第5章 电介质
电磁场与电磁波(第4版)教学指导书 第5章 平面电磁波

第5章 平面电磁波5.1基本内容概述本章讨论均匀平面波在无界空间传播的特性,主要内容为:均匀平面波在无界的理想介质中的传播特性和导电媒质中的传播特性,电磁波的极化,均匀平面波在各向异性媒质中的传播、相速与群速。
5.1.1理想介质中的均匀平面波1.均匀平面波函数在正弦稳态的情况下,线性、各向同性的均匀媒质中的无源区域的波动方程为220k ∇+=E E对于沿z 轴方向传播的均匀平面波,E 仅是z 坐标的函数。
若取电场E 的方向为x 轴,即x x E =E e ,则波动方程简化为222d 0d x x E k E z+= 沿+z 轴方向传播的正向行波为()j jkz x m z E e e φ-=E e (5.1)与之相伴的磁场强度复矢量为()()z kz z ωμ=⨯H e E 1j jkz ym E e e φη-=e (5.2)电场强度和磁场强度的瞬时值形式分别为(,)Re[()]cos()j t x m z t z e E t kz ωωφ==-+E E e (5.3)(,)Re[()]cos()j t m y Ez t z e t kz ωωφη==-+H H e (5.4)2.均匀平面波的传播参数 (1)周期2T πω=(s),表示时间相位相差2π的时间间隔。
(2)相位常数k =(rad/m ),表示波传播单位距离的相位变化。
(3)波长kπλ2=(m ),表示空间相位相差2π的两等相位面之间的距离。
(4)相速p v kω==m/s ),表示等相位面的移动速度。
(5)波阻抗(本征阻抗)x y E H η==Ω),描述均匀平面波的电场和磁场之间的大小及相位关系。
在真空中,37712000≈===πεμηη(Ω) 3.能量密度与能流密度在理想介质中,均匀平面波的电场能量密度等于磁场能量密度,即221122εμ=E H电磁能量密度可表示为22221122e m w w w εμεμ=+=+==E H E H (5.5)瞬时坡印廷矢量为21zη=⨯=S E H e E (5.6)平均坡印廷矢量为211Re 22av z η*⎡⎤=⨯=⎣⎦S E H e E (5.7) 4.沿任意方向传播的平面波对于任意方向n e 传播的均匀平面波,定义波矢量为n x x y y z z k k k k ==++k e e e e (5.8)则00()n jk j --==e r k r E r E e E e (5.9)()()1n η=⨯H r e E r (5.10)00n =e E (5.11)5.1.2电磁波的极化1.极化的概念波的极化表征在空间给定点上电场强度矢量的取向随时间变化的特性, 并用电场强度矢量的端点在空间描绘出的轨迹来描述。
电介质材料PPT课件

由于一切电介质材料均由分子、原子或离子组成的。
而它们又都是由原子核及核外电子云组成。当外加电场
时,电子云相对于原子核发生位移,因为产生感应电矩。
最简单的模型是图(a)所示的氢原子的电子极化。无外
电场时,正、负电荷重心重合;当施加电场后,电子云
与核产生相对位移。电子极化的频率响应极快,外加电
场后经
即能1产0生14 极1化01。5s
1、探针法
金刚石探针沿膜表面移动, 触针 而探针在垂直方向上的位移通
过电信号可以被放大1 0 1 6 倍并
被记录下来。从膜的边缘可以 直接通过探针针尖所检测的阶 梯高度确定膜的厚度。
薄膜 基片
优点:简单,测量直观; 缺点:(1)容易划伤较软的薄膜并引起测量误差;
(2)对于表面粗糙的薄膜,并测量误差较大。
第一章 简 介
电介质材料是指电阻率大于1010cm 的材料,是相对于金属材料和半导体材料 而区分的。
金属材料 :共有化电子 半导体材料:载流子 电介质材料:束缚电荷
一、电介质材料的分类及应用
电介质材料的分类
绝缘材料:电阻率很高,能承受很强的电场,不 易被击穿。主要是高分子电介质和无碱玻璃。
电容器材料:主要是陶瓷材料,包括两种,一种 是具有严格温度系数的高频稳定型陶瓷,一种是 介电系数特别大的铁电陶瓷。
(2)离子极化 由异号离子组成的晶体,如Nacl,在外电场作
用下,正、负离子均发生位移,见图(b),以一 维排列的正、负离子原来间隔均等,加了外电场后, 正、负离子的相对距离发生变化,产生了偶极矩。 离子极化的频率响应速度比电子极化略慢,约 为 1012 1。013s
(3)偶极极化 有些电介质分子是由极性较强的离子键构成的,
电磁场与电磁波课件第5章 静态场的边值问题

1 2 ,
然后进行 证明.同样可得出结论,其解唯一.
