高中数学教师必备的知识函数的极限(一)数列与函数的极限

高中数学教师必备的知识函数的极限(一)数列与函数的极限
高中数学教师必备的知识函数的极限(一)数列与函数的极限

数列的概念

设是正整数的函数,当按增大顺序取值时,得到的一串函数值

称为数列,记,即

数列中的每个数叫数列的项,称为通项(或一般项),数列记为。例如:

(1)1,2,3,...,...

...

(2)1,2,3,...

...

(3)1,2,3,...

...

(4)1,2,3,...

-1, 1, -1 , 1, -1, 1,...

(5)1,2,3,...

单调数列:如果 … … ,称数列单调增;如果

……,称数列单调减;单调增与单调减数列统称为单调数列。

如:数列(2)、(5)单调增,数列(3)单调减。

有界数列:如果对任何正整数,存在正数,使恒成立,称数列

有界,否则称为无界。

如:数列(1)、(2)、(3)、(4)有界,数列(5)无界。

数列的极限

对于数列,重要的是讨论它当项数n无限增大时(记),的变化趋

势,是否无限接近于某一个常数。如果时,无限接近于一个常数,则称

为当时的极限,如前面数列中

考察数列, 即…

,…

当n趋于无穷时的变化趋势。由于,显然n 时,

1,即无限接近于零。也就是说:对于任意预先给定的无论多小的正数,当大到一定程度时,有。如:对于,要,只要,就有

对于,要,只要,就有

对于,要,只要,就有

对于,要,只要,就有

一般地说,对于任意给定的正数,存在着一个正整数,对时的一切

,有成立。这样就描述了当时无限接近于1这一事实。1是当时的极限。

定义:如果数列与常数A有关系:对于任意给定的无论多小的正数,总存在正整数N(ε),使对于n>N时的一切,不等式

都成立,则称常数A是数列当时的极限,或者称数列当时收敛于A,记为

此时,称为收敛数列,如果不收敛(没有极限),称是发散的。

例 1证明数列的极限是1。

证对于任意给定的无论多小的正数,要使

只要即可,取,则当时,有

收敛数列的性质

定理收敛数列的极限是唯一的。

证明用反证法。假设又,且。取,

因,存在正整数,使时,有(1)

同理,因,存在正整数,使时,有(2)

取,则时,(1)、(2)两式应同时成立,又由(1)式

可得,由(2)式可得,矛盾。所以,数列的极限是唯一的。

定理收敛的数列必定有界。

证明设,由极限定义,对存在正整数,使时的一切

,有成立,即成立。取

,则对数列中的一切,有成立。所以,数列有界。

子数列:在数列中任意选出无穷多项并保持这些项在原数列中的先后次序,这样抽得的数列称为原数列的一个子数列。

如:数列中

… …为一个子数列

… …也是一个子数列

任意一个子数列可记成

定理如果数列收敛于,那么它的任意一个子数列也收敛于。

如果数列有两个子数列收敛于不同的极限,则数列是发散的。如:

指:无限变大。

型f(x)的极限

如果在的过程中,无限接近于某确定的数值,则称为函数

当时的极限。

考察函数,当时的变化趋势,

显然,当时,,即可任意小。也就是对于任意给定的无

论多小的正数,要,只要即可,取正数,则

时,有成立。这样就描述了时,的极限过程。

定义设函数和常数有关系:对于任意给定的无论多小的正数ε,总存在正数,使当时的一切,有成立,则称为函数当时的极限,或说当时收敛于,记作

例 1 证明:

证:设

要使,只要,

取,当时,有成立,

同理可证:

说明:当,无限增加时,记作,

当,无限增加时记作,

可以定义,(或)时函数的极限,分别记作

如:

