智能小车寻迹记忆算法设计
智能循迹小车课程设计报告

智能循迹小车课程设计报告一、课程设计目标:本次智能循迹小车课程设计的目标是让学生了解智能硬件的基础知识,掌握基本电子元器件的原理及使用方法,学习控制系统的组成和运行原理,并通过实践操作设计出一款功能齐全的智能循迹小车。
二、课程设计内容及步骤:1. 调研与分析——首先要对市面上现有的智能循迹小车进行调研与分析,了解各种类型的循迹小车的特点和优缺点,为后续的设计提供参考。
2. 硬件选型——根据课程设计目标和实际需要,选择合适的主控芯片、电子元器件和传感器等硬件。
3. 原理图设计——根据硬件选型,设计出对应的原理图,并在硬件上进行布局与焊接。
4. 程序设计——先在电路板上测试硬件是否正常,随后进行程序设计,根据传感器的反馈控制小车的运动,让小车能够沿着黑线自动循迹行驶,同时加入避障功能和自动寻迹功能。
5. 调试与优化——完成程序设计后,要对小车进行全面验收测试,发现问题及时解决并优化相关程序。
三、设计思路:本次课程设计基于树莓派电路板,利用循迹模块实现小车的自动循迹和自动寻迹。
同时将超声波模块结合避障算法实现小车的自动避障。
小车的外壳采用3D打印技术制作,操作简单实用。
四、课程设计效果:通过本课程设计,学生们从理论到实践,了解了智能硬件的基础知识,掌握了基本电子元器件的原理及使用方法,学习了控制系统的组成和运行原理。
同时,实践操作过程中,学生们培养了动手能力和实际操作的技能。
通过制作一台智能循迹小车,学生们对智能硬件的认识更加深入,并获得了较高的设计满足感。
五、课程设计展望:智能循迹小车是智能硬件应用领域的一项重要发明,具有广泛的应用前景。
未来,可以将循迹小车应用于快递、物流等行业,实现自动化送货、配送。
同时可以将遥控技术与循迹技术相结合,设计出更加高效、实用的智能循迹小车,推动智能化生产和工作环境。
案例一、智能循迹小车的设计与实现

3.3 L298N模块简介
工作电压方式:直流 工作电压:信号端(VSS) 4~6V、控制端(VS) 5~36V。 调速方式:直流电动机采用PWM信号平滑调速。 特点:
1、可实现电机正反转及调速。 2、启动性能好,启动转矩大。 3、工作电压可达到36V,4A。 4、可同时驱动两台直流电机,直流电动机采用PWM信号平滑
?3其它如无线语音报站等圈后能报警1循迹小车的原理?判断黑线?编程控制小车左右转2光电检测电路实物图21光电检测路原理图1u1为比较器可以选用lm358lm324lm339lm393等比较器
智能循迹小车的设计与实现
---福建江夏学院 董建怀
实际案例
连续10多年来的赛题。
0、题意
基本要求:在白色地板上,利用电工黑胶布随 意设置一封闭图案,小车能自动沿图案前进。
扩展要求: 1、能显示出走过的路程,走一圈后能报警,
能捡起行驶路径中出现的小铁块并计数显示等。 2、在白色地板上,利用电工黑胶布作为车道
的两边,小车在车道内行驶,其它要求同上。 3、其它(如无线语音报站等)
1、循迹小车的原理
判断黑线 编程控制小车左右转
2、光电检测---电路实物图
2.1 光电检测路原理图
ajmp back ahead: setb ENA
setb ENB lcall delay1 clr ENA clr ENB lcall delay2 setb IN1 setb IN3 clr IN2 clr IN4
ajmp main back: setb ENA
setb ENB clr IN1 clr IN3 setb IN2 setb IN4 ajmp main DELAY1:MOV R4,#10 AA1: MOV R5,#100
智能循迹小车设计与实现

