基于过程强化的铜冶炼烟灰中砷选择性去除工艺及机理

基于过程强化的铜冶炼烟灰中砷选择性去除工艺及机理
基于过程强化的铜冶炼烟灰中砷选择性去除工艺及机理

基于过程强化的铜冶炼烟灰中砷选择性去除工艺及机理

我国是世界第一大铜生产和消费国,在矿产资源开采、运输和选冶过程中,会产生大量含重金属固体废弃物,与开采及尾矿处理过程产生的烟尘相比,冶炼过程中产生的烟灰粒径较小(≤0.1μm)、比表面积较大,不仅可进行长距离的迁移造成区域性污染,而且易通过呼吸系统被人体吸收,从而对生态环境产生更大的危害;另外,有色金属矿物冶炼被IPCS认定为最重要的砷排放点源之一,据统计,全球大气中的砷约40%来自于冶炼过程,其中铜矿冶炼排放量占80%。因此,从环境保护的角度,冶炼烟灰中砷的脱除及稳定化对于全球砷污染的控制具有积极意义。从地球资源角度,冶炼烟尘除含有大量Cu、Pb、Zn等金属外,还含有大量稀贵金属,如In、Ge、Ga等,相对日渐贫乏的精矿品味,烟尘中的有价金属含量甚至超过很多富矿,可作为十分珍贵的金属资源。然而,杂质砷的大量存在不仅增加资源化过程的负担,而且影响所产金属质量,已成为此类烟灰资源化的主要限制因素。随着铜精矿进一步匮乏,冶炼过程中产生固体废弃物(炉渣、烟尘等)必将成为“再生铜”资源重要组成部分,而如何实现此类材料中有价金属高效资源化已成为湿法冶金领域重要研究课题之一。目前,针对冶炼废弃物中有价金属元素资源化,大部分研究仍聚焦于有价金属元素湿法冶金技术的开发及机理,然而,与其他金属化合物相比,含As化合物热力学稳定性较低,易溶解于强酸、强碱等常用浸出剂。冶炼烟灰常与铜矿等制样后返回熔炼炉,但随着铜矿资源的锐减,高砷铜由砷化

合物具,矿的广泛使用必将导致冶炼烟灰中砷含量的持续增大.

有较高反应活性,因此极易进入后续分离工序,致使阴极铜质量下降。鉴于此,开发选择性浸出技术对烟灰进行脱砷预处理后再熔炼对其资源化具有积极意义。NaOH-Na2S复合浸出体系理论上可选择性除砷,但仍存在药剂消耗量大、耗时长、浸出率低等缺点,并且随着烟灰中砷含量增高,这种缺点则越突出。考虑到烟灰中砷和其它金属的价态和存在形式等是决定其浸出率的主要控制因素,因此,准

确确定砷及其它金属在烟尘颗粒内部的赋存状态是开发强化浸出技

术的首要问题;另外,仍缺乏从微观水平上NaOH、Na2S等药剂浸出砷各自作用机理及其协同作用机制。为此,本文以铜冶炼澳炉烟灰为研究对象,在分析烟灰组成成分、物相、形貌分析所用烟灰ANC\BNC等特征基础上,对比研究了水洗预处理前后烟灰中有价金属元素(Cu、Zn、Bi、Sn、Mo、Sb、Ba、Al等)及有毒有害金属元素(Pb、Ni、As、Cd、Co等)浸出特性并构建了烟灰中重金属赋存状态与其浸出特性之间关系,揭示了溶解-沉控制机制、吸附-解吸控制机制、传质控制机制对其浸出作用规律各金属元素在不同pH条件下浸出机理及主要控制因素;为了开发符合清洁生产标准的高效脱砷技术,确定了微波、超声、球磨三种新型辅助浸出技术对As在

NaOH-Na2S浸出体系分离浸出效率,并从微观尺度上揭示了NaOH、Na2S浸出砷作用机制。论文的主要工作及结论如下:(1)从热力学角度构建了烟灰中重金属赋存状态与其浸出特性之间关系,揭示了溶解-沉控制机制、吸附-解吸控制机制、传质控制、

Cl、K、Na、Fe、Al、As、Cd、Zn机制对其浸出作用规律。烟灰中

Zn等易被洗脱,存在可溶物相组分,其浸出主要其在烟灰颗粒径向分

布相关,即受传质过程影响;酸性条件下,Pb不易浸出主要受

PbSO4溶解度控制,而Cd、Mo则可吸附在铁\铝氧化物表面;烟灰中As浸出特性与其存在形态及吸附过程密切相关,其中

As主要以As2O3状态存在,呈水溶性、易于在环境中迁移;而AsV则主要与Cu、Zn形

成复杂沉淀物;pH为3时残余物中As主要以砷酸盐态吸附在Fe氧化物表面,呈现典型的双齿双核(As-Fe=3.25?)、双齿单核(As-Fe=2.85?)As-Fe化合物构型,在2.85?处不存在Fe原子,则表明溶液中游离砷酸根再吸附过程的存在;而pH为5时的As主要吸附在Al氧化物表面,

在3.19?处出现As-Al原子间距,与溶液中Al氧化物再沉淀过程密切相关。(2)确定了微波辅助条件下A s在N aO H-N a2S 浸出体系中浸出率及速率的主要影响因素及控制步骤,从微观结构角

度揭示了微波辅助下A s选择性浸出机制。与传统水浴方式相比,微

波可显著提高烟灰中As浸出(最终As浸出率提高14%),而且可将

浸出时间缩短为其1/9,因此,该方法可实现常压下Cu和As高效、快速、选择性分离。正交试验结果表明,烟灰中重金属元素浸出率在微

波辅助NaOH-Na2S浸出体系中差别较大,其中As浸出率

最高,主要受浸出剂浓度影响;Cu、Cd、Zn亦有部分浸出,但其主要控制因素不尽相同,Cd、Pb浸出率除与浸出剂浓度密切相关外,亦受液

固比、反应温度影响,而Zn浸出率则主要由液固比决定;Cu浸出率较

浸出率主要As用量是该浸出体系中NaOH受各因素影响较小。,平稳.控制因素,其浸出率随着转速提升显著增大,当其用量由

MNaOH:Ash=0.1:1增至0.3:1时,As浸出率显著增大,最大可达100%,但过大则不利于As与Zn的分离浸出。微波强化Na OH-Na2S浸出体系实现As分离浸出的最优工艺条件为:MNaOH:Ash=0.3:1,液固比