注意:存在的充要条件是都存在且相等。

不存在。

型f(x)的极限

指以任何方式趋于,也即任意变小。

如果在的变化过程中,函数值无限接近于确定的数值,则称为当时的极限。即对于任意给定的无论多小的正数,只要与充分接近(用来描述),可有成立。

如观察函数,当时,的变化趋势,

显然,当时,,既可任意小。对于任意给定的

,只要(取),就有

成立。

定义设函数在的某去心邻域内有定义,与常数有关系:对于任意

给定的无论多小的正数ε,总存在着正数,使对于一切满足的,

有成立,则常数称为当时的极限,或说当

时收敛于,记作

注意:时,函数有没有极限与在点是否有定义无关,所以定义中要求。

例 2 证明:

证:设

要使,只要取,则当时,就有

同样可证明:,。

左、右极限

当从

的左侧趋于(记作或)时,的极限称为趋

于时的左极限,记作

当从的右侧趋于(记作或)时,的极限称为趋于时的右极限,记作

定理函数当时的极限存在的充分必要条件是当

时的左右极限都存在且相等。既

例 3 讨论当

时函数

的极限是否存在。

不存在。

极限的性质

定理如果,且,则存在点的某一去心邻域,当在该邻域内时,有。

定理如果在点的某一去心邻域内,且,则( )。

函数的极限形式有下面几种情况:

总结上述极限,将其概括为:对于任意给定的无论多小的正数,在的某个变化过程中存在着一个时刻,当的变化过程超过这一时刻时,有恒成立,则称是在的这一变化过程中的极限,记。

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

数学分析习作-数列极限与函数极限的异同

云南大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 姓名、学号: 任课教师: 时间: 2009-12-26 摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的 重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基 础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用 的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知 识;

在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数: a、数列的定义:数列是指按自然数编了号的一串数:x1,x2,x3,…,x n,…. 通常记作{x n},也可将其看作定义在自然数集N上的函数x n=N (, ), n n f∈故也称之为整标函数。 b、函数的定义:如果对某个范围X内的每一个实数x,可以按照确定的规律f, 得到Y内唯一一个实数y和这个x对应,我们就称f是X上的函数,它在x的数值(称为函数值)是y,记为) f y=。 (x (x f,即) 称x是自变量,y是因变量,又称X是函数的定义域,当x遍取X内的所有实数时,在f的作用下有意义,并且相应的函数值) f的全体所组成的范围叫作 (x

函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一) 数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 >n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβn n n n n n n n n n n 1 95) 423(310 531423222 222. 故,

考点数列的极限函数的极限与连续性

温馨提示: 此题库为Word 版,请按住Ctrl,滑动鼠标滚轴,调节合适的观 看比例,点击右上角的关闭按钮可返回目录。 考点42 数列的极限、函数的极限与连续性 一、选择题 1、(2011·重庆高考理科·T3)已知x 2ax 1lim 2x 13x →∞-??+= ?-? ?,则=a ( ) (A) -6 (B) 2 (C) 3 (D)6 【思路点拨】对小括号内的表达式进行通分化简利用极限的相关性质求出a 的值. 【精讲精析】选D. x x 2x 16x (ax 1)(x 1)lim lim x 13x 3x(x 1)→∞→∞??-+--??+= ???--???? 22x ax (5a)x 1a lim 2,3x 3x 3→∞??+-+===??-?? 所以.6=a 2、(2011·四川高考理科·T11)已知定义在[0,+∞ )上的函数()f x 满足()f x =3(2)f x +,当[ 0,2)x ∈时,()f x =2 2x x -+,设()f x 在[22,2)n n -上的最大值为*([0,)n a n N ∈且{}n a 的前n 项和为S n ,则lim n n S →∞ =( ). (A )3 (B )52 (C) 2 (D )32 【思路点拨】 首先需要确定数列{}n a .先由1n =求出1a ,当2n =时,由()3(2)f x f x =+可推得 1()(2)3 f x f x = -,先求出(2)f x -的最大值,在求()f x 的最大值,即求得2a , 3,4,...n =依次求 解. 【精讲精析】选D , [)[)[)22122,20,2,0,2()2(1)1n n n x f x x x x =-=∈=-+=--+时,时,, ()=(1)1f x f =最大值,1 1.a ∴= [)[)[)[)222,22,4,2,420,2n n n x x =-=∈-∈时,若,则, 2(2)22(2)f x x x -=--+-()