智能循迹小车设计与实现摘要:智能循迹小车是一种能够根据预设的路径自动行驶的装置。
本文主要介绍了智能循迹小车的设计与实现过程,包括硬件设计、软件编程以及测试和优化等内容。
通过使用光电传感器和电机驱动模块,实现了小车的自动行驶功能。
实验结果表明,智能循迹小车能够准确地沿着指定的路径行驶。
关键词:智能循迹小车,光电传感器,电机驱动模块1.引言智能循迹小车是一种基于传感器和控制模块的自动驾驶装置。
它能够通过感知周围环境并根据预先设定的路径进行行驶。
智能循迹小车在工业生产、仓储管理和物流配送等领域具有广泛的应用前景。
本文主要介绍了智能循迹小车的设计与实现过程。
2.硬件设计主控模块采用单片机作为核心处理器,并配备了存储器、通信接口和控制信号输出等功能。
传感器模块主要由光电传感器组成,用于感知小车当前位置和行驶方向。
执行器模块由电机驱动模块组成,用于控制小车的移动。
3.软件编程传感器数据采集模块负责读取光电传感器的输出信号,并进行信号处理和滤波。
路径规划模块通过分析传感器数据,确定小车当前位置和行驶方向,并根据预设的路径规划算法,确定下一步行驶方向。
运动控制模块通过调节电机驱动模块的输入信号,控制小车的运动。
4.测试与优化为了验证智能循迹小车的性能,我们进行了一系列的测试和优化。
首先,我们对传感器进行了校准,以确保其输出信号的准确性。
然后,我们在实际场景中对小车进行了测试,包括行驶精度、速度和稳定性等方面的测试。
根据测试结果,我们对软件进行了调优,并对硬件进行了优化,以提高智能循迹小车的性能。
5.结论本文介绍了智能循迹小车的设计与实现过程。
通过使用光电传感器和电机驱动模块,我们实现了小车的自动行驶功能。
实验表明,智能循迹小车能够准确地沿着指定的路径行驶。
未来,我们将进一步改进小车的设计和算法,以提高其性能和适应性。
循迹小车设计报告

循迹小车设计报告各位小伙伴!今天咱就来聊聊我设计的这个超酷的循迹小车。
这可不是一般的小车哦,它就像是一个有着自己“小脑袋”的机灵鬼,能沿着特定的路线稳稳地跑,那感觉,就像它知道自己要去哪儿似的,特别有意思!先来说说我设计这个循迹小车的初衷吧。
其实啊,就是我突然想到,要是能有个小车自己能顺着路走,那多好玩儿啊!就像给它布置了一个小小的任务,它就兢兢业业地去完成,多像一个勤劳的小员工呀。
而且,通过设计这个小车,我还能学到好多关于电子电路、传感器和编程的知识,简直就是一举多得!那这个循迹小车到底是怎么实现循迹这个神奇功能的呢?这就得靠它身上的“秘密武器”——传感器啦。
我给它装了两个红外传感器,就像它的两只小眼睛,时刻盯着地面。
当它的“眼睛”检测到黑色的线路时,就会给它的“大脑”——也就是主控芯片发送信号。
这个主控芯片就像是一个聪明的指挥官,接到信号后,它会根据程序的设定,指挥小车的电机做出相应的动作。
比如说,如果左边的传感器检测到黑线,它就会让左边的电机转得慢一点,右边的电机转得快一点,这样小车就会往左边拐,一直保持在黑线上行驶。
是不是很巧妙啊?再说说小车的动力系统。
我给它选了两个直流电机,这两个小家伙可是提供动力的主力军。
它们就像两个强壮的大力士,带着小车风风火火地往前跑。
为了能让小车跑得更稳,我还专门设计了一个电机驱动电路,就像是给这两个大力士找了个好教练,让它们能更协调地工作。
在小车的外观设计上,我也没少花心思。
我给它做了一个简洁又时尚的车身,用一些轻质的材料制作,这样既能保证小车的轻便,又能让它看起来很酷炫。
而且,我还在车身上贴了一些可爱的贴纸,让它看起来更有个性。
当然啦,在设计过程中我也遇到了不少麻烦事儿。
比如说,刚开始的时候,小车老是跑偏,就像一个喝醉了的醉汉,根本走不稳。
我可是费了好大的劲儿,反复调整传感器的位置和程序的参数,才让它慢慢走上了正轨。
还有就是电源的问题,有时候小车跑着跑着就突然没电了,就像一个没力气的小孩,一下子就瘫那儿了。
毕业设计基于单片机的智能循迹小车