设φ1φ2是同一有源区域的边值问题
2 的解。 | f1 ( S )
即在区域V内,φ1和φ2满泊松方程,即
1 2 2
2
在V的边界S上,φ1和φ2满足同样的边界条件, 即
5.3.1 导体平面镜像
设在无限大导体平面(z=0)附近有一点电荷与平面距离为z=h 。 若导体平面接地,则导体平面电位为零,如图所示。求上半 空间中的电场。 分析:上半空间任一点 P处的电位,应等于点 电荷q和无限大导体平 板上感应的负电荷产生 的的电位总和。因此, 上半空间的电位问题可 表示为 :
2
C (常数)
0
1 2
C 0
5.3 镜像法
实质:是以一个或几个等效电荷代替边界的影响,将原来具有边
界的非均匀空间变成无限大的均匀自由空间,从而使计算过程 大为简化。
依据:惟一性定理。等效电荷的引入必须维持原来的边界 条件不变。这些等效电荷通常处于镜像位置,因此称为镜 像电荷,而这种方法称为镜像法。
2 A ( A) A J
人为规定
A 0
这个规定被称为库仑规范
于是有
2 A J
此式即为矢量磁位的泊松方程。
在没有电流的区域有J 0
2 A0
此式即为矢量磁位的拉普拉斯方程。 (2) 磁场的标量位函数 在没有电流分布的区域内,恒定磁场的基本方程变为 H 0 B 0 这样,在无源区域内,磁场也成了无旋场,具有位场的性 质,因此,象静电场一样,我们可以引入一个标量函数, 即标量磁位函数
电工基础(第五版)第五章劳动版

从正弦交流电的反向最大值到正向最大值称为峰—峰值。
从正弦交流电的反向最大值到正向最大值称为峰—峰值。
交流电的峰值和峰—峰值
(2)有效值
交流电的有效值
让交流电和稳恒直流电分别通过大小相同的电阻,如果在交流电的
一个周期内它们产生的热量相等,而这个稳恒直流电的电压是U ,电流 是I, U 、I 称为相应交流电的有效值。有效值用大写字母表示,如E、 U 、I。
二、电感器 1.电感器的结构、类型和符号
空心电感器 微调电感器
有磁心或铁心的电感器 有中心抽头的电感线圈
2.电感器的主要参数 (1)电感 (2)品质因数( Q 值) 3.感抗—电感对交流电的阻碍作用
电感对交流电的阻碍作用称为感抗,用XL表示。感抗的单位
也是欧姆(Ω )。 感抗的计算式为
电感的感抗与频率的关系可以简单概括为:通直流,阻交 流,通低频,阻高频,因此电感也称为低通元件。
一、交流电的概念 交流电与直流电的根本区别是:直流电的方向不随时
间的变化而变化,交流电的方向则随时间的变化而变化。 电源只有一个交变电动势的交流电称为单相交流电。
稳恒直流电
正弦交流信号 电视机显像管 的偏转电流
直流电和交流电波形
计算机中的 方波信号
右图所示为某信号发生器输出的信号 电压,其大小和方向都按正弦规律变化,所 以称为正弦交流电。
§5—1 交流电的基本概念 §5—2 电容器和电感器 §5—3 单一参数交流电路 §5—4 RLC串联电路 §5—5 RLC并联电路
§5—1 交流电的基本概念
