8鲁奇碎煤固定床加压气化技术
鲁奇气化工艺特点及影响其运行的主要因素分析

鲁奇气化工艺特点及影响其运行的主要因素分析鲁奇加压气化是一项相对成熟的技术。
在煤化工造气领域具有很多优势,但该项技术具有的缺点也是很明显的,文章通过介绍鲁奇工艺特点,分析了影响鲁奇气化工艺的各种关键因素,并针对这些因素的控制来提高鲁奇气化装置的优点。
标签:鲁奇气化炉;工艺特点;因素前言鲁奇加压气化工艺是煤和气化剂逆流接触的一种加压移动床煤气化工艺。
由于其适应的煤种广、气化强度较大、气化效率高,技术成熟可靠,广泛应用于各个煤化工企业。
但鲁奇气化工艺也有一定的缺点,如运行周期短,设备维修频繁等。
如何在目前的工艺基础上对设备和工艺操作进行改进和优化,保证鲁奇气化炉进行长周期运行,已经成为鲁奇炉发展面临的一个重要因素。
本文通过某煤化工企业实际生产中经济运行的实践,从气化用煤品质、生产工况控制等方面分析了影响气化炉稳定运行的因素。
1 鲁奇气化工艺主要特点1.1 原料煤为块煤鲁奇炉原料用煤一般采用5~50mm的块煤,并在煤的反应性、无粘结性、机械强度、灰熔融性等方面要求较高。
因此适宜的煤种为褐煤、次烟煤、贫煤和无烟煤,同时由于其工艺特点对一些水分较高(20%~30%)和灰分较高(如30%)的劣质煤也适用。
与气流床工艺相比,鲁奇炉采用碎煤为原料,入炉煤的前期处理较为简单。
1.2 氧耗相对较低鲁奇气化工艺采用干法排灰,气化剂采用蒸汽和纯氧气,运行过程中为防止结渣汽氧比较高,这就降低了氧气的消耗,通常要比气流床氧节省30%,在空分制氧工艺方面可以节约投资。
1.3 煤气中CH4含量较高气化产生的煤气中CH4含量较高,可以达到10%左右,因此该工艺适合于生产城市煤气和代用天然气(SNG),另外可通过加完转换工艺可将CH4转化为CO和H2后也可以用于生产液体燃料,比如甲醇石脑油和柴油。
1.4 粗煤气中H/CO为2.0,在这种状况下不经变换或少量变换即可用于F-T 合成、甲醇合成、天然气合成等产品生产的原料气,对比其他气化技术减少了气体成分的变换工序。
国内外煤气化技术概述

国内外煤气化技术概述煤气化技术的研发已有200多年的历史,根据气化炉所使用的煤颗粒大小和颗粒在气化炉内的流动状态,气化炉总体上分为三类,即以鲁奇为代表的固定床气化炉、以U—Gas、灰熔聚为代表的流化床气化炉和以德士古、壳牌为代表的气流床气化炉。
1.1 鲁奇固定床气化技术鲁奇固定床气化技术产生于20世纪40年代,由鲁奇公司开发。
鲁奇炉以8~50mm粒度、活性好、不黏结的无烟煤、烟煤或褐煤为原料,煤从气化炉的项部加入,而气化剂从炉子的下部供入,因而气固间为逆向流动,随着反应的进行,煤在气化炉内缓慢移动。
鲁奇固定床气化的压力可达3.0MPa,气化温度为900~1050℃,单炉投煤量一般为1000ffd(最大可达1920ffd),采用固态排渣方式。
典型的鲁奇固定床气化炉对燃料的要求比较高,尤其不宜使用焦结性煤。
由于气化温度较低,产生的煤气中不可避免的含有大量的沥青、焦油,因此需要对粗煤气进行分离净化。
为简化复杂的粗煤气净化流程,提高气化效率,英国煤气公司在固作态排渣鲁奇炉的基础上,进一步提高了气化温度,以强化气化过程,发展成液态排渣鲁奇炉⋯。
鲁奇气化炉起初主要用于生产城市煤气,后发展到生产合成油、氨、甲醇等,以及燃气。
我国云南解化集团等许多单位采用该技术用于合成氨。
由于鲁奇气化炉生产合成气时,气体成分中甲烷含量高(8~10%),且含焦油、酚等物质,气化炉后需要设置废水处理及回收、甲烷分离转化装置,用于生产合成气生产流程长、投资大,因此单纯生产合成气较少采用鲁奇气化炉。