=20:1,MNaOH:Ash=0.4:1,反应温度=80℃,反应时间

15min。SEM结果表明,微波后烟灰颗粒表面出现“裂解”,增加表面反应活性;XANES及EXAFS结果表明,微波有助于As氧化为AsV,且与Zn氧化物共吸附在Al氧化物形成复杂共沉化合物的AsV控制其浸出;两种浸出剂对As浸出具有协同作用,足量Na OH可促使吸附在铝氧化物表面的双齿单核、双齿双核内层吸附物上AsV解吸;而Na2S则通过与Fe形成溶解度极低的硫化物沉淀,从而抑制AsV在铁氧化表面吸附。(3)确定了超声辅助条件下As在

NaOH-Na2S浸出体系中浸出率及速率的主要影响因素及控制步骤,从微观结构角度揭示了超声辅助下As选择性浸出机制。与传统水浴方式相比,超声场不仅可提高烟灰中As浸出率,而且可将反应时间缩短4/5;浸出后残余固体物中As含量降至0.57%,Cu含量升至2.34%,与水浴碱浸后所得固体沉淀物相比,其砷含量降了0.3%,Cu 含量增加了0.2%,有利于此类高砷、低铜烟灰进一步资源化。正交及单因素试验结果表明,烟灰中重金属元素浸出率在超声场辅助受,浸

出率最高As其中,浸出体系中差别较大NaOH-Na2S.NaOH用量影响较大,但过高NaOH浓度致使Zn、Pb浸出率升高,从而不利于As分离浸出;Na2S用量是实现As与Pb分离浸出主要影响因素;而液固比、温度则影响浸出速率,浸出达平衡所需时间随着液固比增加而延长,随着温度升高而减少。根据As与其他重金属分离浸出效果,超声场辅助NaOH-Na2S浸出体系实现As 分离浸出的最优工艺条件

为:MNaOH:Ash=0.3:1,MNa2S:Ash=0.4:1,液固比20 mL/g,超声功率80 W,搅拌速率400 r/min,反应时间=15 min,反应温度=60℃。动力学研究表明,超声场中As浸出速率仅在较低温度下受内扩散及界面传质的混合控制,且与水浴浸出体系不同,其不易受界面化学反应速率控制。SEM-EDS结果表明,超声场对烟灰具有分散作用,促使烟灰颗粒由密实状变为松散状,从而减小烟灰颗粒粒径并增大其比表面积,进一步促进液-固浸出体系中烟灰颗粒表面空化作用;XRD结果表明,超声场并未改变

NaOH-Na2S复合浸出体系化学反应本质,在水浴及超声浸出体系中,烟灰中PbSO4、ZnSO4等组分与NaOH、Na2S反应均生成PbS、ZnS、ZnO等化合物;XPS结果表明,在空气中超声场作用可实现烟灰中部分AsàAsV的价态转化,对于砷在NaOH溶液中浸出的重要的热力学意义。(4)确定了球磨对A s在N aO H-N a2S浸出体系中浸出率及速率的主要影响因素,从微观结构角度揭示了其选择性浸出A s

浸出(最终As球磨可显著提高烟灰中,机制。与传统水浴方式相比.As浸出率提高11%),并减少浸出残余物中As含量(仅余0.5%),与原烟灰相比重金属含量减少了5.04%,可见,该方法可实现此类烟灰中As选择性浸出,其浸出主要受转速及料球比影响,随着转速提升显著增大,当转速由100 r/min增至350r/min时,增加了49%,而后,则随着转速增加呈下降趋势,Zn浸出率随着液固比增加而减小,而Pb则呈相反趋势;当液固比为20:1,As浸出率最大而Zn、Pb浸出率最低;As 浸出率随着料球比增加呈先上升后下降的趋势,当料球比由0.2升至0.6时,由77%增至85%,进一步增加料球比,砷的浸出率显著降低,当料球比为1.2时,砷的浸出率大幅降至46%,在实际应用中应合理分配投料量与磨球体积比;As浸出率随着反应时间延长逐渐增大,反应

60min后,砷的浸出率基本趋于稳定。球磨强化

NaOH-Na2S浸出体系实现As分离浸出的最优工艺条件为:球磨机转速为350r/min、液固比为20:1、料球比0.6、反应时间30min。球磨过程中产生的“微接触点”可促使PbSO4及复杂化合物分解,还可使晶体结构畸变,增加颗粒表面活性位点,将部分

As氧化为AsV,从而提高了As浸出率。论文的主要创新点在于:明确了铜冶炼烟灰中有价金属元素(Cu、Zn、Bi、Sn、Mo、Sb、Ba、Al等)及有毒有害金属元素(Pb、Ni、As、Cd、Co等)赋存状态与其浸出特性之间关系,揭示了溶解-沉淀控制机制、吸附-解吸控制机制、传质控制机制对其浸出作用规律;基于不同浸出条件下固体残余固体物中含砷化合物的As-O、As-M原子间距