1.了解正弦交流电的产生和特点。 2.理解正弦交流电的有效值、频率、初相位 及相位差的概念。 3.掌握正弦交流电的三种表示方法。
(完整)高电压重点知识复习

第一章 电介质的电气强度第一节平均自由行程长度:单位行程中的碰撞次数Z 的倒数λ。
影响因素:气体分子的半径、温度、气压。
迁移率:E vk =,表示带电粒子在单位场强(m /1V )下沿电场方向的漂移速度。
电离:产生带电粒子的物理过程,气体放电的首要前提。
使基态原子或分子中结合最松弛的那个电子电离出来所需的最小能量称为电离能,外界能量必须大于电离能才能使电离发生。
四种电离方式:光电离、热电离、碰撞电离、电极表面的电离其中引起碰撞电离的条件为i e W Ex q ≥。
电极表面的电离的四种方式:正离子撞击阴极表面、光电子发射、热电子发射、强场发射。
负离子的形成:当电子与气体分子碰撞时,有可能引起碰撞电离而产生出正离子和新电子,也可能会发生电子和中性分子结合形成负离子(称为附着)。
对放电的形成起什么作用及其原因:负离子的形成并没有使气体中的带电粒子数改变,但却能使自由电子数减少,因而对气体放电的发展起抑制作用。
带电粒子的消失三种形式:1.在电场驱动下作定向运动,到达电极时消失于电极上而形成外电路中的电流2.因扩散现象而逸出气体放电空间3.带电粒子的复合第二节发生电子崩后抵达阳极的电子数:d a e n n α0= 电子碰撞电离系数E BPApe -=α,表明该系数与场强和气压有关。
场强很大时,α急剧增大,气压过大或过小时α都较小。
(电子碰撞电离系数越大击穿电压越低)第三节汤逊放电的γ过程及汤逊放电全过程:(1)正离子撞击到阴极表面发生表面电离,使阴极释放出二次自由电子的过程称为γ过程(2)在电极的气隙中,因外界电离因子产生出自由电子,这些自由电子在电极两端电压的作用下向阳极移动,当空间的电场强度足够大,这些电子将引起碰撞电离,产生出新的电子,新的电子又将引发碰撞电离,如此持续就会产生电子崩。
在碰撞电离过程中产生的正离子在电场的作用下撞击阴极,当场强足够大时,初始电子崩的正离子能在阴极上产生的新电子数大于或等于由外界电离因子产生的电子,那么即使除去外界电离因子的作用,放电也能够自持。
物理静电场——电介质对电容的影响

等效的正、负点电荷所在的位置称为等 效正、负电荷的“中心”(或“重心”)。
5
大学物理 第三次修订本
第6章 静电场
2. 有极分子电介质、无极分子电介质
凡分子的等效正、负电荷中心不重合的电
20
大学物理 第三次修订本
第6章 静电场
P cos Pn
均匀电介质表面产生的极化电荷面密度等 于该处电极化强度沿表面外法线方向的投影。
π : 极化电荷带正电。
2
π : 极化电荷带负电。
2
21
大学物理 第三次修订本
3
大学物理 第三次修订本
第6章 静电场
加入电介质后两极板间电压减小了, 表 明其间电场减弱了。
EU d
U0
rd
1
r
E0
电场减弱的原因是电介质的微观结构与 外电场的相互影响。
将电介质至于外电场中,其表面也会出现电荷 ?