1.2 GSP气流床气化技术GSP工艺技术由前民主德国的德意志燃料研究所开发,始于20世纪70年代末。
GSP气化炉由烧嘴、冷壁气化室和激冷室组成。
烧嘴为内冷多通道的多用途烧嘴,冷却水分别在物料的内中、中外层之间和外层之外,冷却方式比较均匀,可以使烧嘴温度保持在较低水平。
固体气化原料被碾磨为不大于0.5mm的粒度后,经过干燥,通过浓相气流输入系统送至烧嘴。
碎煤加压气化(鲁奇)生产过程的控制

6、 5秒内,△P≥0.15MPa,无泄漏,DV阀开,继续卸压。
F
PV2 B C
7煤锁压力(PISH-606(A-H)015)卸至2.2MPa,DV阀关。 8、计时器T-3自动启动。
一、煤锁控制程序 (半自动)
9、5秒内,煤锁压力( PISH-606(A-H)015 )回升至 2.3MPa“BC阀 漏”报警,循环停止。 10、5秒内,煤锁压力( PISH-606(A-H)015 )2.2MPa未 变,无报警,DV阀开,继续卸压。
F
FV
F DV1 F
33、计时器T-11启动,TC阀自动开。 34、若10秒内,TC阀全开,则“循环完成”信号出现。开启炉 篦,灰锁开始受灰。 F
PV BC
充 水
DV2
35、若10秒内,TC阀未全开,则“TC阀未全开”报警。 36、人工按“开”按钮,全开TC阀。 37、“循环完成” 信号出现。
灰锁排灰程序(现场手动操作) 将三位开关切至现场手动操作, 即可进行现场操作。 操作程序(以灰锁上阀打开,灰 锁满为循环开端)
TC
F
PV BC 充 水 FV
F F F
DV1
7、计时器T-2启动,同时计时器T15、T16启动。
DV2
灰锁排灰程序
8、5秒内,灰锁与气化炉压差(PDISH-606(A-H)021)△P <0.2MPa“TC阀泄漏”出现报警,DV1自动关闭,自动循环停 止。 T15计时器用于总的灰锁排灰周期的监测。即从DV1开始到排 灰周期结束,上阀TC再打开的时间如果超过T15设定时间(480 秒),则报警“排灰故障”停止循环。 T16用监测泄压时间。即从DV1打开到下阀BC打开这段时间, 如果超过T16设定时间(180秒),则报警“灰锁泄压故障”, 同时停止程序。
碎煤加压固定床气化技术进展,中国造气网,煤气化,造气,固定层,水煤浆,粉煤气化,富氧气化,...

碎煤加压固定床气化技术进展,中国造气网,煤气化,造气,固定层,水煤浆,粉煤气化,富氧气化,...1 碎煤加压固定床气化技术发展历程碎煤加压固定床气化技术最早为德国鲁奇(Lurgi)公司开发,鲁奇气化炉由此得名。
鲁奇炉的改进是鲁奇气化技术发展的核心,主要经历了三个阶段。
第一阶段(1930年~1954年),第一代气化炉直径2.6 m,主要用于生产城市煤气,气化炉的结构特点是有内衬和边置灰斗,不设膨胀冷凝器,气化剂通过炉篦的主动轴送入,该炉型只能气化非黏结性煤,且气化强度较低,产气量5000 m3/h·台~8000 m3/h·台,我国云南解放军化肥厂引进的就是第一代鲁奇炉。
第二阶段(1954年~1969年),第二代鲁奇炉扩大了用煤范围,可气化弱黏结性烟煤,取消了内衬,改进了布气方式和增加了破黏装置,边置灰斗调为中置灰斗,气化炉直径扩大到2.8 m、3.7 m两种,单炉生产能力得到提高,产气量分别达14000 m3/h·台~17000 m3/h·台、32000 m3/h·台~45000 m3/h·台。
