得出:S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,答:x为14m时,花园面积S有最大值,最大值为196m2;(3)依题意得:,解得:6≤x≤28﹣a,S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵a=﹣1<0,当x≤14,y随x的增大而增大,又6≤x≤28﹣a,∴当x=28﹣a时,函数有最大值,是y=﹣(28﹣a﹣14)2+196=﹣(14﹣a)2+196.24.解:(1)∵直线与y轴交于A,∴A点的坐标为(0,2),∵B点坐标为(1,0).∴∴;(2)作出C关于直线AE的对称点F,由B和F确定出直线BF,与直线AE交于P点,设F(m,n),由题意D(﹣4,0),C(4,0),A(0,2),AF=AC=2,DF=DC=8,∴,解得或,∴F(,),∴直线BF的解析式为:y=﹣32x+32,,可得:P();(3)根据题意得:x+2=x2﹣x+2,解得:x=0或x=6,∴A(0,2),E(6,5),∴AE=3,设Q(x,0),①若Q为直角顶点,则AQ2+EQ2=AE2,即x2+4+(x﹣6)2+25=45,此时x无解;②若点A为直角顶点,则AQ2+AE2=EQ2,即x2+4+45=(x﹣6)2+25,解得:x=1,即Q(1,0);③若E为直角顶点,则AQ2=AE2+EQ2,即x2+4=45+(x﹣6)2+25,解得:x==,此时求得Q(,0);∴Q(1,0)或(,0)(4)假设存在,设M坐标为(0,m),则OM=|m|,∵OC=4,AO=2,OD=4,∴MC=MD,∴当MD⊥AD时,满足条件,∴在直角三角形AOD中,根据勾股定理得:AD=2,且AM=2﹣m,CM=,∵MD=MC,∴根据勾股定理得:=,即(2﹣m)2﹣(2)2=m2+16,解得m=﹣8,则M(0,﹣8).。
2022-2023学年人教版九年级上册数学期中复习之作图专题练习
期中复习之作图题模块一:无刻度直尺作图1.如图,在下列10×10的网格中,横、纵坐标均为整数的点叫做格点,例如A(2,1),B(5,4),C(1,8)都是格点。
(1)直接写出△ABC的形状;(2)要求在下图中仅用无刻度的直尺作图:将△ABC绕点A顺时针旋转角度a得到△AB1C1,a=∠BAC,其中B,C的对应点分别为B1,C1,操作如下:第一步:找一个格点D,连接AD,使∠DAB=∠CAB;第二步:找两个格点C1,E,连接C1E交AD于点B1;第三步:连接AC1,则△AB1C1即为作出的图形。
请你按步骤完成作图,并直接写出D,C1,E三点的坐标。
2.如图,在△ABC中,∠B=90°,点D为边AC的中点,请按下列要求用无刻度的直尺作图,并解决问题:(1)作点D关于BC的对称点O;(2)在(1)的条件下,将△ABC绕点O顺时针旋转90°,画出旋转后的△EFG(其中A,B,C三点旋转后的对应点分别是E,F,G)。
3.如图,在正方形网格中,△ABC的顶点在格点上,请仅用无刻度直尺完成以下作图.(1)在图1中,作△ABC关于点O对称的△A1B1C1;(2)在图2中,作△ABC绕点A顺时针旋转90°后得到的△AB2C2.4.如图,在正方形网格中,△ABC的顶点在格点上.请仅用无刻度直尺完成以下作图(保留作图痕迹).(1)在图1中,作△ABC关于点O对称的△A'B'C';(2)在图2中,作△ABC绕点A顺时针旋转一定角度后,顶点仍在格点上的△AB'C'.5.如图AB是半圆的直径,图1中,点C在半圆外;图2中,点C在半圆内,请仅用无刻度的直尺按要求画图.(1)在图1中,画出△ABC的三条高的交点;(2)在图2中,画出△ABC中AB边上的高.模块二:网格作图10 的网格中的位置如图所示1.⊿ABC与点O在10(1)画出⊿ABC绕点O逆时针旋转90°后的图形;(2)若⊙M能盖住⊿ABC,则⊙M的半径最小值为 .2.如图,ABC ∆的顶点坐标分别为(0,1)A ,(3,3)B ,(1,3)C . (1)画出ABC ∆关于点O 的中心对称的△111A B C . (2)画出ABC ∆绕点O 顺时针旋转90︒后的222A B C . (3)求(2)中线段BC 扫过的面积.3.如图所示,正方形网格中,ABC ∆为格点三角形(即三角形的顶点都在格点上). (1)把ABC ∆沿BA 方向平移后,点A 移到点1A ,在网格中画出平移后得到的△111A B C ; (2)把△111A B C 绕点1A 按逆时针方向旋转90︒,在网格中画出旋转后的△122A B C ; (3)如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.4.