4
大学物理 第三次修订本
第6章 静电场
二、 电介质分子的电结构 1. 分子中等效正、负电荷的 “中心”
加入电介质后电容器的电压下降了εr倍, 但电量不变。
电容增加为 C= εr C0 相对介电常数εr 大于 1, 其大小随电介 质的种类和状态不同而不同, 是电介质的特征 常数。 相对介电常数与真空介电常数的乘积称
为介电常数: 0 r
干燥空气的相对介电常数:
εr = 1.00059 ≈1 ( 0oC; 1atm)
叫电极化率,是一个无量纲的纯数。 同一点, 是一个常数,但不同点的 值可 以不同。如果电介质中各点的 值相同,就称
物理光学-第5章 光的吸收、色散和散射
§5-2 介质的吸收与色散
不过,一般吸收和选择吸收的区别是相对的、有条件的。任何物质,在 一个波段范围内表现为一般吸收,在另一个波段范围内就可能表现为选 择吸收,例如,普遍光学玻璃,对可见光吸收很弱,是为一般吸收;而 在紫外红外波段,则表现出强烈的吸收,亦即选择吸收。任一介质对光 的吸收都是由这样两种吸收组成的 。 描述光波通过介质时的衰减特性。) 。)之间有如 吸收系数和消光系数 η(描述光波通过介质时的衰减特性。)之间有如 下的关系 复折射率:复折射率的实部就是通常所说的折射率, 复折射率:复折射率的实部就是通常所说的折射率,其虚部则是描述线 性吸收的参量。 性吸收的参量。
v=
dn dλ
在实际工作中,选用光学材料时应注意其色散的大小,例如,同样是 一块三棱镜,若是用作分光元件,则采取色散大的材料(火石玻璃); 若是用来改变光路的方向,如光学仪器中的转像棱镜等,则需用色散 小的材料(冕玻璃等)。
§5-2 介质的吸收与色散
实际上由于随变化的关系较复杂,无法用一个简单的函数表示出来,而 且这种变化关系随材料而异。因此一般都是通过实验测定随变化的关系, 并作成曲线,这种曲线就是色散曲线。 色散曲线的波长缩短时,折射率增大;且波长愈短,折射率增加的幅度 也愈大。这种波长变小,折射率变大的色散一般称之为正常色散。 除色散曲线外,还可利用经验公式求出不同波长时的折射率。在正常色 散区这种经验公式最早是由科希于1836年通过实验总结得出的,其公式 B C 为 n = A+ 2 + 4
§5-2 介质的吸收与色散
一般吸收: 一般吸收:有些媒质,在一定波长范围内,吸收系数不随 波长而变(严格说来是随波长的变化可以忽略不计),这 种吸收就称为一般吸收。 选择吸收: 选择吸收:有些媒质,在一定波长范围内,吸收系数随波 长而变,这种吸收就称为选择吸收。 例:
大学物理学 清华 张三慧 电磁学4-5章习题课
3.掌握有导体存在时的电场分布的计算。 计算有导体存在时的静电场分布的基本依据: ①导体静电平衡条件; ②电荷守恒定律; ③高斯定理。
4.理解电位移矢量 D 的定义。
D 0E P
对各向同性电介质: P 0 (r 1)E D 0 r E Pn '
1 2 3 4 0 20 20 20 20
P
高斯定理得 2 3 0
1 2 3 4
1
4
qA qB 2S
2
3
qA qB 2S
16 半径为R的均匀带电球体,电量为Q,在球体 中开一直径通道(设此通道极细不影响电场分 布),在球体外距离球心r处有一带同种电荷、 电量为q的点电荷沿通道方向朝球心运动,试计 算该点电荷至少应具有多大的初动能才能到达球 心。(设带电球体内、外介电常数都是 )
带电,试求相联后导体球所带电量q。
O R1 R2
r
解:设导体球带电q,取无穷远处为电势零点,
则 导体球电势
内球壳电势:
U0
q
4 0r
U1
Q1 q
4 0 R1
Q2
4 0 R2
二者等电势,即
q Q1 q Q2
4 0r 4 0 R1 4 0 R2
解得
q r(R2Q1 R1Q2 ) R2 (R1 r)
(1 1 )D
r
作半球形高斯面 S 如图:
铜球 R
S
r
高斯定理
S D dS D 2 r 2 Q下