第三阶段(1969年至今),为了进一步扩大用煤范围,使之达到气化一般黏结性煤的目的,推出了Mark-Ⅳ型气化炉,改进了布煤器和破黏装置,可气化除焦煤外的所有煤种,气化强度进一步得到提高,气化炉直径3.8 m,产气量35000 m3/h·台~65000 m3/h·台,我国原山西化肥厂和义马煤气厂引进的均为第三代Mark-Ⅳ型鲁奇炉。
此后,南非萨索尔(Sasol)在1980年开发了Mark-Ⅴ型气化炉,气化炉内径4.7 m,产气量达10万m3/h·台。
液态排渣的BGL气化技术也是Lurgi气化炉的升级版,BGL在气化强度、煤气组成、煤气水产率方面均有很大的提高和改善。
2 碎煤加压固定床气化技术工艺流程及特点典型的碎煤加压固定床气化技术工艺流程见图1。
固定床加压气化解读

鲁奇加压气化炉
是自热式、逆流移动床、固态排渣的生产工艺,气 化过程所需要的热量靠煤的部分燃烧来供给。
气化炉是双层壁压力容器,夹套由中压锅炉水保持 液位,操作期间,热量传递到夹套,在此产生略高于气 化炉操作压力下的饱和蒸汽,此蒸汽返回作气化剂,从 而减少了外供的过热蒸汽供给量。
煤进入气化炉后首先受热干燥脱去水分,依次经过 干馏干燥层、气化层、燃烧层,产生以CO2、CO、H2、 CH4为主要成份的粗煤气。
煤斗为常温常压设备,容量为100M3,可储存气化炉四 小时的低负荷用煤量。
灰斗
灰斗是位于灰锁下部与灰锁相接的盛灰、排 灰容器,其为常压容器,直径为φ3000mm,设计温 度为200℃.
灰斗与灰锁是靠一个由填料函密封的伸缩节(套 筒)联在一起的,次伸缩节便于拆卸,给检修灰锁 下阀提供了方便,另其还可吸收气化炉向下的热膨 胀量。
冷圈
煤分布器
搅拌 器
b)炉箅
设置其作用是: (1)均匀分布气化剂; (2)破碎大块灰渣,排灰 ; (3)支撑床层,使燃料床移动,稳定炉内工况。
※炉箅设在气化炉底部,是气化炉的关键部件,
Mark-III型气化炉采用塔形炉箅,分四层布气,气 化剂由炉底进入炉箅中心管,然后由各层布气孔出去 ,通过炉箅各层间隙分布进入气化炉内,达到沿气化 炉横断面均匀布气的效果。 宝塔形炉箅一般由 四层依次重叠成梯锥 状的炉箅块及顶部风 帽组成,共五层炉箅 炉箅的总高度为 1200mm,气化剂经各 层炉箅通道进入炉 内的气量分布大致 为:I层~10%,II 层~20%,III层~ 30%,IV层~40%。
1、气化炉——鲁奇炉 1)鲁奇炉发展概况
《鲁奇加压气化技术的研究进展》

摘要鲁奇加压气化炉是德国鲁奇公司所开发,称为鲁奇加压气化炉简称鲁奇炉。
本文通过对鲁奇加压气化技术的研究总结出汽氧比决定鲁奇炉内反应层温度的高低,同时也影响气化炉的排渣效果。
另外煤种的优劣将会影响气化炉的排渣能力以及煤气成分和产率的组成。
此外鲁奇公司开发研制的液态排渣气化炉是采用液态排渣的方式,从而提高了气化强度和热效率,降低了水蒸汽的耗量。
与固态排渣鲁奇炉相比,其废水对环境的影响可大幅度减小。
随着煤气化技术的发展,鲁奇加压气化工艺也得到了发展和管理。
本文还对此工艺的管理和改进提出了相关的建议。