第1章绪论1.1课题背景目前,在企业生产技术不断提高、对自动化技术要求不断加深的环境下,智能车辆以及在智能车辆基础上开发出来的产品已成为自动化物流运输、柔性生产组织等系统的关键设备。
世界上许多国家都在积极进行智能车辆的研究和开发设计。
移动机器人是机器人学中的一个重要分支,出现于20世纪06年代。
当时斯坦福研究院(SRI)的Nils Nilssen和charles Rosen等人,在1966年至1972年中研制出了取名shakey的自主式移动机器人,目的是将人工智能技术应用在复杂环境下,完成机器人系统的自主推理、规划和控制。
从此,移动机器人从无到有,数量不断增多,智能车辆作为移动机器人的一个重要分支也得到越来越多的关注。
智能小车,是一个集环境感知、规划决策,自动行驶等功能于一体的综合系统,它集中地运用了计算机、传感、信息、通信、导航及白动控制等技术,是典型的高新技术综合体。
智能车辆也叫无人车辆,是一个集环境感知、规划决策和多等级辅助驾驶等功能于一体的综合系统。
它具有道路障碍自动识别、自动报警、自动制动、自动保持安全距离、车速和巡航控制等功能。
智能车辆的主要特点是在复杂的道路情况下,能自动地操纵和驾驶车辆绕开障碍物并沿着预定的道路(轨迹)行进。
智能车辆在原有车辆系统的基础上增加了一些智能化技术设备:(1)计算机处理系统,主要完成对来自摄像机所获取的图像的预处理、增强、分析、识别等工作;(2)摄像机,用来获得道路图像信息;(3)传感器设备,车速传感器用来获得当前车速,障碍物传感器用来获得前方、侧方、后方障碍物等信息。
智能车辆技术按功能可分为三层,即智能感知/预警系统、车辆驾驶系统和全自动操作系统团。
上一层技术是下一层技术的基础。
三个层次具体如下:(1)智能感知系统,利用各种传感器来获得车辆自身、车辆行驶的周围环境及驾驶员本身的状态信息,必要时发出预警信息。
主要包括碰撞预警系统和驾驶员状态监控系统。
碰撞预警系统可以给出前方碰撞警告、盲点警告、车道偏离警告、换道/并道警告、十字路口警告、行人检测与警告、后方碰撞警告等.驾驶员状态监控系统包括驾驶员打吨警告系统、驾驶员位置占有状态监测系统等。
循迹避障智能小车设计(2023最新版)

循迹避障智能小车设计
循迹避障智能小车设计文档范本:
⒈摘要
本文档旨在详细介绍循迹避障智能小车的设计方案。
介绍了小车的硬件组成、软件设计和算法实现,以及测试结果和优化方案。
⒉引言
介绍循迹避障智能小车的背景和应用场景,解释设计的目的和意义。
⒊系统架构
详细介绍循迹避障智能小车的系统组成,包括传感器模块、控制器、执行器等硬件部分,以及软件部分的整体架构。
⒋传感器设计
说明循迹避障智能小车所使用的传感器,包括红外线传感器、超声波传感器等的选择原因和工作原理,以及如何与控制器进行连接。
⒌控制器设计
介绍循迹避障智能小车的控制器设计,包括主控芯片的选择、引脚分配以及与传感器和执行器的连接方式。
⒍执行器设计
详细说明循迹避障智能小车的执行器设计,包括电机控制模块、转向模块等的选择和工作原理。
⒎算法设计
阐述循迹避障智能小车所采用的算法设计,包括循迹算法和避障算法的原理和实现方法。
⒏系统测试与优化
描述循迹避障智能小车的测试方法和实验结果分析,以及针对存在的问题进行的优化措施。
⒐结论
总结循迹避障智能小车设计的成果,评估其性能和应用前景,并展望未来的发展方向。
⒑附件
提供循迹避障智能小车的原理图、源代码、测试数据等附件,以供读者参考使用。
1⒈法律名词及注释
在文档末尾提供相关法律名词的注释,并进行对应解释,以确保读者对相关法律概念的理解和使用的合法性。
智能小车红外循迹