D
Q下
2 r 2
2.4媒质的电磁特性
③ 铁磁介质:磁化前后其磁场变化很大。
xm 103
r 1
例如:铁、钴、镍
0
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
20
例2.4.1 有一磁导率为 µ ,半径为a 的无限长导磁圆柱,其
( 1 ) 极化电荷体密度
在电介质内任意作一闭合面S,只 有电偶极矩穿过S 的分子对 S 内的极化 电荷有贡献。由于负电荷位于斜柱体内 的电偶极矩才穿过小面元 dS ,因此dS 对极化电荷的贡献为 dqP qnV qnddS cos PdS cos P dS
S 所围的体积内的极化电荷 qP 为 qP P dS PdV
积分形式 S C
D dS dV V E dl 0
电磁场与电磁波
第2章
电磁场的基本规律
10
5. 电介质的本构关系
极化强度 P 与电场强度 E 之间的关系由介质的性质决定。 对于均匀、线性、各向同性介质,P 和 E 有简单的线性关系。
H (r ) dl J (r ) dS i 介质中的安培环路定理 C S (积分形式) B(r ) dS 0 介质中的磁通连续性方程 S
中国矿业大学
电磁场与电磁波
第2章
电磁场的基本规律
18
5、 磁介质的本构关系 磁化强度 M 和磁场强度 H 之间的关系由磁介质的物理性质决 定,对于均匀、线性、各向同性介质,M 与 H 之间存在简单的线
• • •
介质有多种不同的分类方法,如: 均匀和非均匀介质 各向同性和各向异性介质 时变和时不变介质 • • 线性和非线性介质 确定性和随机介质
岩石物理学第五章 岩石电学
R R1 R2
h1 h2
1 2
h1 R1 1 A
h2 R2 2 A
h h1 h2 R R1 R2 A A A A
A 1h1 2 h2 R h1 h2 h1 h2
水平方向时分辨 率问题?
1h1
2 h2
16
第五章 岩石电学
第三节 岩矿石导电性实验定律
岩石储油物性的好坏取决于岩石的有效孔隙度,
但它不能通过测量得到。经研究表明R0与RW、孔隙度 和岩性有关,通过实验得1 R 02 R 0n R W1 R wn R W2
我们定义这个比值为岩石的地层因素F,它只与岩石 的孔隙度、胶结情况和孔隙形状有关,而与RW无关。
m和n的物理意义不明确。
22
第五章 岩石电学
由
R0 a Rt b F m 和 I n RW R0 SW
可得到:
SO 1 SW 1 n
abRW m Rt
23
第五章 岩石电学
A、b、m、n的求法
24
第五章 岩石电学
5.骨架导电时的岩石电阻率-泥岩的电阻率公式
设Fn 为含泥质岩石的地层因素,则:
0 x e y w
0 :岩样电导率; e :粘土离子交换电导率; w :地层水电导率
x和 y 为常数 ,设交换阳离子传导的电流和孔隙自由电解 x 液中离子传导的电流路径相同,则 y
对于含水纯砂岩: 1 / F ,所以 x y 1 / F y 于是有: 0 ( e w ) / F
19
第五章 岩石电学
2.阿尔奇公式的变形
(1)Homble公式
F 0.62
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大学物理Ⅱ习题集 1 1 一 月 二 月 三 月
产品名称 数量 金额 利润 产品名称 数量 金额 利润 产品名称 数量 金额 利润
合 计 合 计 合 计 四 月 五 月 六 月 产品名称 数量 金额 利润 产品名称 数量 金额 利润 产品名称 数量 金额 利润
