八年级数学上册-知识点复习总结

合集下载

人教版部编版八年级上数学知识点复习提纲

人教版部编版八年级上数学知识点复习提纲

人教版部编版八年级上数学知识点复习提

一、整数
1. 正整数和负整数的概念及表示方法
2. 整数的加法、减法运算规则
3. 整数的乘法、除法运算规则
4. 整数的绝对值与相反数
5. 整数的比较与排序
6. 整数的混合运算
二、代数表达式与简易方程
1. 代数表达式的概念及常见运算法则
2. 同类项及其合并与易错点
3. 公式的掌握与应用能力
4. 简易方程的解法及应用
5. 一次方程与二次方程的区别与联系
三、平面图形
1. 二维坐标系的概念及应用
2. 点、线、线段、射线的基本概念
3. 四边形、三角形、圆的特性及计算
4. 重要角的度量及运算
5. 平行线与垂直线的判定与性质
四、数据的收集与分析
1. 数据的分类与整理方法
2. 表格的制作与分析
3. 统计图的绘制与解读
4. 平均数与中位数的计算与应用
5. 概率的基本概念及相关计算方法
五、函数与图像
1. 函数的概念及函数关系
2. 函数的图像特征与对称性
3. 函数的变量与常数项
4. 一次函数与二次函数的图像及性质
5. 函数间的复合与逆运算
六、试题解析与思考
1. 考试中常见易错题分析与解答
2. 知识点错位考察与应对策略
3. 阅读题与应用题解题思路与技巧
4. 错误的原因与避免方法
5. 自我评价与反思的重要性
以上是《人教版部编版八年级上数学知识点复提纲》的大纲内容,通过系统的复和训练,相信你能够更好地掌握这些数学知识,取得好成绩。

祝你学业进步!。

(新)部编人教版八年级数学上册复习提纲(知识点)

(新)部编人教版八年级数学上册复习提纲(知识点)

(新)部编人教版八年级数学上册复习提纲
(知识点)
本文档是关于(新)部编人教版八年级数学上册的复提纲,总字数800字以上。

单元一:有理数
- 有理数的概念及表示方法
- 有理数的比较与排序
- 有理数的加减运算
- 有理数的乘除运算
单元二:代数初步
- 代数学的基本概念
- 字母的意义与运算规则
- 代数式的展开与因式分解
- 一元一次方程与应用
- 一元一次不等式与应用
单元三:图形与运算
- 平面图形的性质研究
- 利用毕达哥拉斯定理解决问题
- 平移、旋转和翻折
单元四:平面坐标系
- 平面直角坐标系的建立与应用
- 直线方程的一般式和截距式
- 解直线方程及其应用
单元五:数轴与一元二次方程
- 有理数与数轴
- 一元二次方程的定义与性质
- 一元二次方程的解法及应用
单元六:比例与类比
- 比例的概念与性质
- 比例的四种特殊关系
- 类比的基本思想与方法
单元七:数据的研究
- 数据的收集和整理
- 图表的制作与分析
- 统计指标的应用
单元八:空间几何
- 空间几何图形的认识与分类- 视图的构画与应用
- 空间几何关系的判定与应用。

八年级数学上册知识要点总结

八年级数学上册知识要点总结

八年级数学上册知识要点总结八年级数学上册知识归纳一、算术平方根1.算术平方根:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作√a。