数学分析习作-数列极限及函数极限的异同

XX大学 数学分析习作课(1)读书报告 题目:数列极限与函数极限的异同 (定义,存在条件,性质,运算四方面的对比)学院:物理科学技术学院 专业:数理基础科学 、学号: 任课教师: 时间:2009-12-26摘要 极限是数学中极其重要的概念之一,极限的思想是人们认知数学世界解决数学问题的

重要武器,是高等数学这个庞大的数学体系得以建立的基础和基石; 极限在数学中处于基础的地位,它是解决微积分等一系列重要数学问题的前提和基础; 极限是一种思维,在学习高数时最好理解透彻了,在线代中没什么用.但是概率中用的比较多,另外物理中许多都用到了极限的思维,它也能帮助更好的理解一些物理知识;在高等数学中,极限是一个重要的概念,极限可分为数列极限与函数极限,下面是关于两种极限的简要联系与说明。 关键词:数列极限与函数极限的定义,存在条件,性质,运算 一数列极限与函数极限的定义 1、数列与函数:

a 、数列的定义:数列是指按自然数编了号的一串数:x 1,x 2,x 3,…,x n ,…. 通常记作{x n },也可将其看作定义在自然数集N 上的函数x n =N n n f ∈),(, 故也称之为整标函数。 b 、函数的定义:如果对某个围X 的每一个实数x ,可以按照确定的规律f ,得到Y 唯 一一个实数y 和这个x 对应,我们就称f 是X 上的函数,它在x 的数值(称为函数值)是y ,记为)(x f ,即)(x f y =。 称x 是自变量,y 是因变量,又称X 是函数的定义域,当x 遍取X 的所有实数 时,在f 的作用下有意义,并且相应的函数值)(x f 的全体所组成的围叫作函数f 的值域,要注意的是:值域不一定就是Y ,它当然不会比Y 大,但它可能比Y 小。 2、 (一)数列极限的定义: 对数列}{x n ,若存在常数A ,对N n N >?∈?>?,N ,0ε,有 ε<-A x n ,则称 数列收敛且收敛于A ,并称数列}{x n 的极限为A ,记为x n n lim ∞ →=A. 例1.试用定义验证:01 lim =∞→n n . 证明:分析过程,欲使,1 01ε<=-n n 只需ε 1 > n 即可,故 εεε<->?+?? ? ???=?>?01:,11,0n N n N . 例2.试用定义验证:).11(lim <<-=∞ →q n 证明:分析过程.欲使[]ε <=-n n q q 0, 只需q n lg lg ε > (注意0lg ??? ????????????????=?n q N n q N 对于比较复杂的表达式n n A x α=-,一般地,我们通过运算,适当放大,将n α变形简化到n β,既使得对于0>?ε由不等式εβ时,恒成立不等式εβ