控制解吸”-“吸附从微观尺度上确定砷浸出,及能量峰位置对比分析.机理及NaOH、Na2S两种药剂协同作用机制。

浅析铜冶炼渣缓冷场设计应注意的几个问题

浅析铜冶炼渣缓冷场设计应注意的几个问题 摘要:本文针对国内已建成的渣缓冷场生产实践中存在的通病,在新建项目设 计中做了部分改进,总结出渣缓冷场设计时需要关注的几个问题,以期为铜冶炼 厂渣缓冷场的工程设计提供有益借鉴。 关键词:渣缓冷场;防渗膜;地面腐蚀和开裂;铸钢板铺设;排水;喷淋系 统 铜冶炼炉渣是铜精矿经冶炼加工后剩余的残渣,其中蕴含丰富的铜、金、银 等有价金属【1】,采用缓冷-磨浮工艺对冶炼渣进行综合回收,选矿后弃渣含铜 品位通常可降至0.25-0.3%之间【2】,具有铜、金、银的回收率高,能耗低【3】、效益好的优势。因此,缓冷-磨浮工艺在国内大型铜冶炼企业得到广泛运用,近年 来相继建成若干座大型铜冶炼渣缓冷场。 渣缓冷场作用在于将熔融态炉渣冷却为固态炉渣,然后将固态炉渣经过翻包 摔渣、破碎、堆存,最终运输至粗破碎车间进入渣选矿生产流程。渣缓冷场处于 熔炼车间和渣选车间承上启下的位置【2】。 鉴于渣缓冷场对铜冶炼生产的重要性,在我公司负责HL铜冶炼厂设计过程中,对国内部分已建成的渣缓冷场生产实践中存在的问题进行了调研,并在本次 工程设计时有针对性的加以改进,特总结出如下几点体会,以期为今后类似工程 设计时提供些许参考: 1.新建缓冷场应特别注意铺设HDPE防渗膜 渣包喷淋冷却水及炉渣淋溶水呈弱酸性并含有少量重金属,会沿着缓冷场混 凝土面层局部开裂缝隙渗至地下,造成一定污染。根据环保需要,渣缓冷场设计 时十分必要在混凝土结构层下铺设HDPE防渗膜。调研发现,受早期公众环保认 识不足的局限,国内已建成的部分渣缓冷场没有铺设防渗膜,如后期增加防渗膜 花费代价太高,很少有企业再进行补救的,致使土壤和地下水的污染无法终止。 随着公众环保意识的提高,在新建渣缓冷场设计阶段,设计人员有责任说服业主 做好渣缓冷场的防渗工程。 在HL铜冶炼厂设计时,渣缓冷场全范围均铺设了HDPE防渗膜。HDPE膜铺 设顺序自下而上为:粘土地基夯实、400g/m2无纺土工布、2.0mm厚光面HDPE 膜、6.0mm复合土工排水网、400g/m2无纺土工布、300mm厚粗砂保护层。缓 冷场混凝土结构层在粗砂保护层上铺砌。 铺膜设计应注意:1)铺膜前地基处理时,应尽量选用透水性差的粘土适当 换填,膜下800mm深度范围的地基压实系数不应小于0.90,与膜接触的地基表 面应设置0.5-0.8%汇水坡度。2)缓冷场应分区域设置一定数量的渗流收集沟或收 集池,收集池内埋设D650mmHDPE管道,用于渗漏观测和抽取残液,见图1。3)HDPE膜上铺设6.0mm复合土工排水网、粗砂保护层,利用粗砂渗透性强和土工 排水网的导流作用,将渗流液能顺利导流排向收集池。 图1 渗漏液收集池 2.混凝土地面应注意采取防止腐蚀和开裂的措施 由于循环喷淋水带有弱酸性,并且缓冷场内行驶的抱罐车满载时荷载大多 120t以上,致使缓冷场混凝土地面出现腐蚀和开裂现象严重,这是国内铜冶炼企

铜冶炼三种方法

目前,中国已引进世界上最先进的炼铜新工艺有:闪速炉熔炼、艾萨熔炼、奥斯麦特熔炼、诺兰达熔炼等。国内自主创新的有白银法熔炼、金川合成炉熔炼、东营方圆的氧气底吹熔炼。后3种都是中国人自己研制的,都具有自主知识产权。这7种也算世界上较先进的炼铜法。通过多年的实践,国外的先进技术尚存不足之处,分述如下: 1、双闪速炉熔炼法: 投资大,专利费昂贵,熔剂和原料先进行磨细再进行深度干燥,需额外消耗能源这不尽合理。熔炉产出的铜硫需要水碎再干燥再细磨,工序繁杂。每道工序均难以保证100%回收率,会产生部分机械损失;热态高温铜锍水碎物理热几乎全部损失,水碎后再干燥,再加上炉内大量水套由冷却水带走热量,热能利用也不尽合理。铜锍水碎需要大量的水冲,增加动力消耗。破碎、干燥要增加人力和动力的消耗。这些都是多年来该工艺没有得到大量推广的重要原因。 2、艾萨法和澳斯麦特法均属于顶吹冶炼系列: 顶吹都要建立高层厂房,噪音大、高氧浓度低烟气量大、顶吹的氧枪12米长,3天至一周要更换一次,不锈钢消耗量大、投资大、操作不方便。都用电炉做贫化炉,渣含铜一般大于%不合国情。 3、三菱法的不足 4个炉子(熔炼炉、贫化电炉、吹炼炉、阳极炉)自流配置,第一道工序的熔炼炉需要配置在较高的楼层位置,建筑成本相对较高,炉渣采用电炉贫化,弃渣含铜量达%~%,远远高于我国多数大型铜矿开采的矿石平均品位,资源没有得到充分的利用。 4、诺兰达和特尼恩特连续吹炼法,尚在工业试验阶段。 诺兰达是侧吹、要人工打风眼、劳动强度很大、风眼漏风率达10%~15%。有很大噪音、操作条件不好、冶炼环境不理想。如果掌握不好容易引起泡沫渣喷炉事故。 综上所述,让我们来寻求新的冶炼工艺,在不断的探索中发现新途径。 氧气底吹炉炼铅、炼铜最早是湖南水口山和中国有色工程设计研究总院共同研发在水口

铜冶炼炉渣混合浮选工艺研究及生产实践

铜冶炼炉渣混合浮选工艺研究及生产实践 张鑫,惠兴欢,朱江,杞学峰,王礼珊 (楚雄滇中有色金属有限责任公司,楚雄) 摘要:本文针对楚雄滇中有色金属公司铜冶炼过程产生的电炉渣、转炉渣进行了混合浮选研究。混合渣含铜,磨至细度为后进入浮选作业,通过二次粗选、二次扫选、粗精矿不磨三次精选的工艺流程,可获得铜精矿品位为,尾矿品位以下,回收率以上的工艺指标。在实际生产中,通过对工艺流程的改造,又进一步优化了浮选指标。 关键词:电炉渣;转炉渣;浮选 , , , , ( . ,,) :( ) . . ( ) . , ( ) . . : , , 引言 我国铜炉渣数量大,其中大量铜及相当数量的贵金属和稀有金属长期堆存,占用大量用地,严重污染环境。随着冶炼技术的发展,髙效率熔炼炉的应用,炉渣含金属量还有上升趋势。因此,开发利用铜炉渣资源具有重要意义和十分可观的经济效益。 近年来,国内外很多单位对铜渣的利用进行了不同规模的研究,主要集中在以下两方面:()提取有价金属[];()生产化工产品和制备建筑材料等[].尽管取得一定成绩,但是铜渣综合利用水平低,循环力度弱的状况仍未改变。铜渣的贫化方法有熔炼法和缓冷选矿法,选择何种方法,要根据渣中金属存在形态和经济效果的对比来决定。魏明安[]研究了转炉渣的特性和铜转炉渣选矿的一般特点。并在此基础上,针对国内某铜转炉渣中铜赋存状态复杂、嵌布粒度细及难磨等的特点,提出处理该转炉渣的适宜技术条件为阶段磨矿阶段选别,在浮选机充气量3.3L和高浓度浮选的条件下,取得了铜精矿铜品位、回收率为的实验室闭路试验指标。云南耿马铜渣由于其含铜品位低,回收利用难,研究结果表明,浮选可以很好地对其进行回收利用,浮选条件为:磨矿细度-0.074mm占、捕收剂用量为162g、活化剂硫化钠用量为3.4kg的条件下得到了品位、回收率的较好试验结果[]。宋温等[]针对某转炉冶炼厂的炉渣硬度大、难磨且氧化程度较高的情况,采用一粗一精二扫中矿循序返回的浮选流程。药剂采用丁黄药、松醇油。原矿品位为,得到了铜精矿品位,铜回收率的浮选指标。 采用选矿方法从炉渣中可以回收大部分铜,不但可获得一定的经济效益,而且还可实现铜资源最大限度的合理利用,这符合当前发展循环经济,建设节约型社会的基本国策。 铜渣的工艺矿物学研究 楚雄滇中有色金属有限责任公司冶炼厂采用的铜冶炼工艺为:富氧顶吹熔炼电炉沉降转炉吹炼,沉降电炉排出的渣含铜品位约~左右,转炉渣不返入电炉(品位约),转炉渣分解破碎后大部分进入艾萨熔炼系统,使得生产成本急剧增加,同时也会造成电炉渣含铜增加,每年损失大量铜金属,为此,需要对炉渣贫化进行专门研究。 铜渣的物理特性 楚雄滇中有色金属有限责任公司冶炼铜渣经缓冷后,外观呈黑色,松散容重2.4g,密度。性质比较稳定,嵌布粒度较细。铜渣含铁量很高,故它的质地致密、坚硬,莫氏硬度达到度,