0的算术平方根为0;2.平方根:如果一个数x的平方等于a,即x2=a,那么数x就叫做a的平方根(或二次方根)。

3.开平方:求一个数a的平方根的运算(与平方互为逆运算)4.平方根性质:正数有2个平方根(一正一负),它们是互为相反数;负数没有平方根。

二、立方根1.立方根:如果一个数x的立方等于a,即x3=a,那么数x就叫做a的立方根(或三次方根)。

2.开立方:求一个数a的立方根的运算(与立方互为逆运算)。

3.立方根性质:正数的立方根是正数;负数的立方根是负数。

0的立方根是0;三、实数1.无理数:无限不循环小数。

如:π、√2、√32.实数:有理数和无理数统称实数。

实数都可以用数轴上的点表示。

八年级数学知识总结一、正方形定义:一个角是直角的菱形或邻边相等的矩形。

性质:1、四条边都相等;2、四个角都是直角;3、正方形既是矩形,又是菱形。

判定定理:1、邻边相等的矩形是正方形。

2、有一个角是直角的菱形是正方形。

二、梯形定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

1、直角梯形的定义:有一个角是直角的梯形2、等腰梯形的定义:两腰相等的'梯形。

等腰梯形的性质:1、同一底边上的两个角相等;2、两条对角线相等;3、两腰相等;4、对称性:轴对称图形。

等腰梯形判定定理:1、两腰相等的梯形是等腰梯形;2、同一底上两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形;八年级数学知识重点一、勾股定理1、勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2b2c22、勾股定理的逆定理如果三角形的三边长a,b,c有关系a2b2c2,那么这个三角形是直角三角形。

3、勾股数:满足a2b2c2的三个正整数,称为勾股数。

二、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

初二数学知识点总结(包括八年级人教版上下两册知识内容-非常完整)

资料内容仅供您学习参考,如有不当之处,请联系改正或者删除八年级上册知识点总结第十一章全等三角形复习一、全等三角形1.定义:能够完全重合的两个三角形叫做全等三角形。

理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。

2、全等三角形有哪些性质(1)全等三角形的对应边相等、对应角相等。

理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。

(2)全等三角形的周长相等、面积相等。

(3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

3、全等三角形的判定边边边:三边对应相等的两个三角形全等(可简写成“SSS”)边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)4、证明两个三角形全等的基本思路:个角的平分线。

1、性质:角的平分线上的点到角的两边的距离相等.2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

三、学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;(4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”(5)截长补短法证三角形全等。

第十二章轴对称一、轴对称图形1. 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。

这条直线就是它的对称轴。

这时我们也说这个图形关于这条直线(成轴)对称。

八年级数学知识点梳理总结

八年级数学知识点梳理总结

八年级数学知识点梳理总结没有加倍的勤奋,就没有才能,也没有天才。

天才其实就是可以持之以恒的人。

勤能补拙是良训,一分辛苦一分才,勤奋始终都是学习通向胜利的最好捷径。

下面是我给大家整理的一些〔〔八年级〕数学〕的学问点,希望对大家有所关怀。

8年级上册数学学问点〔总结〕归纳一、全等形1、定义:能够完全重合的两个图形叫做全等图形,简称全等形。

2、一个图形经过翻折、平移和旋转等变换后所得到的图形确定与原图形全等。

反之,两个全等的图形经过上述变换后确定能够互相重合。

二、全等多边形1、定义:能够完全重合的多边形叫做全等多边形。

互相重合的点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

2、性质:(1)全等多边形的对应边相等,对应角相等。

(2)全等多边形的面积相等。

三、全等三角形1、全等符号:≌。

如图,不是为:≌ABC≌≌ABC。

读作:三角形ABC全等于三角形ABC。

2、全等三角形的判定定理:(1)有两边和它们的夹角对应相等的两三角形全等。

(即SAS,边角边);(2)有两角和它们的夹边对应相等的两三角形全等。

(即ASA,角边角)(3)有两角和其中一角的对边对应相等的两三角形全等。

(即AAS,角角边)(4)有三边对应相等的两三角形全等。

(即SSS,边边边)(5)有斜边和一条直角边对应相等的两直角三角形全等。

(即HL,斜边直角边)3、全等三角形的性质:(1)全等三角形的对应边相等、对应角相等;(2)全等三角形的周长相等、面积相等;(3)全等三角形对应边上的中线、高,对应角的平分线都相等。