第一讲数列地极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 N n N a x n n >?N ∈?>??=∞ →,,0lim ε,有ε<-a x n . 注1 ε的双重性.一方面,正数ε具有绝对的任意性,这样才能有 {}n x 无限趋近于)(N n a x a n ><-?ε 另一方面,正数ε又具有相对的固定性,从而使不等式ε<-a x n .还表明数列{}n x 无限趋近于a 的渐近过程的不同程度,进而能估算{}n x 趋近于a 的近似程度. 注2 若n n x ∞ →lim 存在,则对于每一个正数ε,总存在一正整数N 与之对应,但这种N 不是 唯一的,若N 满足定义中的要求,则取Λ,2,1++N N ,作为定义中的新的一个N 也必须满足极限定义中的要求,故若存在一个N 则必存在无穷多个正整数可作为定义中的N . 注3 a x n →)(∞→n 的几何意义是:对a 的预先给定的任意-ε邻域),(εa U ,在{}n x 中至多除去有限项,其余的无穷多项将全部进入),(εa U . 注4 N n N a x n n >?N ∈?>??≠∞ →00,, 0lim ε,有00ε≥-a x n . 2. 子列的定义 在数列{}n x 中,保持原来次序自左往右任意选取无穷多个项所得的数列称为{}n x 的子列,记为{} k n x ,其中k n 表示k n x 在原数列中的项数,k 表示它在子列中的项数. 注1 对每一个k ,有k n k ≥. 注2 对任意两个正整数k h ,,如果k h ≥,则k h n n ≥.反之,若k h n n ≤,则k h ≤. 注3 K k K a x k n n >?N ∈?>??=∞→,, 0lim ε,有ε<-a x k n . 注4 ?=∞ →a x n n lim {}n x 的任一子列{} k n x 收敛于a . 3.数列有界 对数列{}n x ,若0>?M ,使得对N n >?,有M x n ≤,则称数列{}n x 为有界数列. 4.无穷大量 对数列{}n x ,如果0>?G ,N n N >?N ∈?,,有G x n >,则称{}n x 为无穷大量,记 作∞=∞ →n n x lim .

g3.1030数列与函数的极限(1)

g3.1030数列与函数的极限(1) 一、知识回顾 1、 数列极限定义 (1)定义:设{a n }是一个无穷数列,a 是一个常数,如果对于预先给定的任意小的正数ε,总存在正整数N ,使得只要正整数n>N ,就有|a n -a|<ε,那么就称数列{a n }以a 为极限,记作lim ∞→n a n =a 。 对前任何有限项情况无关。 *(2)几何解释:设ε>0,我们把区间(a-ε,a+ε)叫做数轴上点a 的ε邻域;极限定义中的不等式|a n -a|<ε也可以写成a-ε0,则特别地 01 lim =∞→n n ③设q ∈(-1,1),则lim ∞ →n q n =0;;1lim ,1==∞ →n n q q ,1-=q 或n n q q ∞ →>lim ,1不存在。

若无穷等比数列1,,,,11<-q aq aq a n 叫无穷递缩等比数列,其所有项的和(各项的和)为:q a s s n n -= =∞ →1lim 1 3、数列极限的运算法则 如果lim ∞→n a n =A ,lim ∞→n b n =B ,那么(1)lim ∞→n (a n ±b n )=A ±B (2)lim ∞→n (a n ·b n )=A ·B (3)lim ∞ →n n n b a =B A (B ≠0) 极限不存在的情况是1、±∞=∞ →n n a lim ;2、极限值不唯一,跳跃,如1,-1,1,-1…. 注意:数列极限运算法则运用的前提: (1)参与运算的各个数列均有极限; (2)运用法则,只适用于有限个数列参与运算,当无限个数列参与运算时不能首先套用. 二.基本训练 1、n n n n 2312lim 22++∞→= ;22322 lim n n n n n →∞+++= 2、135(21) lim 2462n n n →∞+++???+-+++???+=_________________ 3.已知a 、b 、c 是实常数,且a cn c an b cn c bn c bn c an n n n ++=--=-+∞→∞→∞→2222lim ,3lim ,2lim 则的值是……… ( ) A . 121 B .61 C .2 3 D .6

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

数列的极限函数的极限与洛必达法则的练习题及解析

数列的极限函数的极限与洛必达法则的练习题及解析 一、单项选择题(每小题4分,共24分) 3. 若()0lim x x f x →=∞,()0 lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞??? ? B . ()()0lim x x f x g x →-=∞??? ? C . ()() 01lim 0x x f x g x →=+ D . ()()0 lim 0x x kf x k →=∞≠ 解:()()000lim lim x x x x k kf x k f x k →→≠==?∞∞ ∴选D 6.当n →∞时, 1k n 与1k n 为等价无穷小,则k=( ) A .12 B .1 C .2 D .-2 解:2 211sin lim lim 1,21 1n n k k n n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分) 8.2112lim 11x x x →??-= ?--? ? 解:原式()()() 112lim 11x x x x →∞-∞+--+ 10 .n = 解:原式n ≡有理化 11.1201arcsin lim sin x x x e x x -→??+= ??? 解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x x x →→== 故 原式=1