铜冶炼厂的危险因素辨识与控制

2.4.1 产品方案和设计规模 2.4.1.1 设计规模 本项目规模为:金铜混合精矿处理能力150万t/a。 2.4.1.2 产品方案 产品方案为金锭、银锭、硫酸镍、粗硒、1号标准铜、2号标准铜和硫酸,主要产品为: (1)金锭:57.70t/a 含Au≥99.99% 产品质量符合GB/T4134-2003 1号金国家标准 (2)银锭:190.77t/a 含Ag≥99.99% 产品质量符合GB/T4135-2002 1号银国家标准。 (3)精硒: 21.50t/a,含Se 99.99%。 (4)粗碲:18.20t/a,含Te 98%。 (5)A级铜:92800t/a,含Cu 99.9935% 产品质量符合GB/T467-2010 Cu-CATH-1国家标准。

(6)1号标准铜:1664t/a,含Cu 99.95% 产品质量符合GB/T467-2010 中Cu-CATH-2国家标准,送成品库。 (7)粗硫酸镍:520t/a,含Ni18%。 2.4.2 主要技术方案及生产工艺流程 火法工艺流程为:精矿富氧底吹熔炼—铜锍旋浮吹炼—粗铜回转式阳极炉精炼—不锈钢永久阴极电解,铜阳极泥浸出渣采用氧气斜吹旋转转炉熔炼。 铜电解采用大板不锈钢永久阴极电解工艺,产品为A级铜。净液采用传统电积和旋流电积相结合的工艺生产1号标准铜、黑铜。阳极泥处理结合湿法和火法流程的优点,采用加压浸出—合金吹炼炉工艺。 富氧底吹熔池熔炼属富氧强化熔炼技术,富氧底吹熔池熔炼炼铜技术近几年逐渐发展起来,工业化技术已经成熟。熔炼炉炼铜工艺作为我国自主开发的炼铜工艺,经过越南生权、山东东营、山东恒邦以

铜冶炼行业准入条件(2013)

附件1 铜冶炼行业准入条件(2013) (公开征求意见稿) 为加快铜工业结构调整,促进行业持续健康协调发展,规范企业生产经营秩序,依据《工业转型升级规划(2011-2015)》、《产业结构调整指导目录(2011年本)》和《有色金属工业“十二五”发展规划》等规划及法律法规,修订铜行业准入条件。本准入条件包括铜冶炼和再生铜冶炼企业。 一、企业布局、生产规模和外部条件 (一)企业布局 新建和改造的铜冶炼和再生铜冶炼项目必须符合国家产业政策和规划要求,符合本地区土地利用总体规划、城镇规划、主体功能区规划和产业发展规划。在国家法律、法规、行政规章及规划确定或县级以上人民政府批准的饮用水水源保护区、基本农田保护区、自然保护区、生态旅游示范区、森林公园、风景名胜区、生态功能保护区、军事设施等重点保护的地区,城镇中心区及其近郊,居民集中区1公里内,以及大气污染防治联防联控重点地区,不得布局新建铜和再生铜冶炼项目。 (二)生产规模及主要外部条件 新建和改造铜冶炼及单一生产阴极铜的再生铜企业,单

系统冶炼能力需在10万吨/年及以上,落实铜精矿、废杂铜、交通运输等外部生产条件,自有原料比例达到30%以上(或自有原料和通过合资合作方式取得5年以上长期合同的原料达到总需求的50%以上)。鼓励大中型优势铜冶炼企业附带处理废杂铜。现有再生铜企业的单系列生产规模不得低于5万吨/年,逐步淘汰5万吨/年以下单一生产阴极铜的再生铜生产企业。 二、质量、工艺和装备 (一)质量 铜冶炼企业须具备完备的产品质量管理体系,阴极铜必须符合国家标准(GB/T467-2010)。 (二)工艺技术和装备 新建和改造铜冶炼项目,须采用生产效率高、工艺先进、能耗低、环保达标、资源综合利用效果好的先进工艺,如闪速熔炼、富氧底吹、富氧侧吹、富氧顶吹、白银炉熔炼、合成炉熔炼、强化旋浮铜冶炼等富氧熔炼工艺,以及包括闪速炉短流程等工艺的一步炼铜技术。必须配置烟气制酸、资源综合利用、节能等设施。烟气制酸须采用稀酸洗涤净化、双转双吸(或三转三吸)工艺,烟气净化严禁采用水洗或热浓酸洗涤工艺,硫酸尾气需设治理设施。设计选用的冶炼尾气余热回收、收尘工艺及设备必须满足国家《节约能源法》、《清洁生产促进法》、《环境保护法》、《清洁生产标准铜冶炼业》

行业标准-《铜冶炼烟尘化学分析方法 第7部分》-送审稿(编制说明)