4、全等三角形的作用:(1)用于直接证明线段相等,角相等。

(2)用于证明直线的平行关系、垂直关系等。

(3)用于测量人不能的到达的路程的长短等。

(4)用于间接证明特殊的图形。

(如证明等腰三角形、等边三角形、平行四边形、矩形、菱形、正方形和梯形等)。

(5)用于解决有关等积等问题。

苏教版8年级上册数学复习资料1. 整式的乘法幂的运算性质: 同底数幂的乘法幂的乘方积的乘方单项式乘以单项式单项式乘以多项式多项式乘以多项式乘法公式2.整式的除法幂的运算性质:同底数幂的除法单项式除以单项式多项式除以单项式3.因式分解提公因式法公式法十字相乘法分组分解法【练习1】口答:(1) x3x2 = (103)5= (-3x)3=(2) 105.103.10= (am)2 = (-5ab)2=(3) -y3y4 = -(x4)3 = (xy2)2 =(4) Xm+2.x3m= (a4)4= (-2xy3z2)4=【练习2】计算(1) 5x2y2(-3x2y)(2) (-2ax2)2.(-3a2x)3(3) 5b2c.(3ab-2b3)(4) (4x2-3x+6).2x(5) 先化简,再求值:x2(x-1)-x(x2+2x-6), 其中x=2 【练习3】计算1. x(4x-y)-(2x+y)(2x-y)2. (a+2b)2+(a-2b)23. (a-b)2-(a+b)(a-b)4. (x+y+z)(x-y-z)5. (x-y-z)2【练习4】计算【练习5】因式分解1. a2-ab2. 3a3+12ab2-9a4b33. -8x4y+6x3y-2x2y4. m(4x+y)-2mn(4x+y)5. 3a(a-2b)2-18b(2b-a)26. x2-817. x3-4x8. 25m2-10mn+n29. 4(x-y)2+12(y-x)+910. x2-4x-5(苏科版)八年级下册数学复习准备一、复习目标:初二数学本学期教学内容多,难度大,导致本次复习时间较短,只有三个周的复习时间。

人教版初中八年级数学知识点总结

人教版初中八年级数学知识点总结

人教版初中八年级数学知识点总结八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。

第十一章全等三角形一、知识框架二、知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。

2.全等三角形的性质:全等三角形的对应角相等、对应边相等。

3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。

4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。

通过直观的理解和比较发现全等三角形的奥妙之处。

在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。

第十二章轴对称一、知识框架二、知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2.性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

(2)角平分线上的点到角两边距离相等。

(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。

(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

(5)轴对称图形上对应线段相等、对应角相等。

3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

八年级上册数学知识点归纳总结

八年级上册数学知识点归纳总结一、三角形(一)三角形的相关概念1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三角形的边:组成三角形的三条线段叫做三角形的边。