合 计 合 计 合 计 第5章 静电场中的导体和电介质 一、基本要求 1. 理解静电场中导体静电平衡的条件及电荷分布的规律。 大学物理Ⅱ习题集 2 2. 理解电容的定义及其物理意义。 3. 了解电解质的极化现象及其微观机理。 4. 了解电介质中的高斯定理及环路定理;了解各向同性介质中D与E的关系与区别。 5. 理解电场能量密度的概念,会计算一些简单情况的对称情况下电场中贮存的能量。 二、内容提要 1. 导体的静电平衡条件 导体在电场中达到静电平衡时必须满足: (1)导体内部的场强处处为零; (2)导体表面的场强处处与导体表面垂直。 2. 静电平衡时导体上的电荷分布 其主要规律是电荷只分布在导体的表面,体内静电荷为零。 3. 静电平衡时导体的电势分布规律 导体为等势体,其表面为等势面。 4. 电容 描述导体或导体组(电容器)容纳电荷能力的物理量。导体所带电量与其电势之比称为孤立导体的电容,即
UQC
电容器两极板中任一极板所带电量与两极板间的电势差之比称为电容器的电容,即
baabUUQUQC
5. 电位移矢量D 电位移矢量是描述电场性质的辅助量。在各向同性介质中,它与场强成正比,即
EEDr0
6. 介质中的高斯定理 穿过任一封闭曲面的D通量等于该曲面所包围的自由电荷的代数和,即
iSqSDd
7. 介质中的环路定理 介质中的场强沿任一闭合回路的线积分等于零,即 0LlEd
这说明,有介质时的静电场仍然是保守场。 8. 静电场中的能量 静电场中所贮存的能量。单位体积中的电场中所贮存的能量称为电场能量的密度,它在数值上等于场强与电位移矢量标积的一半,即
EDwe2
1
于是,体积为V的电场空间所贮存的电能 大学物理Ⅱ习题集 3 VVDWd21dw
2
电容器所贮存的电能 QUUCCQW21)(212122
练习题 5-2 两个半径相同的金属球,一为空心,一为实心。把两者各自孤立时的电容值加以比较,则: (A) 空心球电容值大。(B)实心球电容值大。 (C) 两球电容值相等。(D)大小关系无法确定。 [ ]
5-3 用力F把电容器中电介质拉出,在图(a)和图(b)的两种情况下,电容器中储存的静电能量将 (A)都增加。 (B)都减少。 (C)(a)增加,(b)减少。 (D)(a)减少,(b)增加。 [ ]
5-5半径分别为R和r的两个金属球,相距很远。用一根细长导线将两球连接在一起并使它们带电。在忽略导线影响的情况下,两球表面的电荷面密度之比rR
(A)rR (B)22rR (C)22Rr (D)Rr [ ] 5-6一长直导线横截面半径a,导线外同轴地套一半径为b的薄圆筒。两者互相绝缘,并且外筒接地,如图所示。设导线单位长度的带电量为+λ,并设地的电势为零,则两导体之间的p点(Op=r)的场强大小和电势分别为
(A)ablnUrE0202,2。
(B)rblnUrE0202,2。 (C)ralnUrE002,2。 (D)rblnUrE002,2。 [ ]
F F (a) (b) 充电后仍与电源连结 充电后与电源断开
b r O p 大学物理Ⅱ习题集 4 5-7 一带电大导体平板,平板两个表面的电荷面密度的代数和为σ,置于电场强度为0E的均匀外电场中,且使板面
垂直于0E的方向(如图)。设外电场分布不因带电平板的引入而改变,则板的附近左、右两侧的合场强为:
(A)002E,002E。 (B)002E,002E。
(C)002E,002E。 (D)002E,002E。 [ ] 5-10两个完全相同的电容器C1和C2,串联后与电源连接。现将一各向同性均匀电介质板插入C1中,则: (A)电容器组总电容减小。 (B)C1上的电量大于C2上的电量。 (C)C1上的电压高于C2上的电压。 (D)电容器组贮存的总能量增大。 [ ] 5-11 C1和C2两空气电容器串联以后接电源充电。在电源保持连接的情况下, 在C2
中插入一电介质板,如图所示,则:
(A)C1极板上的电量增加,C2极板上的电量增加。 (B)C1极板上的电量减少,C2极板上的电量增加。 (C)C1极板上的电量增加,C2极板上的电量减少。 (D)C1极板上的电量减少,C2极板上的电量减少。 [ ] 5-12 C1和C2两空气电容器串联起来接上电源充电。然后将电源断开,再把一电介质板插入C1中,如图所示,则: (A)C1上的电势差减小,C2上的电势差增大。 (B)C1上的电势差减小,C2上的电势差不变。 (C)C1上的电势差增大,C2上的电势差减小。 (D)C1上的电势差增大,C2上的电势差不变。[ ] 5-13 C1和C2两空气电容器并联以后接电源充电。在电源保持连接的情况下, 在C1