铜冶炼烟尘化学分析方法第7部分:镉量的测定 火焰原子吸收光谱法和容量法 编制说明 铜陵有色金属集团控股有限公司、北矿检测技术有限公司 2020年9月

铜冶炼烟尘化学分析方法 第7部分:镉量的测定火焰原子吸收光谱法和容量法 编制说明 一、工作简况 1.1方法概况 1.1.1项目的必要性 铜冶炼工业资源消耗大,二次资源综合利用率较低,有相当大部分可利用资源变成污染物。铜烟尘在铜冶金工业中排放量较大,至今没有得到充分的利用。铜冶炼烟尘属于高温烟灰,粒度较小,根据熔炼工艺以及收尘设备的不同,主要可分为奥炉烟灰、转炉烟灰、阳极烟灰、环集烟灰、奥炉开路烟灰、电收尘烟灰等。采用LS800型OMEC激光粒度测试仪分别对“铜烟灰”进行分析,“铜烟灰”的平均粒径(D50)为1.63μm 至2.31μm,颗粒小,露天堆放时,在雨水作用下,其铅/锌离子易渗入地下,造成环境污染。美国环境保护署在新制定的环境资源保护及回收法中,将其划归为KO61类物质(有毒的固体废物) , 要求冶炼厂对其中的锌、铅等有价元素进行回收处理或钝化处理;否则,须将其密封堆放在由专人监管的山谷中。在我国随着资源的日益枯竭和环保压力的增加,对冶炼烟尘回收已有较成熟的工艺。当前国内外处理铜冶炼烟尘主要有火法、火法-湿法联合法、全湿法、矿冶联合法等。 镉是银白色有光泽的金属,其在潮湿的空气中缓慢氧化并失去金属光泽,加热时表面形成棕色的氧化物层。镉的毒性较大,被镉污染的空气和食物对人体危害严重,日本因镉中毒曽出现“痛痛病”。镉作为烟尘中的有害元素,比其它重金属更容易被农作物所吸附。相当数量的镉通过空气、废尘、废水、废渣排入环境,造成污染。当环境受到镉污染后,镉可在生物体内富集,通过食物链进入人体引起慢性中毒。但其可用于电镀、执照高性能电池、生产颜料和荧光粉等。 从废弃物当中回收镉不仅可满足市场的供求关系,同时具有重大的战略意义。因此,制定铜冶炼烟尘中镉量测定方法,不但给冶炼厂带来良好的经济效益,对资源再生利用提供技术支撑,同时也规范了实验室检验过程,满足市场的需求。 1.1.2适用范围 本部分适用于铜冶炼烟尘中镉含量的测定。方法1火焰原子吸收光谱法测定范围:0.020%~5.00%;方法2 容量法测定范围:5.00%~17.00%。 1.1.3可行性 铜陵有色金属集团控股有限公司检测研究中心拥有CMA、CAL省级资质认定和CNAS国家实验室认可三个资质,属于面向社会服务第三方专业检测机构。主持和参与100多项国家、行业标准的起草工作;拥有丰富工作经验的技术人员和科研团队,具有较强的检测分析操作经验和深入的标准研究能力,拥有制定该方法必需的环境、设备。标准研制人员已参加过国家和行业标准制定的培训,熟料掌握标准制定规则,有利于资料整理、归纳及标准编制。 北矿检测技术有限公司为国家重有色金属质量监督检验中心、国家进出口商品检验有色金属认可实验室、中国有色金属工业重金属质检中心、科技成果检测鉴定国家级检测机构,在国内有色金属分析领域具有权威地位。公司拥有多台原子吸收光谱仪,具备项目研究所需的仪器设备。标准起草人员主起草国家行业标准多项,参与国家行业标准几十项,具有丰富的方法研究经验。 目前,国内铜冶炼企业烟尘的年产量在20万吨以上,其中仅铜陵有色金属集团控股有限公司就年产2万吨。铜烟尘中镉含量较高,若不对其进行有效的处理,其产生的环境危害要远大于其带来的经济效益本身。部分铜烟灰由各冶炼厂直接入炉熔炼,部分已经开始作为二次原料进入贸易市场。这样一来,实现既增加经济效益,又保护环境的“双赢”局面。随着环境压力和环保要求的提高,对回收利用单位资质要求越来越严,没有资质的公司纷纷将其出售,铜冶炼烟尘的贸易越来越频繁,仅广东一地的交易量一年就上万吨。 准确检测出铜冶炼烟尘中镉的含量,对企业确定回收工艺、提高烟尘的综合利用率并减轻对环境的污

铜冶炼废水处理方案模板

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 1 概况 1.1项目简介 上海冶炼厂地处上海市区, 毗邻杨浦大桥旅游观光区。该厂工艺落后, 设备陈旧, 污染严重。仅废水一项, 每天排入市政下水管网的水量为4635m3/d。其中污染物含量见表1.1-1。因此, 该厂被上海市政府列为限期治理搬迁企业之一。 表1.1-1 排放污染物种类及含量 名称铜铅锌镍砷 含量( kg/d) 233 4 53 149 10 该厂新厂址选在嘉定区方泰镇, 占地1200亩( 合80万m2) 。技改后, 该厂废水来源于铜冶炼及稀贵金属回收生产过程中设备冷却水、烟气除尘水、含油废水、蒸发冷凝水、真空泵水封、阳极泥分金属洗液以及食堂、浴室等的生活废水。总用水量19274m3/d, 其中经处理后循环水量17366m3/d, 损耗水量890m3/d, 排放水量1018m3/d。 1.2设计依据 (1)上海冶炼厂提供的该项目的《环境评估报告》和《可行性报

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 告》 (2)国标GB3838-88《地面水环境质量标准》 (3)国标GB4913-85《重有色金属工业污染物排放标准》(4)国标GB8978-88《污水综合排放标准》 (5)《上海市工业废水排放试行标准》 1.3废水种类及水质水量 技改后初始排放的废水种类及水质、水量见表1.3-1表1.3-1 废水种类及水质、水量表 废水名称及来源水量 ( m3/d) 污染物含量( mg/l) pH Cu Pb Zn As 其它 一.轻度污染废水13774 1.电解区冷却水7900 7.8 0.02 0.03 0.21 0.02 45℃ 2.熔炼区冷却水5874 7.8 0.02 0.03 0.21 0.02 45℃ 二.中度污染废水4308 1.鼓风炉冲渣水200 7.1 0.36 0.68 0.50 0.50 含渣 2.阳极浇铸冷却水1800 7.4 0.09 0.03 0.21 0.02 40℃ 3.锅炉烟气除尘水1920 6.5 0.02 0.03 0.21 0.02 含灰渣 4.重油库排水88 7.8 0.02 0.03 0.21 0.02 含油1% 5.生活废水300 BOD5200 三.重度污染水300 1.酸性废水240 2 0.02 0.03 0.21 0.02 2.重金属废水60 3 160 2 300 100 四.合计18382