关键词:压力;汽氧比;煤种;液态排渣目录第一章前言 (1)1.1 研究背景 (1)1.2 研究内容 (1)第二章鲁奇加压气化的发展史 (2)第三章鲁奇加压气化的原理 (3)3.1化学反应 (3)3.2加压气化的实际过程 (4)第四章鲁奇加压气化操作工艺条件 (5)4.1压力 (6)4.2气化层温度和气化剂温度 (7)4.3汽氧比的选择 (7)4.3.1.义马长焰煤煤质分析 (7)4.3.2.汽氧比对义马长焰煤加压气化的影响 (8)4.3.3 .结论 (11)4.3.4 不同的汽氧比对煤气生产的影响 (11)第五章煤种及煤的性质对加压气化的影响 (12)5.1煤种对煤气组分和产率的影响 (12)5.2煤种对各项消耗指标的影响 (12)5.3煤种对其他副产品的特征和产率的影响 (12)5.4 煤的理化性质对加压气化的影响 (12)第六章液态排渣鲁奇炉 (16)第七章鲁奇加压气化工艺的管理和改进 (17)7.1 技术难点及工艺改进 (17)7.2贫瘦煤加压气化的工艺管理 (18)7.3 鲁奇加压气化工艺发展前景展望 (19)第八章总结 (20)致谢 (21)参考文献 (22)第一章前言1.1 研究背景资源是一个国家赖以生存的保证,矿产资源是我国经济和社会发展的物质基础。
我国90%的能源、95%以上的工业和农业原材料都来自于矿产资源。
(选学)分析固定床气化技术
煤炭气化生产技术
1.UGI炉结构
炉子为直立圆筒形结构。 炉体用钢板制成,下部设 有水夹套以回收热量、副 产蒸汽,上部内衬耐火材 料,炉底设转动炉篦排灰。
上锥体
水夹套 炉篦传动装置 出灰机械
设备结构简单,易于操作, 不需用氧气作气化剂,热 效率较高,但是生产强度 低,对煤种要求比较严格, 采用间歇操作工艺管道比 较复杂。
由炉底吹入空气,把残留在炉上部及 管道中的水煤气送往贮气柜而得以回收, 以免随吹风气逸出而损失。
10
煤炭气化生产技术
• 3-4分钟循环各阶段时间分配表:
序 号
阶段名称
3min循环,(S) 4min循环, (S)
1
吹风阶段
40~50
60~80
2
3 4
蒸气吹净阶段 2
上吹制气阶段 45~60 下吹制气阶段 50~55
2
60~70 70~90
5
二次上吹阶段 18~20
18~20
11
煤炭气化生产技术
吹风阶段
蒸气吹净阶段
一次上吹制气阶段
下吹制气阶段
二次上吹制气阶段
空气吹净阶段
12 其缺点是生产必须间歇阀门频繁切换,生产效率低
煤炭气化生产技术
软水 蒸汽总阀 上吹蒸汽阀
蒸汽 下吹蒸汽阀 集汽包 上水
集汽包
水 煤 气 发 生 炉
燃 烧 室
废 热 锅 炉
烟 囱 上 行 煤 气 阀 烟囱阀
蒸汽缓冲罐 空气鼓风机
吹风空气阀
洗 气 箱
洗 涤 塔
下行煤气阀 气柜 煤气去净化
气柜水封 图5--27 水煤气站流程
气柜水封
13
煤炭气化生产技术
固定床气化生产工艺流程的组织
任务一 鲁奇加压气化工艺
液态排渣气化炉的主要特点是炉子下部的排灰机构特殊,取消了固态排 渣炉的转动炉箅。在炉体的下部设有熔渣池。在渣箱的上部有一液渣急 冷箱,用循环熄渣水冷却,箱内充满70%左右的急冷水。由排渣口下落 在急冷箱内淬冷形成渣粒,在急冷箱内达到一定量后,卸入渣箱内并定 时排出炉外。由于灰箱中充满水,和固态排渣炉比较,灰箱的充、卸压 就简单得多了。在熔渣池上方有8个均匀分布、按径向对称安装并稍向 下倾斜、带水冷套的钦钢气化剂喷嘴。气化剂和煤粉及部分焦油由此喷 入炉内,在熔渣池中心管的排渣口上部汇集,使得该区域的温度可达1 500℃左右,使熔渣成流动状态。
一转轴上,速度为15 r/ h左右。从煤箱降下的煤通过转动布煤器上的两 个扇形孔,均匀下落在炉内,平均每转可以在炉内加煤150 ~200mm厚。 搅拌器是一个壳体结构,由锥体和双桨叶组成,壳体内通软化水循环冷 却。搅拌器深入到煤层里的位置与煤的结焦性有关,煤一般在 400℃~500℃结焦,桨叶要深入煤层约1. 3m。 (3)炉箅分四层,相互叠合固定在底座上,顶盖呈锥体。
