传感器实验报告--光纤位移传感器的动态测量
实验三 实验报告 光纤位移传感器特性实验的数据处理

实验报告:实验三光纤位移传感器特性实验的数据处理1.针对实验一的测量数据,利用Matlab语句(或C语言),计算重复试验数据各校准点的平均值,采用一元线性回归分析方法,找出光纤位移传感器输出电压V(或y)与被测位移x之间的经验公式,即得到拟合的回归直线。
拟合图像:拟合直线方程:y=-5.732667e+01+2.274630e+03x代码如下:clc; clear;x=[0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0];data=[146 386 606 825 1060 1287 1505 1726 1933 2130;147 401 648 885 1135 1370 1609 1842 2030 2250;149 380 605 826 1038 1259 1477 1707 1930 2080;149 400 644 874 1123 1357 1599 1827 2020 2220;150 384 605 831 1060 1289 1490 1729 1944 2130;146 408 651 885 1139 1376 1605 1831 2030 2250;149 373 592 831 1052 1289 1496 1730 1939 2120;141 402 644 878 1130 1362 1603 1833 2020 2250;153 389 609 838 1083 1307 1510 1736 1947 2140;143 401 642 889 1137 1370 1606 1840 2030 2250];%测量数据Each_Point_Average_Value=mean(data,1,'native');%每个点的测量数据的算术平均值N=length(Each_Point_Average_Value);%数据个数%数据处理第一题fprintf('\n计算回归方程并作图拟合\n');%以下以xt指代x,yt指代Each_Point_Average_Valuet1=0;%计算xtyt乘积和,最后乘以Nfor i=1:N;t1=t1+Each_Point_Average_Value(i)*x(i);endt1=t1*N;t2=0;%计算xt的和for i=1:N;t2=t2+x(i);endt3=0;%计算yt的和for i=1:N;t3=t3+Each_Point_Average_Value(i);endt4=0;%计算xt的平方和再乘以Nfor i=1:N;t4=t4+x(i)^2;endt4=t4*N;t5=0;%计算xt的总和的平方t5=t2^2;t6=t4/N;t7=t3;t8=t2;t9=t1/N;t10=t4;t11=t5;%计算b的回归值b=(t1-t2*t3)/(t4-t5);%计算b0的回归值b0=(t6*t7-t8*t9)/(t10-t11);%作数据分布图和回归曲线X=x;Y1=Each_Point_Average_Value;fprintf('回归方程:y=%d+%dx\n',b0,b);fprintf('以下作图\n');x_t=[0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0];Y2=b0+b*x_t;plot(X,Y1,'*',x_t,Y2)2.利用Matlab语句(或C语言),对所得到的一元线性回归方程进行方差分析,列出方差分析表;分析表如下所示:代码如下:%数据处理第二题和第三题:对回归方程进行方差分析和显著性检验fprintf('\n对回归方程进行显著性检验\n');Size_data=size(data);%计算data矩阵的规格%Size_data(1)为矩阵行数{m次测量},Size_data(2)矩阵列数{N个点的测量}%以下分别计算lxx,lxy,lyy%计算lxxlxx=0;t1=0;for i=1:length(x);t1=t1+x(i)^2;endt2=0;for i=1:length(x);t2=t2+x(i);endt2=t2^2;lxx=t1-t2/length(x);%计算lxylxy=0;t1=0;t2=0;t3=0;for