如图,在边长为1的小正方形组成的网格中,△AOB 的三个顶点均在格点上,点A 、B 的坐标分别为 A (﹣2,3)、B (﹣3,1).(1)画出坐标轴,画出△AOB 绕点O 顺时针旋转90°后的△A 1OB 1; (2)点A 1的坐标为 ; (3)四边形AOA 1B 1的面积为 .5.如图,边长为1的方格纸中建立直角坐标系,△OAB旋转得到△OA'B′,观察图形并回答问题:(1)请将作图过程补充完整;并说明△OAB是如何旋转得到△OA'B'.(2)填空:△OAA′的形状是.模块三:非网格作旋转图形1.如图,菱形ABCD和Rt△ABE,∠AEB=90°,将△ABE绕点O旋转180°得到△CDF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题一 解一元二次方程 1、直接开方解法方程 (1)2(6)30x (2) 21(3)22x
2、用配方法解方程 (1)2210xx (2) 2430xx
3、用公式法解方程
(1)03722xx (2) 210xx
4、用因式分解法解方程 (1)3(2)24xxx (2)22(24)(5)xx
5、用十字相乘法解方程 (1)2900xx (2)22100xx
专题二 化简求值 1、先化简,再求值:x2+y2-2xyx-y÷(xy-yx),其中x=2+1,y=2-1.
2、先化简:先化简:12164xxxxx ,再任选一个你喜欢的数x代入求值. 专题三 根与系数的关系 1、已知关于x的一元二次方程24280xxk有两个实数根1x,2x. (1)求k的取值范围; (2)若33121224xxxx,求k的值.
2、已知关于x的一元二次方程26250xxa有两个不相等的实数根1x,2x. (1)求a的取值范围; (2)若221212xxxx≤30,且a为整数,求a的值.
3、已知关于x的方程0)1()12(2mmxmx, (1)求证:不论m为何值,方程总有两个不相等的实数根;
(2)若方程的两实数根分别为1x,2x,且满足11)(21221xxxx,求实数m的值.
专题四 统计与概率 1、现有A、B、C三个不透明的盒子,A盒中装有红球、黄球、蓝球各1个,B盒中装有红球、黄球各1个,C盒中装有红球、蓝球各1个,这些球除颜色外都相同.现分别从A、B、C三个盒子中任意摸出一个球. (1)从A盒中摸出红球的概率为_________; (2)用画树状图或列表的方法,求摸出的三个球中至少有一个红球的概率.
2、现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球. (1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率; (2)小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平. 3、2019年中国北京世界园艺博览会(以下简称“世园会”)于4月29日至10月7日在北京延庆区举行.世园会为满足大家的游览需求,倾情打造了4条各具特色的趣玩路线,分别是:A.“解密世园会”、B.“爱我家,爱园艺”、C.“园艺小清新之旅”和D.“快速车览之旅”.李欣和张帆都计划暑假去世园会,他们各自在这4条线路中任意选择一条线路游览,每条线路被选择的可能性相同. (1)李欣选择线路C.“园艺小清新之旅”的概率是多少? (2)用画树状图或列表的方法,求李欣和张帆恰好选择同一线路游览的概率.
专题五 圆 知识点一:证切线,求半径 1、如图,已知⊙O为四边形ABCD的外接圆,O为圆心,若∠BCD=120°,AB=AD=2,则⊙O的半径长为 .
2、如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是 .
3、如图,AB为半圆O的直径,C为半圆O上一点,AD与过点C的切线垂直,垂足为D,AD交半圆O于点E. (1)求证:AC平分∠DAB; (2)若AE=2DE,试判断以O,A,E,C为顶点的四边形的形状,并说明理由.
4、如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且∠CDE=12∠BAC. (1)求证:DE是⊙O的切线; (2)若AB=3BD,CE=2,求⊙O的半径. 5、如图所示,AB是⊙O的直径,OC⊥AB,弦CD与OB交于点F,过圆心O作OG∥BD,交过点A所作⊙O的切线于点G,连结GD并延长与AB的延长线交于点E. (1)求证:GD是⊙O的切线; (2)若OF:OB=1:3,⊙O的半径为3,求AG的长.