地采用空气加蒸汽的方法。解决纯氧的来源需要配备庞大的空分装置, 加上其他高压设备的巨大投资规模,成为国内一些厂家采用加压气化的 障碍。
三、加压气化炉
加压气化炉以鲁奇炉为代表,又根据气化后炉渣的排出状态不同分为干 法排渣鲁奇炉和湿法排渣鲁奇炉,两种气化炉的结构特点分述如下。
上一页 下一页 返回
任务一 鲁奇加压气化工艺
灰渣层位于气化炉的下部,气化剂自下而上穿越1 500℃左右灰渣层, 气化剂升温的同时将灰带走的热量回收,灰渣温度比气化剂温度高30 ℃~50 ℃ 。
燃烧区进行下列主要反应:
上一页 下一页 返回
任务一 鲁奇加压气化工艺
鲁奇加压气化的工业应用及发展
鲁奇加压气化的工业应用及发展发布时间:2021-12-28T08:55:57.574Z 来源:《中国科技人才》2021年第22期作者:张鑫[导读] 证明以煤制气尤其是以鲁奇炉造气在我国拥有广阔的发展前景。
内蒙古大唐国际克什克腾煤制天然气有限责任公司内蒙古赤峰025350摘要:鲁奇加压气化的工业应用十分广泛,如以煤制氨、煤制油、煤制天然气,它可作为氨、甲醇、甲烷、合成原料气;它可以生产出纯氢气供金属冶炼使用,它可以作为气体燃料,还可以获得优质一氧化碳,并作为 C,化学品进一步深度加工成有机产品,它还可以联合发电等。
50年代中期,云南解放军化肥厂从前苏联引进了第一代鲁奇炉,以煤造气制合成氨。
70 年代末,沈阳加压气化厂用第一代鲁奇炉制取城市煤气。
80 年代初,山西天脊煤化工集团公司(原山西化肥厂) 从西德鲁奇公司成套引进第三代 Mark- IV 鲁奇炉,用于制取合成氨的原料气。
以后我国又建设了兰州煤气厂和哈尔滨气化厂,这 2 套装置已于 90 年代初相继投入运行,如今内蒙古大唐国际克什克腾煤制天然气有限责任公司也已经完成完全投产。
证明以煤制气尤其是以鲁奇炉造气在我国拥有广阔的发展前景。
关键词:鲁奇;气化;工业应用一、鲁奇炉结构简介鲁奇加压气化炉是一个结构复杂的组合设备,它由炉体与煤锁、灰锁等辅助设备组成。
1. 炉体炉体的主要功能是均匀布煤、布气、除灰,使气化剂与煤均匀接触,从而使固体煤转化为煤气。
炉体分为壳体和炉内件两部分。
国内各厂鲁奇炉壳体均采用水冷却双层夹套外壳,外壳体承受高压,内夹套仅承受夹套蒸汽通过气化炉床层的阻力。
不同之处是各厂的水夹套宽度及容积有所不同,夹套内外壳体由于温度不同所采取的吸收热膨胀的方式也不相同。
内蒙古大唐国际克什克腾煤制天然气有限责任公司的装置气化炉是圆筒形、双层夹套式容器,内外壳由钢板制成。
主要由炉体、煤锁、灰锁、炉篦、气化剂入口和煤气出口等设备部分组成。
在气化炉中进行加压气化可以提高反应速度,增加气化强度,提高生产能力,改善煤气质量。
固定床加压气化课件
煤种中挥发分越高,煤气产率越低。
2)煤的理化性能对加压气化的影响
a、煤的粒度对加压气化影响
·煤的粒度越小,有利于气化反应的进行;
·煤粒度过小,造成气化炉床层阻力加大,煤气带出物 增加。
·煤的粒度过小,会造放一化炉一般加压气化要求入炉煤的
bቤተ መጻሕፍቲ ባይዱ 原料煤中水分对气化过社粒度最大和最小粒径比为5,
优点:煤种含有较多水分,反 低负荷放宽到8。小于
高压蒸汽
2
煤锁 汽液分离器
液压传动装置 搅拌器 煤分配器
洗涤冷却器 循环冷却 洗涤水
煤气 水夹套
转动炉算 液压传动装置
灰锁 影胀冷凝器
a由)筒炉体体、搅拌与布3外.6煤承筒MP受承器a低受、;压高内炉—压筒箅—体组成