i=1:length(x);t1=t1+x(i)*Each_Point_Average_Value(i);endt2=0;for i=1:length(x);t2=t2+x(i);endt3=0;for i=1:length(Each_Point_Average_Value);t3=t3+Each_Point_Average_Value(i);endlxy=t1-(t2*t3)/length(x);%计算lyylyy=0;t1=0;for i=1:length(Each_Point_Average_Value);t1=t1+Each_Point_Average_Value(i)^2;endt2=0;for i=1:length(Each_Point_Average_Value);t2=t2+Each_Point_Average_Value(i);endt2=t2^2;lyy=t1-t2/length(Each_Point_Average_Value);%Size_data(1)为矩阵行数{m次测量},Size_data(2)矩阵列数{N个点的测量} %计算回归平方和U和对应的自由度Vu及其对应的方差r_UU=0;U=Size_data(1)*(lxy/lxx)*lxy;Vu=1;r_U=U/Vu;%计算失拟平方和QL和对应的自由度Vql及其对应的方差r_QLQL=0;QL=Size_data(1)*lyy-U;Vql=Size_data(2)-2;r_QL=QL/Vql;%计算误差平方和QE和对应的自由度Vqe及其对应的方差r_QEQE=0;QE1=0;for i=1:Size_data(2)%NQE=QE+QE1;for j=1:Size_data(1)%mQE1=(data(j,i)-Each_Point_Average_Value(i))^2;endendQE;Vqe=Size_data(2)*(Size_data(1)-1);r_QE=QE/Vqe;%合成的总的离差平方和S及其对应的自由度VsS=U+QE+QL;Vs=Vu+Vqe+Vql;F_example=6.84;F1_example=2.70;F=(U/Vu)/(QE/Vqe);F1=(QL/Vql)/(QE/Vqe);F2=(U/Vu)/((QL+QE)/(Vql+Vqe));%%%%%%%%%%%%以下开始制作方差分析表%%%%%%%%%%%%%%data_excel=cell(5,6);title={'来源','平方和','自由度','方差','F','显著性'};%列表头excel_A={'回归','失拟','误差','总计'};excel_B=[U;QL;QE;S];%平方和数据excel_C=[Vu;Vql;Vqe;Vs];%自由度数据excel_D=[r_U;r_QL;r_QE];%方差数据excel_E=[F;F1];%F检验数据excel_F=[F_example;F1_example];%显著性参考值excel_G=['-'];%格式调整excel_B=num2cell(excel_B,3);excel_C=num2cell(excel_C,3);excel_D=num2cell(excel_D,3);excel_E=num2cell(excel_E,3);excel_F=num2cell(excel_F,3);excel_G=num2cell(excel_G,3);%整合数据data_excel(1,1:end)=title;data_excel(2:end,1)=excel_A;data_excel(2:end,2)=excel_B;data_excel(2:end,3)=excel_C;data_excel(2:4,4)=excel_D;data_excel(2:3,5)=excel_E;data_excel(2:3,6)=excel_F;data_excel(5,4)=excel_G;data_excel(4:end,5)=excel_G;data_excel(4:end,6)=excel_G;xlswrite('data_excel.xls',data_excel);%写入表格data_excel%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%3.利用Matlab语句(或C语言),对回归方程进行显著性检验,确定回归方程拟合的好坏,分析光纤位移传感器的误差。