12.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x →=-,则正整数n = 解:()222200ln 1lim lim sin n n x x x x x x x x →→+?= 20420,lim 02 n x n x n x →<>2,4,n n ∴>< 故3n = 三、计算题(每小题8分,共64分) 14.求0x → 解:原式有理化 16.求0ln cos 2lim ln cos3x x x → 解:原式[][]0ln 1cos 21lim ln 1cos31x x x →--+-变形 注:原式02sin 2cos3lim cos 23sin 3x x x x x →∞?? ?∞??-?- 17.求02lim sin x x x e e x x x -→--- 解: 原式0020lim 1cos x x x e e x -→+-- 19.求lim 111lim 11n n n n n e e n →∞--+→∞??-== ?+?? 解: (1) 拆项,111...1223(1) n n +++??+ 1111111...122311n n n ??????=-+-+-=- ? ? ???++????(2) 原式=lim 111lim 11n n n n n e e n →∞--+→∞??-== ?+??

高中数学教案:极限与导数极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, 21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

高中数学--极限

高中数学-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

第一讲:数列的极限函数的极限与洛必达法则的练习题答案

第一讲:数列的极限函数的极限与洛必达法则的练习题答案 一、单项选择题(每小题4分,共24分) 3. 若()0lim x x f x →=∞,()0 lim x x g x →=∞,则下列正确的是 ( ) A . ()()0lim x x f x g x →+=∞??? ? B . ()()0lim x x f x g x →-=∞??? ? C . ()() 01lim 0x x f x g x →=+ D . ()()0 lim 0x x kf x k →=∞≠ 解: ()()000lim lim x x x x k kf x k f x k →→≠==?∞∞ ∴选D 6.当n →∞时, 1k n 与1k n 为等价无穷小,则k=( ) A .12 B .1 C .2 D .-2 解:2 211sin lim lim 1,21 1n n k k n n k n n →∞→∞=== 选C 二 、填空题(每小题4分,共24分) 8.2112lim 11x x x →??-= ?--? ? 解:原式()()()112lim 11x x x x →∞-∞+--+ 111lim 12 x x →==+ 10 .n =

解:原式n ≡有理化 32n ==无穷大分裂法 11.1201arcsin lim sin x x x e x x -→??+= ?? ? 解:11220011sin 1,lim 0lim sin 0x x x x e e x x -→→≤=∴=又00arcsin lim lim 1x x x x x x →→== 故 原式=1 12.若()220ln 1lim 0sin n x x x x →+= 且0sin lim 01cos n x x x →=-,则正整数n = 解: ()222200ln 1lim lim sin n n x x x x x x x x →→+?= 20420,lim 02 n x n x n x →<>2,4,n n ∴>< 故3n = 三、计算题(每小题8分,共64分) 14.求0 x → 解:原式有理化 0x →0tan (1cos )1lim (1cos )2 x x x x x →-=?- 0tan 111lim lim 222 x x x x x x →∞→=?==

《数列极限的运算法则》教案(优质课)

《数列极限的运算法则》教案 【教学目标】:掌握数列极限的运算法则,并会求简单的数列极限的极限。 【教学重点】:运用数列极限的运算法则求极限 【教学难点】:数列极限法则的运用 【教学过程】: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]= ±→)()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{} n c 有极限,则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 三、例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ →

例2.求下列极限: (1))45(lim n n +∞→; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限: (1) )1 1 2171513( lim 2222+++++++++∞ →n n n n n n (2))39312421( lim 1 1 --∞→++++++++n n n