筒体:
0.25MPa
40mm
50mm
Mark-III型气 化炉是双层夹 套式圆形筒体, 筒体内径为
度减少 必另一方面保护了泄压阀 门不被含有灰尘的灰锁蒸 汽冲刷磨损,从而延长阀 门的使用寿命,提高气化 图 4 3 3 2 炉的运转率。
灭锁膨胀冷凝器示意图
喷淋洗涤冷却器:
喷淋洗涤冷却器(简称喷冷器)与气化炉粗煤气 出口管垂直相连。
作用是对气化炉出来的高温粗煤气进行洗涤冷却, 使粗煤气温度由400~500℃降至204 ℃,并且除去焦 油和煤尘。
●煤的反应活性
煤的碳化程度越浅,内表面积越大,反应性越高。 影响: 活性高,气化温度低,有利于甲烷生成反应,煤气热 值相应提高并为气化层提供部分热量,降低了氧气耗量。 气化温度相同时,反应活性越高,气化反应速率越快, 气化炉生产能力较大。
煤的反应活性在低温下影响较大。
3、鲁奇加压气化的流程和设备
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主流煤气化技术及市场情况系列展示(之八)鲁奇碎煤固定床加压气化技术技术拥有单位:德国鲁奇公司上世纪30年代,德国鲁奇公司开发出碎煤固定床加压气化技术,应用于煤气化项目。
其关键设备为FBDB(Fixed Bed Dry Bottom,固定床干底)气化炉,俗称鲁奇炉。
几十年来,经过持续不断地改进与创新,鲁奇公司先后开发出第一代鲁奇炉(1936~1954年)、第二代鲁奇炉(1952~1965年)、第三代鲁奇炉Mark4和Mark5(1969~2008年),在此基础上,又推出第四代鲁奇炉Mark+(已于2010年8月完成该炉的基础工艺及机械设计)。
同时,为满足气体排放标准,解决废水达标排放难题,鲁奇公司相继开发出高效的煤气化尾气处理和酚氨废水处理工艺技术。
一、技术特点鲁奇公司第四代FBDB气化炉Mark+的开发目标是:增加气化炉的生产能力(为Mark4的两倍);增加设计压力到6MPag,以保证气化过程更好的经济性。
同时,将从Mark4操作上获得的改进,以及鲁奇设计安装的干渣和湿渣排灰气化炉(包括低到高阶煤、不黏煤或黏结煤,还包括生物质和各种废物气化)上获得的经验,反映在Mark+的设计上。
通过应用成熟的技术和创新的设备,上述目标已全部实现。
气化炉Mark+和Mark4综合比较见下表。
在更高压力下,Mark+主要改进项目包括煤锁、气化炉、灰锁系统、洗涤冷却器、废热锅炉、下游冷却系统等。
最显著的改进为:采用双煤锁、使用气化炉缓冲容积,实现煤锁全面控制;增加床层高度。
改进气化炉内件(包括炉箅、波斯曼套筒、粗合成气出口、内夹套),以及鲁奇专有的煤分布器和搅拌器。
Mark+气化炉的设计压力提高到6MPag。
对于煤制天然气项目,这将带来整个气化岛投资成本和操作成本的降低。
如对年产40×108Nm3的煤制天然气项目,气化炉台数可比Mark4减少一半,气化岛投资节省17%,全厂可减少设备约300台,煤制天然气(SNG)成本可望下降10%。
对于下游的低温甲醇洗单元,由于吸收压力的提高,冷冻需求量减少;对于甲烷化单元,由于入口气中甲烷含量提高(50%的入口气为甲烷),所需循环流量降低,反应器尺寸减小。
二、配套工艺(1)煤气化单元鲁奇FBDB煤气化单元简化流程见上图。
粒度为5~50mm的煤从煤斗加入独立的煤锁,再用粗合成气加压后,打开煤锁送入气化炉。
煤以间歇操作方式加入气化炉。
几乎所有用于给煤锁加压的气体,在从煤斗加煤前的减压过程中都可得到回收。