位移传感器实验报告

位移传感器实验报告位移传感器实验报告引言:位移传感器是一种能够测量物体位移的装置。
它在工业自动化、机器人技术、医疗设备等领域有着广泛的应用。
本实验旨在通过对位移传感器的实验研究,探索其工作原理和性能特点。
一、实验目的本实验的目的是研究位移传感器的工作原理和性能特点,了解其在实际应用中的优缺点,为后续的工程设计和应用提供参考。
二、实验装置和方法实验所用的位移传感器是一种电容式位移传感器,其工作原理是通过测量电容的变化来实现对位移的测量。
实验装置包括位移传感器、信号调理电路、数据采集系统等。
在实验过程中,首先将位移传感器固定在待测物体上,然后通过调整传感器的位置和角度,使其与被测物体保持良好的接触。
接下来,将信号调理电路与传感器连接,并将其输出与数据采集系统相连。
最后,通过改变被测物体的位移,观察位移传感器的输出信号变化,并记录相应的数据。
三、实验结果与分析在实验过程中,我们通过改变被测物体的位移,观察位移传感器的输出信号变化,并记录了相应的数据。
实验结果显示,位移传感器的输出信号随着被测物体位移的增加而线性增加,且具有较高的精度和稳定性。
进一步分析发现,位移传感器的灵敏度与传感器的工作原理和结构有关。
电容式位移传感器通过测量电容的变化来实现对位移的测量,其灵敏度受到电容变化量的影响。
因此,在实际应用中,我们需要根据具体的需求选择合适的位移传感器,以确保测量结果的准确性和可靠性。
此外,位移传感器还具有一定的温度特性。
在实验过程中,我们发现位移传感器的输出信号受到环境温度的影响。
当环境温度发生变化时,位移传感器的输出信号也会发生相应的变化。
因此,在实际应用中,我们需要对位移传感器进行温度补偿,以提高测量的精度和稳定性。
四、实验总结通过本次实验,我们深入了解了位移传感器的工作原理和性能特点。
位移传感器是一种能够测量物体位移的重要装置,在工业自动化、机器人技术、医疗设备等领域有着广泛的应用。
在实际应用中,我们需要根据具体的需求选择合适的位移传感器,并进行相应的温度补偿,以确保测量结果的准确性和可靠性。
光纤传感器的位移测量与及数值误差分析实验

光纤传感器的位移测量与及数值误差分析实验一、实验原理1.光纤传感器工作原理2.实验仪器和材料(1)光纤传感器:包括光源、探头和电子控制单元。
(2)被测物体:选择一个具有一定位移范围的物体,如斜坡或弹簧。
(3)信号处理器:用于采集和处理光纤传感器的输出信号。
3.实验步骤(1)将光纤传感器的探头安装在被测物体上,并将光源和电子控制单元连接好。
(2)调整光纤传感器的位置和方向,使其能够正确地检测到被测物体的位移。
(3)通过信号处理器采集光纤传感器的输出信号,并进行相应的数据处理。
(4)对被测物体进行一系列的位移变化,记录光纤传感器的输出信号,并计算位移值。
(5)分析和比较测量结果,评估光纤传感器的测量精度和可靠性。
二、数值误差分析1.线性度误差线性度误差是指光纤传感器在测量范围内的输出与被测物体实际位移之间的偏差。
通过在不同位移范围内进行测量,可以绘制出光纤传感器的输入输出曲线,并通过拟合得到线性度误差。
2.灵敏度误差灵敏度误差是指光纤传感器输出信号的增益与被测物体位移之间的偏差。
通过改变被测物体的位移步长,可以测量得到不同位移值下的输出信号,并计算灵敏度误差。
3.常数误差常数误差是指光纤传感器输出信号在零位移点上的固有偏移。
可以通过将被测物体置于零位移点附近,记录测量结果,并计算常数误差。
4.稳定性误差稳定性误差是指光纤传感器在长时间测量过程中输出信号的波动。
通过对输出信号进行连续测量,并统计其标准差,可以评估光纤传感器的稳定性。
5.总误差估计将上述各项误差进行合并,可以得到光纤传感器的总体误差估计。
同时,也可以根据具体的应用需求,确定误差允许范围,评估光纤传感器的适用性。
通过以上实验步骤和数值误差分析,可以深入了解光纤传感器的位移测量原理,并评估其测量精度和可靠性。
同时,针对实验结果中的误差,可以进一步优化光纤传感器的设计和应用。
光纤传感器实验报告