3、三角形的顶点:三角形相邻两边的公共端点叫做三角形的顶点。

4、三角形的内角:三角形相邻两边所组成的角叫做三角形的内角,简称三角形的角。

(二)三角形的分类1、按角分类:(1)锐角三角形:三个角都是锐角的三角形。

(2)直角三角形:有一个角是直角的三角形。

(3)钝角三角形:有一个角是钝角的三角形。

2、按边分类:(1)不等边三角形:三条边都不相等的三角形。

(2)等腰三角形:有两条边相等的三角形。

其中,相等的两条边叫做腰,另一条边叫做底边。

两腰的夹角叫做顶角,腰与底边的夹角叫做底角。

(3)等边三角形:三条边都相等的三角形,也叫正三角形。

(三)三角形的三边关系1、三角形任意两边之和大于第三边。

2、三角形任意两边之差小于第三边。

(四)三角形的内角和定理三角形三个内角的和等于 180°。

(五)三角形的外角1、三角形的一边与另一边的延长线组成的角,叫做三角形的外角。

2、三角形的一个外角等于与它不相邻的两个内角的和。

3、三角形的一个外角大于与它不相邻的任何一个内角。

二、全等三角形(一)全等三角形的概念能够完全重合的两个三角形叫做全等三角形。

(二)全等三角形的性质1、全等三角形的对应边相等。

2、全等三角形的对应角相等。

(三)全等三角形的判定1、三边分别相等的两个三角形全等(SSS)。

2、两边和它们的夹角分别相等的两个三角形全等(SAS)。

3、两角和它们的夹边分别相等的两个三角形全等(ASA)。

4、两角和其中一个角的对边分别相等的两个三角形全等(AAS)。

5、斜边和一条直角边分别相等的两个直角三角形全等(HL)。

三、轴对称(一)轴对称图形如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。

八年级上册数学知识点总结归纳

八年级上册数学知识点总结归纳八年级上册数学主要包括整数的加减乘除、分式、一元一次方程与一次方程组等内容。

以下是对这些知识点的详细总结和归纳。

一、整数的加减乘除1. 整数的概念:整数包括正整数、负整数和0。

整数是数轴上的点,可以进行加减乘除计算。

2. 整数的加减法:同号两个数相加、异号两个数相减。

同号两个数相加,取相同的符号,然后将它们的绝对值相加;异号两个数相减,取绝对值大的符号,然后用绝对值大的数减去绝对值小的数,差的符号与绝对值大的数的符号相同。

3. 整数的乘法:同号两个数相乘得正,异号两个数相乘得负。

两个数相乘时,先将它们的绝对值相乘,再确定符号。

4. 整数的除法:同号两个数相除得正,异号两个数相除得负。

两个数相除时,先将被除数和除数的绝对值相除,再确定符号。

5. 整数运算的性质:加法交换律、结合律;乘法交换律、结合律;加法与乘法的相互分配律;零的性质:任何整数与0相加等于自身;乘法的零性质:任何整数与0相乘等于0;除法的性质:0不能作为除数。

二、分式1. 分式的概念:分式是一个整数分母和分子组成的表达式,包括真分式和假分式。

其中,分母不为0。

2. 分式的加减乘除:加减法:先通分,再进行加减法;乘法:先化简为最简分式,再进行乘法;除法:倒数再乘。

3. 分式的性质:分式也遵循加法交换律、结合律和乘法交换律、结合律;负数分式化成最简分式时,分母为正。

三、一元一次方程1. 一元一次方程的概念:一元一次方程是指只含有一个未知数的一次方程,且未知数的最高次数为1。

2. 解一元一次方程的基本方法:通过移项变元、整理方程式,最终得到未知数的值。

3. 一元一次方程的应用:一元一次方程在解决实际问题中的应用非常广泛,如人头问题、水池问题、速度问题等。

四、一元一次方程组1. 一元一次方程组的概念:一元一次方程组是指由两个或两个以上的一元一次方程组成的方程组。

2. 一元一次方程组的解法:通过分别解方程组中的各个方程,最终得到未知数的值。

八年级数学上册知识点总结【3篇】

八年级数学上册知识点总结【3篇】八年级数学上册知识点总结【3篇】知识的传承也需要注重培养和激发下一代对于知识的热爱和探索欲望。

学术和科研的自由和独立是知识创新和发展的基础,也需要得到社会和政府的保障和尊重。

下面就让小编给大家带来八年级数学上册知识点总结,希望大家喜欢!八年级数学上册知识点总结篇1四边形平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。

平行四边形的对角线互相平分。

平行四边形的判定1.两组对边分别相等的四边形是平行四边形2.对角线互相平分的四边形是平行四边形;3.两组对角分别相等的四边形是平行四边形;4.一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。

AC=BD矩形判定定理:1.有一个角是直角的平行四边形叫做矩形。

2.对角线相等的平行四边形是矩形。

3.有三个角是直角的四边形是矩形。

菱形的定义:邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理:1.一组邻边相等的平行四边形是菱形。

2.对角线互相垂直的平行四边形是菱形。

3.四条边相等的四边形是菱形。

S菱形=1/2×ab(a、b为两条对角线)正方形定义:一个角是直角的菱形或邻边相等的矩形。

正方形的性质:四条边都相等,四个角都是直角。

正方形既是矩形,又是菱形。

正方形判定定理:1.邻边相等的矩形是正方形。

2.有一个角是直角的菱形是正方形。

梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

直角梯形的定义:有一个角是直角的梯形等腰梯形的定义:两腰相等的梯形。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

八年级数学上册基础知识点总结

八年级数学上册基础知识点总结 一、三角形。 (一)三角形的基本概念。 定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。比如说,我们生活中常见的三角架,它的形状就是三角形。

三角形的分类: 按边分: 不等边三角形:三条边都不相等的三角形。例如,边长分别为3cm、4cm、5cm的三角形。

等腰三角形:有两条边相等的三角形,相等的两条边叫做腰,另一条边叫做底边。像等腰梯形的两个腰和底边组成的三角形就是等腰三角形。其中,三边都相等的等腰三角形叫等边三角形。