气化炉为双壁容器,在外壁和内壁间(即夹套)维持一定的锅炉给水液位,以保护外层承压壳体免受高温。
同时,通过气化炉内壁传递热量,在夹套中产出与气化压力接近的饱和蒸汽,该蒸汽加入气化过程所用的高压过热蒸汽中。
从煤锁来的煤通过气化炉横截面分布,缓慢下降并通过气化床层。
蒸汽和纯氧的混合气体(也称气化剂)进入气化炉底部,通过回转炉篦,在烧结灰的辅助作用下,分布于气化床层。
在热灰和气化剂之间存在部分热量交换。
灰被冷却到300~400℃,排放到灰锁,再由灰溜槽排出。
灰锁为间歇操作,灰锁一旦装满,将与气化炉隔离,减压到常压,灰排放到灰斗,用水进行激冷。
气化剂蒸汽和氧气通过位于气化炉底部的回转炉篦进行分布。
燃烧区温度控制在灰软化温度和熔融温度之间,防止熔渣的形成,使灰顺利排入灰锁。
预热后的气化剂向上通过燃烧层,在燃烧层里,氧气与煤焦反应生成二氧化碳。
燃烧层是气化炉温度最高的区域,为上部的其他主要发生吸热反应的反应层提供热量。
随着热气体(主要是二氧化碳和蒸汽)沿反应器上升,最终到达气化/还原层,大部分合成气在此生成。
之后,合成气继续上升到干馏层,在此下降的煤在惰性氛围中加热,并分解出富碳的固体残渣(煤焦)和含有气体、蒸汽和焦油的富氢挥发分。
随着气体进一步上升,来自干馏区的挥发分及合成气在气化炉上部得以进一步冷却,而煤则得以预热和干燥。
最终离开气化炉的气体温度在480~700℃之间。
气体的最终组成,决定于煤质和装置的操作工况。
在粗合成气中,煤的挥发分以重质和轻质烃、含酚化合物、氨、含硫化合物等形式存在。
生产的气体在离开气化炉后,立即用煤气水激冷。
经水饱和后的气体在废热锅炉中进一步得以冷却。
冷却获得的冷凝物送去煤气水分离单元。
(2)煤气水分离和酚氨回收单元FBDB煤气化会产生较多含有焦油、轻油、酚、氨等物质的煤气水。
煤气水的处理和达标排放是气化工艺不可或缺的重要环节。
鲁奇公司提出了一个完整的煤气水处理流程解决方案,并在南非塞康达萨索尔合成油工厂得到了很好的实施。
煤气水处理流程是一个完整的水净化生产链,其中焦油/轻油在煤气水分离单元回收,酚在鲁奇Phenosolvan 酚回收单元回收,液氨在CLL 氨回收单元回收。
经过上述处理后,所获得的汽提煤气水可在后续的废水处理单元轻松处理,并实现达标排放。
酚回收:鲁奇酚回收工艺采用五级混合——澄清槽连续逆流萃取工艺,经酚回收单元处理后,煤气水中轻油和颗粒含量小于50ug/g,单酚含量小于20ug/g,多元酚萃取率达到85%,总萃取率大于99%,远高于国内设计的转盘萃取塔的萃取率,并可显著降低去废水处理单元的汽提煤气水中COD含量;溶剂和粗酚的分离在一个蒸馏塔中实现,使用来自氨回收单元的废热,溶剂损失小,能耗低;拥有专利设计的高效脱沥青塔,可生产脱沥青酚。
该酚回收工艺在国外已经商业运行多年,但是尚未在国内实施。
氨回收:经氨回收处理后,煤气水中的游离氨含量小于50ug/g,COD含量小于3000mg/L,适于进一步生化处理;氨及含硫酸气通过汽提和洗涤工艺分别回收,无需额外的化学品和溶剂,无水液氨产品加压或冷冻后,作为农用或化学品级的产品;而具有一定压力的无氨酸性气体可送去硫回收单元;主要的公用工程是低压和中压蒸汽。
废水处理:在生化处理中,对异常高浓度的氰化物和多酚给予特殊考虑。
按上述煤气水处理工艺,其废水排放可以满足最严格的环境标准。
鲁奇设计的南非萨索尔1600t/h(2×800t/h)煤气水、美国北达科他州大平原煤制天然气工厂640t/h煤气水,处理后均能达到当地严格的排放标准。