实验题目:光纤传感器实验目的:掌握干涉原理,自行制作光线干涉仪,使用它对某些物理量进行测量,加深对光纤传感理论的理解,以受到光纤技术基本操作技能的训练。
实验仪器:激光器及电源,光纤夹具,光纤剥线钳,宝石刀,激光功率计,五位调整架,显微镜,光纤传感实验仪,CCD及显示器,等等实验原理:(见预习报告)实验数据:1.光纤传感实验(室温:24.1℃)(1)升温过程(2)降温过程2.测量光纤的耦合效率在光波长为633nm 条件下,测得光功率计最大读数为712.3nw 。
数据处理:一.测量光纤的耦合效率在λ=633nW ,光的输出功率P1=2mW 情况下。
在调节过程中测得最大输出功率P2=712.3nW代入耦合效率η的计算公式:3.56×10-4二.光纤传感实验1.升温时利用Origin 作出拟合图像如下:2040ALinear Fit of AABEquationy = a + bAdj. R-Squ 0.99849ValueStandard ErA Intercep -153.307 1.96249ASlope5.485340.06163由上图可看出k=5.49±0.06条纹数温度/℃根据光纤温度灵敏度的计算公式,由于每移动一个条纹相位改变2π,则 Δφ=2π×m (m 为移动的条纹数)故灵敏度即为因l=29.0cm故其灵敏度为±1.30)rad/℃2.降温时利用Origin 作出拟合图像如下:30323436-40-20ALinear Fit of AABEquationy = a + Adj. R-Squ 0.9973ValueStandard Er A Intercep -271.754 3.74289ASlope7.4510.11111由上图可看出k=7.45±0.11同上:灵敏度为条纹数温度/℃因l=29.0cm故其灵敏度为±2.38)rad/℃由上述数据可看出,升温时与降温时灵敏度数据相差较大,这是因为在升温时温度变化较快,且仪表读数有滞后,所以测出数据较不准确,在降温时测出的数据是比较准确的。
光纤传感器位移特性实验

黑龙江科技学院 综合性、设计性实验报告实验项目名称:光纤传感器位移特性实验所属课程名称:传感器工程实践实验日期:2013年月日班级学号姓名成绩电气与控制工程学院实验室实验概述:【实验目的及要求】【实验目的】1、通过实验使学生掌握各种传感器的工作原理;2、掌握传感器的特性测试方法;3、掌握传感器的特性实验数据处理方法;4、培养和提高学生传感器特性测试系统设计和分析的能力;5、通过该课程的学习扩大学生知识面,为今后的研究和技术工作打下坚实的基础。
【设计要求】1、掌握传感器的工作原理、测量电路的原理;2、通过传感器特性系统的设计,多方面知识综合应用,全面提高能力;3、为今后从事传感器工程方面的工作打下基础。
【实验原理】1、传感器特性测试系统框图:2、传感器测量电路原理图:3、传感器特性测试系统的工作原理本实验采用的是导光型多模光纤,它由两束光纤组成半圆分布的Y型传感探头,一束光纤端部与光源相接用来传递发射光,另一束端部与光电转换器相接用来传递接收光,两光纤束混合后的端部是工作端亦即探头,当它与被测体相距X时,由光源发出的光通过一束光纤射出后,经被测体反射由另一束光纤接收,通过光电转换器转换成电压,该电压的大小与间距X有关,因此光纤传感器可用于测量位移。
【实验环境】(使用的软件)工具:直线位移执行器、光纤传感器、光纤传感器测量系统、数字电压表、测微头软件:特性软件SET2003实验内容:【实验方案设计】设计要点:光纤传感器是一种把被测量的状态转变为可测的光信号的装置。
由光发送器发出的光经源光纤引导至敏感元件。
这时,光的某一性质受到被测量的调制,已调光经接收光纤耦合到光接收器,使光信号变为电信号,最后经信号处理得到所期待的被测量。
在光纤传感器特性测试实验中应注意以下几点:1)光纤位移传感器具有前坡(0→最大),后坡(最大→最小)的原始输出特性。
2)外界光对测量具有一定影响,操作时应避免人员走动产生的光干扰。
光纤传感器测量振动实验重点

光纤传感器测量振动实验
一、实验目的:了解光纤位移传感器动态特性。
二、基本原理:利用光纤位移传感器的位移特性和其高的频率响应,配以合适的测量电路即可测量振动。
三、需用器件与单元:光纤位移传感器、光纤位移传感器实验模板、振动源单元、低频振荡器、动态测量支架、检波、滤波实验模板、数显表。