《铜冶炼炉渣回收铜》国家标准

《铜冶炼炉渣回收铜》国家标准 编制说明 铜陵有色金属集团控股有限公司 2010年8月

《铜冶炼炉渣回收铜》国家标准编制说明 1、任务来源 根据中色协综字[2010]015号文件,关于下达2009年第二批有色金属国家、行业标准制(修)订项目计划通知,《铜冶炼炉渣回收铜》由铜陵有色金属集团控股有限公司负责起草,参加起草单位大冶有色金属集团控股有限公司。负责起草单位接到通知后立即成立标准编制小组。经过半年的相关准备,制定出本讨论稿。 2、铜冶炼炉渣回收铜产品简介 目前国内铜冶炼所采用的主要是熔炼和吹炼二道炼铜工艺,以往第一道工艺所产生的熔炼渣由于含铜量较低基本上作为废料丢弃,也有部分作为建筑行业添加剂销售。第二道工艺所产生的吹炼渣由于含铜量相对较高,有的厂家返回上道工序使用,有的采用选矿富集再利用。 由于近年来铜价较高,不少厂家对含铜量较低熔炼渣在投入和产出比进行了测算;同时,随着选矿回收技术的提高,各冶炼厂纷纷上马选矿厂回收熔炼渣中铜金属。 无论是熔炼渣还是吹炼渣所回收的铜,与井下和地表开采的铜矿物所选的铜精矿相比除含硫品位较低和粒度较细外,其性质基本相同,各冶炼厂都是把该产品与铜精矿配料使用。 3、标准编制前期工作 在编制标准期间,首先,进行了相关信息和资料的搜集。标准编制小组于今年6月至7月,先后前往云南铜业公司、大冶有色金属控

股公司、江西铜业公司、金川有色金属公司、中条山有色金属集团公司、祥光铜业公司、铜陵有色稀贵金属公司、铜陵有色金口岭矿业公司、铜陵有色天马山矿业公司进行实地考察调研,收集了大量的相关数据和资料,并取样进行了分析。 通过调研,基本掌握国内铜冶炼炉渣回收铜的生产和需求厂家的情况,覆盖面达到90%以上,应当说具有广泛的代表性。具体收集和分析的相关数据见附表。 4、标准编制原则 4.1本标准格式按照GB/T1.1-2009最新版本要求编写。 4.2本标准参考YS/T 318-2007《铜精矿》标准进行编写。 4.3本标准编制遵循“先进性、实用性、统一性、规范性”的原则,使标准制定具有可操作性。 4.4本标准充分考虑了使用单位的意见和建议。 5、标准中主要内容确定 5.1关于标准名称 标准的名称有三个可采用:“铜冶炼炉渣回收铜”、“铜冶炼炉渣回收铜精矿”、“铜冶炼炉渣渣精矿”,我们建议采用“铜冶炼炉渣回收铜”作为该产品的标准名称。该产品名称确定是为了区别于井下或地表开采铜矿物所选的铜精矿,来源于铜冶炼中。 5.2关于产品分类 根据调研所收集和取样分析的资料,按照精矿含铜品位高低不同确定为三个品级,三级品含铜品位不小于15%,一级品含铜品位不小

铜冶炼行业准入条件图文稿

铜冶炼行业准入条件文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

附件1 铜冶炼行业准入条件(2013) (公开征求意见稿) 为加快铜工业结构调整,促进行业持续健康协调发展,规范企业生产经营秩序,依据《工业转型升级规划(2011-2015)》、《产业结构调整指导目录(2011年本)》和《有色金属工业“十二五”发展规划》等规划及法律法规,修订铜行业准入条件。本准入条件包括铜冶炼和再生铜冶炼企业。 一、企业布局、生产规模和外部条件 (一)企业布局 新建和改造的铜冶炼和再生铜冶炼项目必须符合国家产业政策和规划要求,符合本地区土地利用总体规划、城镇规划、主体功能区规划和产业发展规划。在国家法律、法规、行政规章及规划确定或县级以上人民政府批准的饮用水水源保护区、基本农田保护区、自然保护区、生态旅游示范区、森林公园、风景名胜区、生态功能保护区、军事设施等重点保护的地区,城镇中心区及其近郊,居民集中区1公里内,以及大气污染防治联防联控重点地区,不得布局新建铜和再生铜冶炼项目。 (二)生产规模及主要外部条件 新建和改造铜冶炼及单一生产阴极铜的再生铜企业,单系统冶炼能力需在10万吨/年及以上,落实铜精矿、废杂铜、交通运输等外部生产条件,自有原料比例达到30%以上(或自有原料和通过合资合作方式取得5年以上长期合同的原料达到总需求的50%以上)。鼓励大中型优势铜冶

炼企业附带处理废杂铜。现有再生铜企业的单系列生产规模不得低于5万吨/年,逐步淘汰5万吨/年以下单一生产阴极铜的再生铜生产企业。 二、质量、工艺和装备 (一)质量 铜冶炼企业须具备完备的产品质量管理体系,阴极铜必须符合国家标准(GB/T467-2010)。 (二)工艺技术和装备 新建和改造铜冶炼项目,须采用生产效率高、工艺先进、能耗低、环保达标、资源综合利用效果好的先进工艺,如闪速熔炼、富氧底吹、富氧侧吹、富氧顶吹、白银炉熔炼、合成炉熔炼、强化旋浮铜冶炼等富氧熔炼工艺,以及包括闪速炉短流程等工艺的一步炼铜技术。必须配置烟气制酸、资源综合利用、节能等设施。烟气制酸须采用稀酸洗涤净化、双转双吸(或三转三吸)工艺,烟气净化严禁采用水洗或热浓酸洗涤工艺,硫酸尾气需设治理设施。设计选用的冶炼尾气余热回收、收尘工艺及设备必须满足国家《节约能源法》、《清洁生产促进法》、《环境保护法》、《清洁生产标准铜冶炼业》(HJ558-2010)和《清洁生产标准铜电解业》(HJ559-2010)等法律法规的要求。 新建和改造再生铜项目,应采用先进的节能环保、清洁生产工艺和设备。预处理环节应采用导线剥皮机、铜米机等自动化程度高的机械法破碎分选设备,对特殊绝缘层及漆包线除漆需要焚烧的,必须采用烟气治理设施完善的环保型焚烧炉。禁止采用手工拆解、化学法破碎和分选装备以及无烟气治理设施的焚烧工艺和装备。冶炼工艺须采用NGL炉、