按角分: 锐角三角形:三个角都是锐角的三角形。三个角分别是60°、70°、50°的三角形。

直角三角形:有一个角是直角的三角形。我们常见的直角三角板就是直角三角形的实例。

钝角三角形:有一个角是钝角的三角形。例如,一个角是120°,另外两个角分别是30°、30°的三角形。

(二)三角形的性质。 三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。例如,有三根小棒,长度分别是2cm、3cm、4cm,因为2 + 3>4,3 + 4>2,2 + 4>3,且4 2<3,4 3<2,3 2<4,所以这三根小棒能组成三角形。

三角形的内角和:三角形的内角和等于180°。我们可以通过把三角形的三个角剪下来拼在一起,会发现正好能拼成一个平角,也就是180°。

二、全等三角形。 (一)全等三角形的概念。 定义:能够完全重合的两个三角形叫做全等三角形。把一张纸对折后剪出的两个三角形,它们就是全等三角形。

全等三角形的对应元素:全等三角形中,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

(二)全等三角形的性质。 全等三角形的对应边相等,对应角相等。例如,△ABC≌△DEF,那么AB = DE,BC = EF,AC = DF,∠A = ∠D,∠B = ∠E,∠C = ∠F。

(三)全等三角形的判定。 SSS(边边边):三边对应相等的两个三角形全等。有两个三角形,一个三角形的三条边分别是3cm、4cm、5cm,另一个三角形的三条边也是3cm、4cm、5cm,那么这两个三角形全等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。

3、勾股数:满足222c b a =+的三个正整数,称为勾股数。

第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。

在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。

2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。

(|a|≥0)。

零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。

3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。

倒数等于本身的数是1和-1。

零没有倒数。

4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。

解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。

5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。

特别地,0的算术平方根是0。

表示方法:记作“a ”,读作根号a 。

性质:正数和零的算术平方根都只有一个,零的算术平方根是零。

2、平方根:一般地,如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 就叫做a 的平方根(或二次方根)。

表示方法:正数a 的平方根记做“a ±”,读作“正、负根号a ”。

性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

开平方:求一个数a 的平方根的运算,叫做开平方。

0≥a 注意a 的双重非负性:a ≥03、立方根一般地,如果一个数x 的立方等于a ,即x 3=a 那么这个数x 就叫做a 的立方根(或三次方根)。

表示方法:记作3a性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。

注意:33a a -=-,这说明三次根号内的负号可以移到根号外面。

四、实数大小的比较1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。

2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。

(2)求差比较:设a 、b 是实数,,0b a b a >⇔>- ,0b a b a =⇔=-b a b a <⇔<-0(3)求商比较法:设a 、b 是两正实数,;1;1;1b a bab a b a b a b a<⇔<=⇔=>⇔> (4)绝对值比较法:设a 、b 是两负实数,则b a b a <⇔>。

(5)平方法:设a 、b 是两负实数,则b a b a <⇔>22。

五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a 必须是非负数。

2、性质:(1))0()(2≥=a a a)0(≥a a(2)==a a 2)0(<-a a(3))0,0(≥≥∙=b a b a ab ()0,0(≥≥=∙b a ab b a )(4))0,0(>≥=b a bab a ()0,0(>≥=b a baba ) 3、运算结果若含有“a ”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式 六、实数的运算(1)六种运算:加、减、乘、除、乘方 、开方 (2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。

(3)运算律加法交换律 a b b a +=+加法结合律 )()(c b a c b a ++=++ 乘法交换律 ba ab = 乘法结合律 )()(bc a c ab = 乘法对加法的分配律 ac ab c b a +=+)(第三章 图形的平移与旋转一、平移 1、定义在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。

2、性质平移前后两个图形是全等图形,对应点连线平行且相等,对应线段平行且相等,对应角相等。

二、旋转 1、定义在平面内,将一个图形绕某一定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称为旋转中心,转动的角叫做旋转角。

2、性质旋转前后两个图形是全等图形,对应点到旋转中心的距离相等,对应点与旋转中心的连线所成的角等于旋转角。

第四章 四边形性质探索一、四边形的相关概念 1、四边形在同一平面内,由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。