四、实验步骤:
1、光纤传感器安装如下图,光纤探头对准振动台的反射面。
2、根据实验三十的结果,找出线性段的中点,通过调节安装支架高度将光纤探头与振动台台面的距离调整在线性段中点(大致目测)。
3、在下图中V01与低通滤波器模板V I相接,低通输出V0接到示波器。
4、将低频振荡器幅度输出旋转到零,低频信号输入到振动源单元中的低频输入。
5、将频率档选择在6-10H Z左右,逐步增大输出幅度,注意不能使振动台面碰到传感器。
保持振动幅度不变,改变振动频率,观察示波器波形及峰-峰值,保持振动频率不变,改变振动幅度(但不能碰撞光纤探头)观察示波器波形及峰-峰值。
五、思考题:
试分析电容式、电涡流、光纤三种传器测量振动时的应用及特点?。
位移传感器设计报告
综合性实验报告实验课程:传感器与检测技术实验名称:位移检测传感器的应用姓名:学号:班级:指导教师:实验日期: 2013年12月17日位移检测传感器应用一、实验类型位移检测综合性实验二、实验目的和要求1.了解微位移、小位移、大位移的检测方法。
2.运用所学过的相关传感器设计三种位移检测系统。
3.对检测系统进行补偿和标定。
三、实验条件本实验在没有加速度、振动、冲击(除非这些参数本身就是被测物理量)及环境温度一般为室温(20±5℃)、相对湿度不大于85% ,大气压力为101±7kPa 的情况下进行。
四、实验方案设计为了满足实验要求,现使用电涡流,光纤,和差动三种传感器设计位移检测系统,电涡流取0.1mm为单位,光纤取0.5mm为单位,差动取0.2mm为单位。
进行试验后,用MATLAB处理数据,分析结论。
(一):电涡流传感器测位移实验原理:通过高频电流的线圈产生磁场,当有导电体接近时,因导电体涡流效应产生涡流损耗,而涡流损耗与导电体离线圈的距离有关,因此可以进行位移测量。
(二):光纤传感器测位移实验原理:反射式光纤位移传感器是一种传输型光纤传感器。
其原理如图36-1所示:光纤采用Y型结构,两束光纤一端合并在一起组成光纤探头,另一端分为两支,分别作为光源光纤和接收光纤。
光从光源耦合到光源光纤,通过光纤传输,射向反射面,再被反射到接收光纤,最后由光电转换器接收,转换器接收到的光源与反射体表面的性质及反射体到光纤探头距离有关。
当反射表面位置确定后,接收到的反射光光强随光纤探头到反射体的距离的变化而变化。
显然,当光纤探头紧贴反射面时,接收器接收到的光强为零。
随着光纤探头离反射面距离的增加,接收到的光强逐渐增加,到达最大值点后又随两者的距离增加而减小。
反射式光纤位移传感器是一种非接触式测量,具有探头小,响应速度快,测量线性化(在小位移范围内)等优点,可在小位移范围内进行高速位移检测。
(三):差动电感式传感器测位移实验原理:差动动螺管式电感传感器由电感线圈的二个次级线圈反相串接而成,工作在自感基础上,由于衔铁在线圈中位置的变化使二个线圈的电感量发生变化,包括两个线圈在内组成的电桥电路的输出电压信号因而发生相应变化。
光纤传感器在位移测量中的应用
光纤传感器在位移测量中的应用一、实验目的:了解光纤传感器在位移测量中的应用。
二、实验内容:光纤传感器是利用光纤对光的传播作用,即由光纤信息传输回路与光检测元件组成测量系统的CSY系列传感器系统综合实验仪,该仪器光纤采用Y型结构,如图4所示。
图4 光纤位移传感器工作原理图5 光纤位移传感器X-V关系曲线通过光源光纤的传输,光射到被测物体时,由于入射光的散射作用被反射体反射进入接收光纤的光强减弱了,输出的光强与反射体(即被测物体)与光纤探头的距离ΔX有关,光电转换器将接收到的光能转换为电压信号在一定范围内,其输出电压与位移是线性关系,曲线如图5所示(ΔX<2时)。
这种传感器已被用于非接触式微小位移量和表面粗糙度测量等方面。
三、实验要求:1.光纤传感器接线要牢靠。
2.光纤勿折成锐角曲折。
3.光纤不可互换,光纤传感器与综合试验仪相互对号配合使用。
四、实验装置:同实验一。
五、实验步骤:1.取下原来安装在传感器支架上的电涡流激励线圈,在该支架上装好光纤探头,探头对准镀铬反射片(即电涡流传感器试验中使用过的圆形金属片)。
2.建立振动台与测微头的磁性联结,光电变换器Vo与电压表IN相接,开启电源。
转动测微头,使光纤探头端面紧贴反射镜面,此时Vo输出为最小(由于仪器精度问题不一定为零)。