铜冶炼渣中单质铜对浮选指标的影响及控制方案研究

铜冶炼渣中单质铜对浮选指标的影响及控制方案研究 我国铜冶炼企业在每年都会产生大量的铜冶炼渣,其中单质铜对于浮选指标是有一定程度影响的。本文主要分析了铜冶炼渣当中的单质铜对于浮选指标的影响以及提出了相应的控制方法,对铜渣的浮选提出工艺上的意见,予以相关企业参考与借鉴。 标签:铜冶炼;单质铜;浮选指标;影响;控制方案 1 铜渣的性质 铜冶炼渣是一种人工矿石,其理化性质,物理组成,矿物之间的共生关系与矿物之间的嵌布粒度粗细与冶炼的技术,设备以及冷却方式等因素相关,所以炉渣性质一般都是不太稳定的。铜渣一般呈现黑色,块状,易碎难磨,性脆是铜渣的主要性质。其矿物组成成分中绝大多数是铁橄榄石,其次是磁铁矿,还有少量脉石组成的玻璃体。其中的铜矿物多呈硫化物形态存在。由于冶炼技术的不同,硫化铜矿、氧化铜矿、金属铜及化合铜矿等以不同含量分布于炉渣之中,部分渣料因处理的铜矿石原料特殊,產生的炉渣中含有金、银等贵重金属以及铅、锌、钴、镍等有价成分。铜渣当中还含有铝,钙,镁等重要元素,其主要是以氧化镁,氧化钙,三氧化二铝的形式所存在。铜矿物或被硅铁氧化物所包裹,或与铜铁矿物共同形成斑状结构及多矿物共生嵌于铁橄榄石基体中。炉渣的冷却方式有三种:自然冷却、水淬、保温冷却+水淬,其中保温冷却+水淬有利于铜的浮选回收,根据其不同的冷却方式,铜渣可以分为自然冷却渣、水淬渣与缓冷渣。铜渣中铜矿物的结晶粒度大小和炉渣的冷却速度密切相关,炉渣缓冷有利于铜相粒子迁移聚集长大,即在炉渣的缓冷过程中,炉渣溶体的初析微晶可通过溶解-沉淀形成成长,形成结晶良好的自形晶或半自形晶,同时有用矿物因此扩散迁移、聚集并长大成相对集中的独立相,使其易于单体解离和选别回收。铜渣的冷却方式对于炉渣的结晶过程与铜渣组分颗粒的凝聚长大都有着一定程度的影响,而且还会影响铜渣的结晶颗粒大小与每种矿物之间的共生关系。渣中铜如果在自然缓慢的冷却那么其结晶的速度是很快的,若采用水淬冷却的方式,在高温的铜渣冷却速度则会更快,有可能会出现非结晶质的结构,与此同时还会阻碍铜矿物质的颗粒聚集长大,铜颗粒分布呈现树状又或者是针状的其他矿物当中。目前自然冷却铜渣与缓冷渣铜渣浮选回收铜成功的案例较多,但水淬铜渣由于其矿物成分多,物相复杂,且相互连生包裹,使得铜矿物与脉石难以分离,从而加大了回收难度。因此,我们要采用水淬冷却的铜渣让其细磨将大部分的铜颗粒与同脉石进行解离,这样就会使得铜渣很难磨矿之后使用浮选的方式进行回收。这样也有利于析出铜细颗粒在缓慢的冷却过程中借助扩散与凝结的作用慢慢的聚集在一起。若冷却速度足够缓慢,那么缓慢成长的结果是形成结晶良好的自形晶和半自形晶,借扩散和迁移作用,铜渣熔体的初析微晶就能通过溶解一沉淀形式缓慢成长;此两类铜晶体微粒将成长为独立的晶像,易于磨矿工序的单体解离和浮选过程的药剂作用。 2 水淬浮选工艺

铜冶炼废水处理方案

1 概况 1.1项目简介 上海冶炼厂地处上海市区,毗邻杨浦大桥旅游观光区。该厂工艺落后,设备陈旧,污染严重。仅废水一项,每天排入市政下水管网的水量为4635m3/d。其中污染物含量见表1.1-1。因此,该厂被上海市政府列为限期治理搬迁企业之一。 该厂新厂址选在嘉定区方泰镇,占地1200亩(合80万m2)。技改后,该厂废水来源于铜冶炼及稀贵金属回收生产过程中设备冷却水、烟气除尘水、含油废水、蒸发冷凝水、真空泵水封、阳极泥分金属洗液以及食堂、浴室等的生活废水。总用水量19274m3/d,其中经处理后循环水量17366m3/d,损耗水量890m3/d,排放水量1018m3/d。 1.2设计依据 (1)上海冶炼厂提供的该项目的《环境评估报告》和《可行性报告》 (2)国标GB3838-88《地面水环境质量标准》 (3)国标GB4913-85《重有色金属工业污染物排放标准》 (4)国标GB8978-88《污水综合排放标准》 (5)《上海市工业废水排放试行标准》 1.3废水种类及水质水量 技改后初始排放的废水种类及水质、水量见表1.3-1 1

1.4处理后水质 各类废水经处理后在排放口应符合GB8978-88《污水综合排放标准》和《上海市工业废水排放试行标准》规定的指标值。详见表1.4-1。 2轻度污染废水处理 这部分废水是以电解设备工艺冷却水和阳极炉冷却水为主的间接冷却排水。从表1.3-1可以看出,由于是冷却用水,基本上没有被污染。通过玻璃钢冷却塔将温度从45℃降到35℃后,大部分的水可以利用。根据生产布局,设计中按熔炼区和电解区两片布置水循环利 2

用设施。水量分布见表2-1。 2.1处理流程 间接冷却排水处理流程示意图如下: 2.2流程说明 冷却水进入系统对设备进行冷却。运行中吸收热量,水温逐渐升高,进入热水池水温已达45℃,用泵提升到冷却塔,经过冷却塔水温可降至35℃,然后进入冷水池与补充水混合后供冷却系统循环使用。为了防止循环系统的结垢和腐蚀,在水中添加缓蚀阻垢剂。 2.3 主要构筑物设备器材参数和价格估算 主要构筑物设备器材参数和价格估算见表2.3-1 3

铜冶炼渣包使用与管理技术标准

铜冶炼渣包使用与管理技术标准 1. 适用范围 本标准规定了渣包的使用、维修与管理技术标准,适用于铜冶炼行业的渣包管理工作。 2. 渣包的使用与维修 2.1 渣包的正确使用 2.1.1新渣包在使用前必须有半年以上的自然失效时间,使用前对渣包进行认真的检查,确认渣包是否符合制作订货技术要求之检验要求。确认旧渣包焊缝是否达到渣包修理的焊接技术要求。 2.1.2 将渣包预热至250至300℃,条件允许应在包底垫0.5——1立方米的铜渣。 2.1.3 渣包在接渣时,要确保渣液的落点在渣包的底部中点,以避免渣液冲刷包壁。 2.1.4 装渣量要适中,在确保渣包车安全运行的前提下,力争多装。渣线应控制在包口下250——300mm处。 2.1.5 渣包满载状态下,不容许长时间让耳轴受力。如包体外表面温度达到300℃没能及时运往渣场,则只能让渣包就近缓冷至倾渣温度后再运往渣场,否则将会引起渣包变形。 2.1.6 满载后的渣包要及时运往渣场,坐包时,渣包底部应悬空,更不得将包底浸泡在积水中。 2.1.7 在满足渣选工艺的前提下,满载的渣包应自然缓冷四小时后再进行水淬处理。倾渣时,铜渣的温度应在200℃以上,即倾渣后渣包的余温应在150℃以上(至少应高于气温50℃以上并及时运往下渣口接渣)。 2.1.8 除在线所需的渣包数量外,至少还需要30%以上的备用包,用于在线轮换修整,即定期将一定数量的渣包退出生产线进行长达2——3个月的自然失效以