专题十数列极限与函数极限

专题十 数列极限与函数极限 一、选择题 1.(2008年高考·湖北卷)已知m ∈N * , a 、b ∈R ,若0n lim →b x a x)(1m =++,则a ·b=( ) A .-m B .m C .-1 D .1 2.∞→n lim )2n 8641864164141(+++++++++++ 的值为( ) A .1 B .411 C .1811 D .2411 3.若函数?????>+≤+-=1)(x 1 3x 15a 1)(x a 2x x f(x)23在点x=1处连续,则实数a=( ) A .4 B .-41 C .4或-41 D .4 1或-4 4.下列命题:①发果f(x)=x 1,那么∞→x lim f(x)=0;②如果f(x)=1x -,那么f(x)=0;③如果f(x)=2x 2x x 2++,那么2x lim -→f(x)不存在;④如果?????<+≥=0 x 1,x 0x ,x f(x),那么0lim →x f(x)=0,其中真命题是( ) A .①② B .①②③ C .③④ D .①②④ 5.设abc ≠0,∞→x lim 31b ax a cx =++,∞→x lim 43c bx bx ax 22=-+,则∞→x lim a cx bx c bx cx 233+--+的值等于( ) A .4 B .94 C .41 D .4 9 6.设正数a, b 满足2x lim →(x 2+ax-b)=4,则n 1n 1n 1n n 2b a ab a lim ++--+∞→等于( ) A .0 B .41 C .21 D .1 7.把1+(1+x)+(1+x)2+…+(1+x)n 展开成关于x 的多项式,其各项系数和为a n ,则1a 12a lim n n n +-∞→等于( ) A .4 1 B .21 C .1 D .2 二、填空题 8.已知数列的通项a n =-5n+2,其前n 项和为S n ,则2n n n S lim ∞→=________. 9.2x lim →)2 x 14x 4(2---=________.

高考数学二轮复习 数列、极限、数学归纳法(1)

2008高考数学二轮复习数列、极限、数学归纳法(1) 教学目标: 1.理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 2.理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题. 教学重点: 理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n项. 教学难点: 理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n项和的公式. 并能运用这些知识来解决一些实际问题. 教学方法设计:“五步”教学法 教学用具:三角板多媒体 板书设计 一、知识框架 二、典型例题 三、总结 四、检测 教学过程 一、出示教学目标。

理解数列的有关概念,了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前n 项. 理解等差(比)数列的概念,掌握等差(比)数列的通项公式与前n 项和的公式. 并能运用这些知识来解决一些实际问题. 二、组织基础知识结构,构建知识网络。 三、典型例题引路。 【例1】 已知由正数组成的等比数列{}n a ,若前n 2项之和等于它前n 2项中的偶数项之和的11倍,第3项与第4项之和为第2项与第4项之积的11倍,求数列{}n a 的通项公式. 解:∵q =1时122na S n =,1na S =偶数项 又01>a 显然11112na na ≠,q ≠1 ∴2212121)1(1)1(q q q a S q q a S n n n --==--=偶数项 依题意2 21211)1(111)1(q q q a q q a n n --?=--;解之101 = q 又421422143),1(q a a a q q a a a =+=+,

浅谈数列极限与函数极限在解题中的区别和联系

浅谈数列极限与函数极限在解题中的区别和联系摘要在数学分析中,极限的知识体系包括数列极限和函数极限。在求解数列极限的方法中,我们从极限的定义出发,根据极限的性质以及相关的定理法则,例如单调有界收敛来论证极限;在求解函数极限时,其方法与数列极限有着相同之处,同时又有所区别。本文重点在于分析数列极限与函数极限在解题中的相似之处与不同之处,同时研究数列极限与函数极限的关系。 关键词:数列极限;函数极限;区别;联系