中插入一电介质板,如图所示,则:
(A)C1极板上的电量增加,C2极板上的电量增加。 (B)C1极板上的电量减少,C2极板上的电量增加。
σ 0E
C1
C2
C1 ε C2
K C1 ε C2
C1 ε C2 大学物理Ⅱ习题集 5 (C)C1极板上的电量增加,C2极板上的电量不变。 (D)C1极板上的电量减少,C2极板上的电量减少。 [ ]
5-15 在空气平行板电容器中,平行地插入一各向同性均匀电介质板,如图所示。当电容器充电后,若忽略边缘效应,则电介质中的场强E与空气中的场强0E相比较,应有 (A)E>E0,两者方向相同。 (B)E=E0,两者方向相同。 (C)E<E0,两者方向相同。 (D)E<E0,两者方向相反。 [ ] 5-16有两个带电不等的金属球,直径相等,但一个是空心,一个是实心的。现使它们互相接触,则这两个金属球上的电荷。 (A) 不变化。 (B)平均分配。 (C)空心球电量多。 (D)实心球电量多。 [ ] 5-17 在一点电荷产生的静电场中,一块电介质如右图放置,以点电荷所在处为球心做一球形闭合面,则对此球形闭合面: (A)高斯定理成立,且可用它求出闭合面上各点的场强。 (B)高斯定理成立,但不能用它求出闭合面上各点的场强。 (C)由于电介质不对称分布,高斯定理不成立。 (D)即使电介质对称分布,高斯定理也不成立。 [ ] 5-18 如果在空气平行板电容器的两极板间平行地插入一块与极板面积相同的金属板,则由于金属板的插入及其相对极板所放位置的不同,对电容器电容的影响为: (A)使电容减小,但与金属板相对极板的位置无关。 (B)使电容减小,但与金属板相对极板的位置有关。 (C)使电容增大,但与金属板相对极板的位置无关。 (D)使电容增大,但与金属板相对极板的位置有关。 [ ] 5-25 一空气平行板电容器,两极板间距为d,充电后极板间电压为U,然后将电源
断开,在两极板间平行地插入一厚度为3d的金属板,则两极板间的电压变为Uˊ= 。
q 电 介 质 大学物理Ⅱ习题集
6 5-28 如图所示,两同心导体球壳,内球壳带电量为+q,外球壳带电量为-2q。静电平衡时,外球壳的电荷分布为:内表面 ;外表面 。
5-30 一平行板电容器,充电后与电源保持连接,然后使两极板之间充满相对介电常数为εr的各向同性均匀电介质,这时两极板上的电量是原来的 倍;则电场强度是原来的 倍;电场能量是原来的 倍。 5-31 一平行板电容器,充电后切断电源,然后使两极板之间充满相对介电常数为εr
的各向同性均匀电介质,此时两极板上的电量是原来的 倍;则电场强度是原来的
倍;电场能量是原来的 倍。 5-32 一空气电容器,充电后切断电源,电容器储能W0,若此时灌入相对介电常数为εr的煤油,电容器储能将是W0的 倍;如果灌煤油时电容器一直与电源相连接,则电容器储能将是W0的 倍。 5-33 电容为C0的平行板电容器,接在电路中,如图所示。若将相对介电常数为εr
的各向同性均匀电介质插入电容器中(填满空间),此时电容器
的电容为原来的 倍;电场能量是原来的 倍。
5-40 在静电场中有一立方形均匀导体,边长为a。已知立方导体中心O处的电势为U0,则立方体顶点A的电势为 。
5-43 同一种材料的导体A1、A2紧靠在一起,放在外电场中(图a)。将A1、A2分开后撤去电场(图b)。下列说法如有错误请改正。 (1)在图a中,A1左端的电势比A2右端的电势低。 (2)在图b中,A1的电势比A2的电势低。
-2q +q O
C0 ε A1 A2 (a) A1 A2 (b)