然后旋动测微头,使光纤探头向离开反射镜面的方向移动,每移动0.25mm读取光电变换器的输出Vo电压值填入表内。
六、实验数据及处理:1.使用实验仪实时采集实验数据并绘制光纤位移传感器的X-V关系曲线2.分析光纤位移测量系统的X—V曲线,选择该曲线的适宜区域作为位移检测的工作曲线,并计算出本光纤位移测量系统的灵敏度解:在区间(0,1)内线性度较好,适合作为位移检测工作曲线在区间(0,1)内,灵敏度S=0.630V/mmV=0.63X+2.2873.给出本光纤位移测量系统的推荐量程解:因为曲线在区间(0,1)内线性度较好,且灵敏度高所以推荐量成为(0,1)单位:mm七、思考题:该位移测量系统中使用的光纤传感器属于功能型光纤传感器吗?为什么?答:不是,因为功能型光纤传感器是利用光纤本身的特性把光纤作为敏感元件, 被测量对光纤内传输的光进行调制, 使传输的光的强度、相位、频率或偏振态等特性发生变化, 再通过对被调制过的信号进行解调, 从而得出被测信号。
实验三十二光纤传感器的位移特性实验
实验三十二光纤传感器的位移特性实验
一.实验目的
了解光纤位移传感器的工作原理和性能。
二.实验器件
主机箱,光纤传感器,光纤传感器实验模板,测微头,铁和铜反射面。
三.基本原理
本实验采用的是传光型光纤,它有两束光纤混合后,组成Y型光纤,半圆分布及双D分布,一束光纤端部和光源相接发射光束,另一束端部与光电转换器相接接收光束。
两束光混合后的端部都是工作端亦称探头,他与被测体相距X,有光源发出的光纤传到端部射出后再经被测体反射回来,另一束光纤接收光信号由光电转换器转换成电量,二光电转换器转换的电量大小与间距X有关,因此可用于测量位移。
四.实验内容
1按照书上的图连接线路,将电压表选择开关达到20V档。
旋转测微头,使光反射面离开Y型光纤头的同时,每个0.1mm读取一个电压表显示值。
将数据读入下表:
3并且找出现行做好的1mm范围内计算系统的灵敏度和非线性度。
五.数据处理
图像如下所示:
由matlab可知拟合直线为V=0.9955X -0.0223
灵敏度为0.9955
非线性误差为δ=0.0168/(0.97*100%)=1.73%
六思考题
查阅传感器相关理论知识,说明光纤位移传感器测位移时对被测体的表面有什么要求?
由于光纤传感器是利用光的全反射原理工作的,它对于光路要求比较高,
故而,在使用光纤传感器时应该保证被测物体表面的光洁度,这样才能够使得
反射回光纤内的光强足够传感器感知。
光纤位移传感器性能测试试验目的1了解光纤位移传感器的原理
光纤位移传感器性能测试一、实验目的:1、了解光纤位移传感器的原理结构、性能。
2、了解光纤位移传感器的动态应用。
3、了解光纤位移传感器的测速应用。
二、实验内容:1、光纤传感器的静态实验;2、光纤位移传感器的动态应用实验;3、光纤位移传感器的测速应用实验;(一)光纤传感器的静态实验实验单元及附件:主副电源、差动放大器、F/V表、光纤传感器、振动台。
实验原理:反射式光纤位移传感器的工作原理如下图所示,光纤采用Y型结构,两束多膜光纤一端合并组成光纤探头,另一端分为两束,分别作为光源光纤和接收光纤,光纤只起传输信号的作用,当光发射器发出的红外光,经光源光纤照射至反射面,被反射的光经接收光纤至光电转换器将接受到的光纤转换为电信号。
其输出的光强决定于反射体距光纤探头的距离,通过对光强的检测而得到的位移量如下图8-1所示图8-1实验步骤:(1)观察光纤位移传感器结构,它由两束光纤混合后,组成Y形光纤,探头固定在Z 型安装架上,外表为螺丝的端面为半圆分布的光纤探头。
(2)了解振动台在实验仪上的位置(实验仪台面上右边的圆盘,在振动台上贴有反射纸作为光的反射面。
)(3)如图8-2接线:因光/电转换器内部已安装好,所以可将电信号直接经差动放大器放大。
F/V显示表的切换开关置2V档,开启主、副电源。
(4)旋转测微头,使光纤探头与振动台面接触,调节差动放大器增益最大,调节差动放大器零位旋钮使电压表读数尽量为零,旋转测微头使贴有反射纸的被测体慢慢离开探头,观察电压读数由小-大-小的变化。