引言:智能小车红外循迹技术是一种基于红外传感器的自动导航技术,它可以使小车能够根据外界环境发出的红外信号进行导航,实现自动巡航。
本文将从红外循迹技术的原理、应用场景、具体实现方法、优缺点以及未来发展等方面详细讨论。
概述:红外循迹技术是智能小车领域中的重要技术之一,通过红外传感器感知地面上的红外信号,从而确定小车的行驶路径。
该技术常用于自动导航和避障等场景中,具有较高的可靠性和稳定性。
下面将详细探讨智能小车红外循迹技术的相关内容。
正文内容:一、红外循迹技术的原理1.红外传感器的工作原理2.红外信号与地面的交互3.红外循迹算法的实现二、红外循迹技术的应用场景1.工业自动化领域中的应用2.家庭服务中的应用3.自动驾驶车辆中的应用三、智能小车红外循迹技术的具体实现方法1.硬件方案1.1红外传感器选择与安装1.2控制模块设计与搭建1.3电源管理与供电设计2.软件方案2.1红外信号的数据处理2.2循迹算法的设计与实现2.3控制系统的编程与调试四、智能小车红外循迹技术的优缺点1.优点1.1精确度高1.2反应速度快1.3成本较低2.缺点2.1受环境因素影响较大2.2对于不同地面的适应性较差2.3容易受到干扰五、智能小车红外循迹技术的未来发展1.红外循迹技术在自动驾驶领域的应用前景2.其他导航技术与红外循迹技术的结合3.红外传感器的性能改进与创新总结:智能小车红外循迹技术是一种基于红外传感器的自动导航技术,其原理是通过感知地面上的红外信号来确定小车的行驶路径。
红外循迹技术广泛应用于工业自动化、家庭服务和自动驾驶车辆等领域。
该技术具有精度高、反应速度快以及成本低的优点,但也存在受环境因素影响较大、对不同地面适应性差以及易受干扰等缺点。
未来,红外循迹技术在自动驾驶领域的应用前景广阔,并且可以通过与其他导航技术的结合以及红外传感器的性能改进与创新来进一步提升其应用效果和可靠性。
智能循迹小车设计报告(总17页)

智能循迹小车设计报告(总17页)一、设计目的本项目旨在设计一款运用机器视觉技术的智能循迹小车,能够自主寻找指定路径并行驶,可用于实现自动化物流等应用场景。
二、设计方案2.1 系统概述本系统基于STM32F103C8T6单片机和PiCamera进行设计。
STM32F103C8T6单片机负责循迹小车的控制和编码器的反馈信息处理,PiCamera则用于实现图像识别和路径规划,两者之间通过串口进行通讯。
2.2 硬件设计2.2.1 循迹模块循迹模块采用红外传感器对黑线进行探测,通过检测黑线与白底的反差判断小车的行驶方向。
本设计采用5个红外传感器,每个传感器分别对应小车行驶时的不同位置,通过对这5个传感器的读取,可以获取小车所在的实际位置和前进方向。
电机驱动模块采用L298N电机驱动模块,通过PWM信号来控制电机的转速和方向。
左右两侧的电机分别接到L298N模块的IN1~IN4引脚,电机转向由模块内部的电路通过PWM 信号控制。
2.2.4 Raspberry PiRaspberry Pi用于图像处理和路径规划。
本设计使用PiCamera进行图像采集,在RPi 上运行OpenCV进行图像处理,识别道路上的黑线,并通过路径规划算法计算出循迹小车当前应该行驶的方向,然后将该方向通过串口传输给STM32单片机进行控制。
本设计的系统结构分为三个层次:传感器驱动层、控制层、应用层。
其中,传感器驱动层实现对循迹小车上的传感器的读取和解析,生成对应的控制指令;控制层对控制指令进行解析和执行,控制小车的运动;应用层实现图像处理和路径规划,将路径信息传输给控制层进行控制。
在应用层,本设计采用基于灰度阈值的图像处理算法,通过寻找图像中的黑色线条,将黑色线条和白色背景分离出来,以便进行路径规划。
路径规划采用最短路径算法,计算出循迹小车当前应该行驶的方向,然后将该方向发送给控制层进行控制。
2.4 可行性分析本设计的硬件设计采用常见的模块化设计,采用Arduino Mega作为基础模块,通过模块之间的串口通信实现对整个系统的控制,扩展性和可维护性良好。