目录 1 数列极限与函数极限在解题中的相似之处 (3) 1.1 定义法在极限解题中的应用 (3) 1.1.1 定义法概述 (3) 1.1.2 定义法解题实例分析 (3) 1.2 迫敛性在极限解题中的应用 (4) 1.2.1 迫敛性概述 (4) 1.2.2 迫敛性解题实例分析 (4) 1.3 积分中值定理在极限解题中的应用 (5) 1.3.1 积分中值定理概述 (5) 1.3.2 积分中值定理实例分析 (6) 1.4 本章小结 (6) 2 数列极限与函数极限在解题中的不同之处 (7) 2.1 存在条件不同 (7) 2.1.1 数列极限存在条件 (7) 2.1.2 函数极限存在条件 (9) 2.2 特殊形式的极限 (10) 2.2.1 数列极限的特殊解法研究 (10) 2.2.3 两个重要形式的函数极限解法研究 (12) 3数列极限与函数极限的关系 (13) 3.1海涅定理 (13) 3.2海涅定理的应用 (14) 4 结论 (16)

1 数列极限与函数极限在解题中的相似之处 数列极限与函数极限在解题过程中,存在着很多的相似之处。主要表现在数列极限与函数极限的解题过程中,其方法的运用方面存在着很多的共同点。下面将重点分析进行数列极限与函数极限的解题过程中,定义法以及利用数列迫敛性在数列极限与函数极限中的运用。 1.1 定义法在极限解题中的应用 1.1.1 定义法概述 数列极限的N ε-定义:设{}n a 为数列,a 为定数,若对任给的正数ε,总存在正数N ,使得当n N >时,有n a a ε-<,则称数列{}n a 收敛于a 。记作: lim n n a a →∞ =。否则称{}n a 为发散数列。 函数极限定义:设n X {}是一个数列,a 是实数,如果对任意给定的ε>0,总存在一个正整数N ,当n N >时,都有n X a -<ε,我们就称a 是数列n X {}的极限。记为lim n n X a →∞ =。 1.1.2 定义法解题实例分析 例. 求证数列极限1 lim 1,n n a →∞ =其中0a >。 证:当1a =时,结论显然成立。 当1a >时,记1 1n a α=-,则0α>,由()1111(1)n n a n n ααα=+≥+=+- 得11 1n a a n --≤,任给0ε>,则当1a n N ε->=时,就有1 1n a ε-<,即11n a ε-<即1lim 1,n n a →∞ = 当 11 1 1 101,1,lim 1,lim 1 lim n n n n n n a b b b a a b →∞→∞→∞ <<=>=∴= =时,令则由上易知 综上,1lim 1,n n a →∞ =0a >

最新3第一讲__数列的极限典型例题汇总

3第一讲__数列的极限典型例题

第一讲 数列的极限 一、内容提要 1.数列极限的定义 ?Skip Record If...?,有?Skip Record If...?. 注1 ?Skip Record If...?的双重性.一方面,正数?Skip Record If...?具有绝对的任意性,这样才能有 ?Skip Record If...?无限趋近于?Skip Record If...? 另一方面,正数?Skip Record If...?又具有相对的固定性,从而使不等式?Skip Record If...?.还表明数列?Skip Record If...?无限趋近于?Skip Record If...?的渐近过程的不同程度,进而能估算?Skip Record If...?趋近于?Skip Record If...?的近似程度. 注2若?Skip Record If...?存在,则对于每一个正数?Skip Record If...?,总存在一正整数?Skip Record If...?与之对应,但这种?Skip Record If...?不是唯一的,若?Skip Record If...?满足定义中的要求,则取?Skip Record If...?,作为定义中的新的一个?Skip Record If...?也必须满足极限定义中的要求,故若存在一个?Skip Record If...?则必存在无穷多个正整数可作为定义中的?Skip Record If...?. 注3?Skip Record If...??Skip Record If...?的几何意义是:对?Skip Record If...?的预先给定的任意?Skip Record If...?邻域?Skip Record If...?,在?Skip Record If...?中至多除去有限项,其余的无穷多项将全部进入?Skip Record If...?. 注4?Skip Record If...?,有?Skip Record If...?. 2.子列的定义

高中数学复习数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞ →n lim C =C (C 为常数);②∞ →n lim n 1 =0;③∞→n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1- 31)(1-41)(1-51)…(1-21+n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

相关文档
最新文档