2、四边形具有不稳定性3、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于360°。

四边形的外角和定理:四边形的外角和等于360°。

推论:多边形的内角和定理:n 边形的内角和等于∙-)2(n 180°; 多边形的外角和定理:任意多边形的外角和等于360°。

6、设多边形的边数为n ,则多边形的对角线共有2)3(-n n 条。

从n 边形的一个顶点出发能引(n-3)条对角线,将n 边形分成(n-2)个三角形。

二、平行四边形1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。

2、平行四边形的性质(1)平行四边形的对边平行且相等。

(2)平行四边形相邻的角互补,对角相等 (3)平行四边形的对角线互相平分。

(4)平行四边形是中心对称图形,对称中心是对角线的交点。

常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。

(2)推论:夹在两条平行线间的平行线段相等。

3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形 (2)定理1:两组对角分别相等的四边形是平行四边形 (3)定理2:两组对边分别相等的四边形是平行四边形 (4)定理3:对角线互相平分的四边形是平行四边形 (5)定理4:一组对边平行且相等的四边形是平行四边形 4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。

平行线间的距离处处相等。

5、平行四边形的面积 S 平行四边形=底边长×高=ah 三、矩形1、矩形的定义有一个角是直角的平行四边形叫做矩形。

2、矩形的性质(1)矩形的对边平行且相等 (2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。

3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形 (2)定理1:有三个角是直角的四边形是矩形 (3)定理2:对角线相等的平行四边形是矩形 4、矩形的面积 S 矩形=长×宽=ab 四、菱形1、菱形的定义有一组邻边相等的平行四边形叫做菱形 2、菱形的性质(1)菱形的四条边相等,对边平行 (2)菱形的相邻的角互补,对角相等(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。

3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形 (2)定理1:四边都相等的四边形是菱形(3)定理2:对角线互相垂直的平行四边形是菱形 4、菱形的面积S 菱形=底边长×高=两条对角线乘积的一半 五、正方形 (3~10分) 1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。

2、正方形的性质(1)正方形四条边都相等,对边平行 (2)正方形的四个角都是直角(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角 (4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。

3、正方形的判定判定一个四边形是正方形的主要依据是定义,途径有两种: 先证它是矩形,再证它是菱形。

先证它是菱形,再证它是矩形。

4、正方形的面积设正方形边长为a ,对角线长为bS 正方形=222b a六、梯形(一) 1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。

梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底。

梯形中不平行的两边叫做梯形的腰。

梯形的两底的距离叫做梯形的高。

2、梯形的判定(1)定义:一组对边平行而另一组对边不平行的四边形是梯形。

(2)一组对边平行且不相等的四边形是梯形。

(二)直角梯形的定义:一腰垂直于底的梯形叫做直角梯形。

一般地,梯形的分类如下: 一般梯形梯形 直角梯形 特殊梯形等腰梯形 (三)等腰梯形 1、等腰梯形的定义两腰相等的梯形叫做等腰梯形。

2、等腰梯形的性质(1)等腰梯形的两腰相等,两底平行。

(2)等腰梯形同一底上的两个角相等,同一腰上的两个角互补。

(3)等腰梯形的对角线相等。

(4)等腰梯形是轴对称图形,它只有一条对称轴,即两底的垂直平分线。

3、等腰梯形的判定(1)定义:两腰相等的梯形是等腰梯形(2)定理:在同一底上的两个角相等的梯形是等腰梯形 (3)对角线相等的梯形是等腰梯形。

(选择题和填空题可直接用) (四)梯形的面积(1)如图,DE AB CD S ABCD ∙+=)(21梯形 (2)梯形中有关图形的面积: ①BAC ABD S S ∆∆=; ②BOC AOD S S ∆∆=; ③BCD ADC S S ∆∆=七、有关中点四边形问题的知识点:(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形; (2)顺次连接矩形的四边中点所得的四边形是菱形; (3)顺次连接菱形的四边中点所得的四边形是矩形; (4)顺次连接等腰梯形的四边中点所得的四边形是菱形;(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形; (6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形; 八、中心对称图形 1、定义在平面内,一个图形绕某个点旋转180°,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。

相关文档
最新文档