在最新开发的废水处理技术中,经生化处理后,100%的水可作为工艺冷却水或锅炉给水回用,实现废水的零排放。
尾气处理:尾气处理技术主要特点如下:①无连续火炬气,气体送去煤粉炉产生蒸汽和/或发电;②锅炉烟气脱硫、脱硝,以满足排放标准;③有效的废气热回收;④显著减少开车气体排放,开车气送去锅炉;⑤对煤锁气、膨胀器气体以及煤气水分离驰放气,予以收集并送去锅炉;⑥由于采用了驰放气储存系统,不存在无组织排放。
三、技术特点参数表四、技术优势1、鲁奇FBDB煤气化技术原料适应范围广,除强黏结性焦煤外,从褐煤到无烟煤均可气化,包括水分、灰分较高的劣质煤;可副产焦油、轻质油及酚等多种高价值产品。
鲁奇炉对气化原料的要求如下:块煤,典型粒度分布在5~50mm 之间,低于5mm或高于50mm煤的比例均不超过5%;一般为非黏结性煤,对黏结性煤可加装搅拌器;灰变形温度大于1200℃(还原性气氛下);一定的热稳定性和机械稳定性(破碎指数低于55%);经验证的最低灰分含量为6%(干基,质量分数),最高灰分含量为40%(干基);总水分含量不超过50%(收到基);挥发分含量低于55%(干燥无灰基)。
总体来看,从经济性方面考虑,鲁奇炉尤其适于低阶煤和高灰煤的气化。
2、由于采用碎煤进料,相对气流床干粉或水煤浆进料,备煤系统简单,投资及运行费用大为降低,运行可靠性大幅提高。
3、气化剂与煤逆流接触,气化过程进行得比较完全,且热量利用合理,具有较高的热效率(最高可达94%),其冷煤气效率明显高于气流床。
由于逆流运行,粗煤气及灰渣均以较低温度(典型值为400~700℃)离开气化炉,煤气与灰渣的热回收比干粉进料的废热锅炉流程简单可靠。
4、为防止结渣,气化采用高汽氧比,氧气消耗低于流化床及气流床,氧气单耗只为干粉气流床的50%~70%,显著降低空分设备投资。
5、粗煤气中甲烷含量高(10%或更高),特别适用于生产城市煤气和煤制天然气(SNG)。
6、粗煤气中H2/CO在2左右,当用褐煤为原料时,H2/CO可达2.7,高于气流床,对于F-T合成、甲醇合成、SNG的生产,可减轻煤气变换负荷。
7、技术成熟可靠,在无备用的情况下,单台气化炉年运转率超过93%,气化岛年运转率大于98%(在萨索尔塞康达工厂和大平原工厂得到验证)。
设备本地化率高,投资省,对于相同的产品规模,气化岛加上配套空分的投资,约比水煤浆气化低20%。
表/煤种使用情况五、市场应用情况从上世纪50年代起,中国通过前苏联以及原东德、捷克等国,间接引进鲁奇固定床类气化炉;从80年代开始直接引进鲁奇炉;90年代开始国内设计。
目前中国国内设计的碎煤固定床气化炉也大多基于该炉型。
据不完全统计,国内设计院完成设计的FBDB(Mark4衍生型)气化炉已超过150台。
这些气化炉主要用于煤制天然气、煤制合成油、煤制甲醇、煤制合成氨及其他煤化工项目。
随着这些项目的建成投产,中国将成为世界上使用鲁奇炉最多的国家。
上世纪70年代,南非萨索尔合成油工厂建设了80台Mark4气化炉用于生产液体燃料和化学品;1985年投产的美国北达科他州大平原工厂是目前世界上唯一商业化运行的煤制天然气工厂,至今已稳定运行超过28年,年平均运转率达到98.3%。
该厂建有14台Mark4气化炉,每年生产14.5×108Nm3(标准)煤制天然气(SNG)。
Mark4的最新业绩是印度Jindal钢铁电力有限公司的DRI(直接还原铁)项目,采用7台最新改进型Mark4气化炉(Mark4-HP40),设计压力为4MPag,目前正在建设中。