(5)旋转测微头使F/V电压表指示重新回零;旋转测微头,每隔0.05mm读出电压表的读数,并将其填入下表:△X(mm) 0.05 0.10 0.15 0.20 10.00指示(V)图8-2(二)光纤传感器的动态应用实验实验单元及附件:主、副电源、差动放大器、光纤位移传感器、低通滤波器、振动台、低频振荡器、激振线圈、示波器。
实验步骤:(1)了解激振线圈在实验仪上所在位置及激振线圈的符号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
传感器实验报告--光纤位移传感器的动态测量
北京XX大学
实验报告
课程(项目)名称:实验五 光纤传感器动态测量 学 院: 自动化 专 业: 班 级:
学 号: 姓 名: 成 绩:
2019年12月10日
光纤位移传感器的动态测量一
一、任务与目的
了解光纤位移传感器的动态应用。
二、原理(条件)
光电传感器是一种广泛应用的传感器,它把输入的光信号转换成电信号输出。光纤是
一种光电式传感器。
反射式光纤位移传感器采用Y型结构,两束多模光纤一端合并组成光纤探头,另一端
分为两束,分别作为光源光纤和接收光纤,光纤只起到传输信号的作用,当发射器发出的
红外光,经光源光纤照射至反射面,被反射的光经接收光纤至光电转换器将接收到的光转
换为电信号。其输出的光强取决于反射体距光纤探头的距离,通过对光强的检测而得到位
移量。
三、内容与步骤
(1) 了解激振线圈在实验仪上所在位置及激振线圈的符号。
(2) 在实验(三十一)中的电路中接入低通滤波器和示波器,如图32接线。
图32
(3)将测微头与振动台面脱离,测微头远离振动台。将光纤探头与振动台反射纸的
距离调整在光纤传感器工作点即线性段中点上(利用静态特性实验中得到的特性曲线,选
择线性中点的距离为工作点,目测振动台上的反射纸与光纤探头端面之间的相对距离即线
性区ΔX的中点)。
(4) 将低频振荡信号接入振动台的激振线圈上,开启主、副电源,调节低频振荡器的
频率与幅度旋钮,使振动台振动且振动幅度适中;
(5) 保持低频振荡器输出的Vp-p幅值不变,改变低频振荡器的频率(用示波器观察
低频振荡器输出的Vp-p值为一定值,在改变频率的同时如幅值发生变化则调整幅度旋钮
使Vp-p相同),将频率和示波器上所测的峰峰值(此时的峰峰值Vp-p是指经低通后的
Vp-p)填入表格记录,并作出幅频特性图。
(6)关闭主、副电源,把所有旋钮复原到原始最小位置。
四、数据处理(现象分析)
光纤位移传感器的动态测量二
一、任务与目的
了解光纤位移传感器的测速运用。
二、原理(条件)
电机转速n等于脉冲信号的频率f除以电机上反光片的数目N。
三、内容与步骤
(1) 了解电机控制,小电机(小电机端面上贴有两张反射纸)在实验仪上所在的位置,
小电机在振动台的左边。
(2) 按图33接线,将差动放大器的增益置最大,F/V表的切换开关置2V,开启主、
副电源。
图33
(3) 将光纤探头移至电机上方对准电机上的反光纸,调节光纤传感器的高度,使F/V
表显示最大。再用手稍微转动电机,让反光面避开光纤探头。调节差动放大器的调零,使
F/V表显示接近零。
(4) 将直流稳压电源置±10V档,在电机控制单元的V+处接入+10V电压,调节转速旋
钮使电机运转 。
(5)F/V表置2K档显示频率,用示波器观察F。输出端的转速脉冲信号。(Vp-p=4V);
(6)根据脉冲信号的频率及电机上反光片的数目换算出此时的电机转速。
(7)实验完毕关闭主、副电源,拆除接线,把所有旋钮复原。
四、数据处理(现象分析)
根据脉冲信号的频率f及电机上反光片的数目N换算电机转速n
电机转速为
n = 116.23/2 = 58.1转/秒
将电机转速n的单位化为弧度/秒,
因为 f= 1/T 、w = 2π/T
所以电机转速的单位为弧度/秒时,转速=n*2π=116.23rad
五、结论
通过实验进一步了解了光纤传感器的工作原理,并且观察了实过程中的工作状况,通
过实验又一次复习巩固了光学以及光纤传感器等方面的知识。光纤采用Y型结构,两束多
模光纤一端合并组成光纤探头,另一端分为两束,分别作为光源光纤和接收光纤,光纤只
起到传输信号的作用,当发射器发出的红外光,经光源光纤照射至反射面,被反射的光经
接收光纤至光电转换器将接收到的光转换为电信号。其输出的光强取决于反射体距光纤探
头的距离,通过对光强的检测而得到位移量。通过位移量的改变产生一系列脉冲,可以根
据脉冲信号的频率计算转速。