知识点二 求不规则图形的阴影面积 1、如图,AC是半圆O的一条弦,以弦AC为折线将弧AC折叠后过圆心O,⊙O的半径为2,则圆中阴影部分的面积为 .
EDBO
A
C2、如图,在Rt△ABC中,∠ABC=90°,AB=23,BC=2,以AB的中点O为圆心,OA的长为半径作半圆交AC于点D,则图中阴影部分的面积为___________.
3、如图,∠AOB=90°,∠B=30°,以点O为圆心,OA为半径作弧交AB于点A,点C,交OB于点D,若OA=3,则阴影部分的面积为________.
4、如图,AB为⊙O的直径,AC平分∠BAE交⊙O于点C,AE⊥EC于点E. (1)试判断CE与⊙O的位置关系,并说明理由;
(2)若D为AC的中点,⊙O的半径为2,求图中阴影部分的面积.
专题六 二次函数实际应用 1、一茶叶专卖店经销某种品牌的茶叶,该茶叶的成本价是80元/kg,销售单价不低于120元/kg.且不高于180元/kg,经销一段时间后得到如下数据: 销售单价x(元/kg) 120 130 … 180 每天销量y(kg) 100 95 … 70 设y与x的关系是我们所学过的某一种函数关系. (1)直接写出y与x的函数关系式,并指出自变量x的取值范围; (2)当销售单价为多少时,销售利润最大?最大利润是多少?
2、传统的端午节即将来临,我县某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为
y只,y与x满足如下关系:)()(20680206034xxxxy,请解答以下问题: (1)李明第几天生产的粽子数量为280只? (2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,求p与x之间的函数关系式; (3)若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价-成本) 3、如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有两道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S平方米. (1)求S与x的函数关系式及自变量的取值范围; (2)当x取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大可用长度为8米,求围成的最大面积.
专题七 反比例函数的相关计算 1、如图4,一次函数y=-x+3的图像与反比例函数y=kx(k≠0)在第一象限的图像交于A(1,a)和B两点,与x轴交于点C. (1)求反比例函数的解析式; (2)若点P在x轴上,且△APC的面积为6,求点P的坐标.
2、已知反比例函数y=5mx(m为常数,且m≠5). (1)若在其图象的每个分支上,y随x的增大而增大,求m的取值范围; (2)若其图象与一次函数y=-x+1图象的一个交点的纵坐标是3,求m的值.
3、如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数kyx(x>0)的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,则k值为( ) A.4 B.3 C.2 D.1 专题八 三角形全等与旋转的综合应用 1、如图1,已知△ABC≌△EBD,∠ACB=∠EDB =90°,点D在AB上,连接CD并延长交AE于点F. (1)猜想:线段AF与EF的数量关系为______; (2)探究:若将图1的△EBD 绕点B顺时针方向旋转,当∠CBE小于180°时,得到图2,连接CD并延长交AE于点F,则(1)中的结论是否还成立?若成立,请证明; 若不成立,请说明理由; (3)拓展:图1中,过点E作EG⊥CB,垂足为点G.当∠ABC的大小发生变化,其它条件不变时,若∠EBG =∠BAE,BC=6,直接写出AB 的长.
FE
D
CB
AF
DE
BCA
(图1) (图2) 专题九 二次函数的综合应用 1、已知抛物线22yaxaxc过点A(-1,0)和C(0,3),与x轴交于另一点B,顶点为D. (1)求抛物线的解析式,并写出D点的坐标; (2)如图1,E为线段BC上方的抛物线上一点,EF⊥BC,垂足为F,EM⊥x轴,垂足为M,交BC于点G.当BG=CF时,求△EFG的面积; (3)如图2,AC与BD的延长线交于点H,在x轴上方的抛物线上是否存在点P,使∠OPB=∠AHB?若存在,求出点P的坐标;若不存在,请说明理由.
xy
CHD
BA
O
yxMDCGFBAO
E
(图1) (图2) 2.(满分3+4+5=12分)如图,抛物线y=ax2+bx-3与轴交于A,B两点(A点在B点左侧),A(-1,0),B(3,0),直线L与抛物线交于,两点,其中点的横坐标为. (1)求抛物线的函数解析式; (2)是线段AC上的一个动点,过点作y轴的平行线交抛物线于点,求线段PE长度的最大值; (3)点是抛物线上的动点,在x轴上是否存在点,使,,,这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的点坐标;如果不存在,请说明理由.