消除应力。 2.1.9 应有专职人员在每次使用前(即倾渣后)检查渣包是否有裂纹、变形、耳轴磨损、局部超温等现象存在。在点检中一旦发现微裂纹,及时退出生产线,进行修理。不得强行带伤使用。否则随着使用次数的增加,裂纹会不断扩展,最终导致修复困难,以致报废。 2.2 渣包的维修 2.2.1 渣包维修资质要求 2.2.1.1从事渣包修理的单位不仅要取得相应的焊接资质、具有一定的焊接技术、施工和管理实力,由于渣包的材料是通过特殊处理,不同于一般的铸钢件,所以应以对此材料有一定的了解、有过此类渣包修理经验的单位为优先单位。 2.2.1.2参与修理渣包的技术人员要求:技术人员需具备专业知识,焊工需具备焊接高级工以上资质。 2.2.2清除缺陷处理 2.2.2.1 清除缺陷前的加热处理:如果是开放性裂纹,最好是在倾渣后,渣包有一定的余温(温度150℃以上)及时对缺陷进行处理,否则需采用陶瓷电加热的方法将缺陷部位加热到150——200℃,然后对缺陷进行处理。 2.2.2.2 缺陷的清除:除较大的开放性裂纹采取碳弧气刨清除缺陷外,一般采用电动铣刀进行清除(清除时可以在常温状态下进行),以避免裂纹扩展。清除完成后采用着色探伤的方式确认缺陷是否彻底清除。 2.2.3 焊接 2.2. 3.1 焊前准备 (1)焊条(焊材)准备:根据缺陷所在位置的母材材质选用与之相匹配的焊条(焊材),按焊条的使用要求进行烘烤后转入焊条保温箱,随用随取。 (2)破口准备:对用电弧气刨处理的缺陷部位,打磨至金属光泽并修磨成“U”或破口角度大于45°小于60°以利于焊接。

全球铜冶炼新技术简述pdf

全球铜冶炼新技术简述 冶炼是萃取冶金的一种形式,其主要用途是从矿石中生产一种金属。这包括从铁矿石中萃取铁,从铜矿石中萃取铜,以及从其他矿石中萃取其他基本金属。 冶炼不仅仅是从矿石中熔炼出来金属,大多数矿石提炼出来的是金属的化合物,含有多种元素,例如氧(一种氧化物),硫(一种硫化物),或者碳和氧在一起(一种碳酸盐)。为了生产金属,这些化合物必须经过一个化学反应,所以冶炼是利用适合的还原物质和那些氧化的元素结合来分离金属。 从历史上讲,第一次冶炼工艺采用碳(木碳形式)还原锡(SnO2)、铜(CuO)、铅(PbO)以及铁(Fe2O3)。在所有这些反应中还原剂实际上是一氧化碳(CO),当木碳和氧化物仍是固态时,它们互相之间不能发生反应。对于铜和铅来讲,主要的矿石是硫化物,即:CuS2和PbS。这些硫化物必须先在空气中焙烧转化成氧化物。 锡和铅 很久以前,第一批冶炼的金属是锡和铅。公元前6500年,土耳其安纳托利亚的Catal H?yük发现铸铅珠,这比发明文字还早几千年,却没有记载铸铅球是如何冶炼出来的。然而,在偶然的机遇中将矿石放入木材火里,于是就冶炼出来锡和铅。 铜和青铜 在锡和铅之后,下一个要冶炼的金属似乎就是铜,如何发现铜仍存在很大争议。人们猜测铜的第一次冶炼是在陶器窑里进行的。在欧洲和近东最早发现铜冶炼是在伊朗,距今约公元前6000年,第一个冶炼铜的人工制品是在Can Hasan发现的一个权杖头。而铜冶炼最早的依据要追溯到公元前5500年到公元前5000年之间,在塞尔维亚的普罗科尼克(Plocnik)和拜罗沃德(Belovode)发现的,而现代铜的冶炼工艺经历了技术的更新。 无碳冶炼技术 最近,完全拥有自主技术产权的铜冶炼技术通过了中国有色金属协会在山东东营组织的专家审查,实现了在铜冶炼工艺的第一个碳零排放,并且开启了中国有色工业低碳发展的新途径。 专家们相信,无碳铜冶炼技术在主要技术参数上比以前的铜冶炼技术都好,经济和技术方面具有方便,低成本,环保和灵活度上都具有优势。已经证明无碳铜冶炼技术非常适合有色金属冶炼企业的技术更新。 Xstrata铜冶炼技术 Xstrata的ISA SMELT铜冶炼技术的提供了一种创新,高强度,低成本浸没式喷枪冶炼技术工艺,操作简单,可以用于铜和铅冶炼,ISA SMELT主要用于铅和铜冶炼和吹炼生产,在全球应用,包括澳大利亚、美国、比利时、

铜冶炼渣中铜的综合回收

世上无难事,只要肯攀登 铜冶炼渣中铜的综合回收 铜冶炼渣选矿与自然矿石相比,选矿多一道炉渣缓冷工序,这也是渣选矿与自然矿石选矿最大差别之处,钢冶炼炉渣实际是一种人造矿石,这种矿石中的铜矿物颗粒与相组成取决于炉渣冷却方式与冷却速度,炉渣的冷却方式有三种:自然冷却、水淬、保温冷却+水淬,其中保温冷却+水淬有利于铜的浮选回收。炉渣中铜矿物的结晶粒度大小和炉渣的冷却速度密切相关,炉渣缓冷有利于铜相粒子迁移聚集长大,即在炉渣的缓冷过程中,炉渣溶体的初析微晶可通过溶解-沉淀形成成长,形成结晶良好的自形晶或半自形晶,同时有用矿物因此扩散迁移、聚集并长大成相对集中的独立相,使其易于单体解离和选别回收。目前,我国铜冶炼渣年产1100 万吨,含铜27.5 万吨,是二次铜资源的重要组成部分。铜冶炼炉渣的处理方式主要有火法贫化、湿法浸出和选矿富集几种。火法贫化的弃渣含铜高、能耗高、环境污染严重;选矿富集工艺虽然渣缓冷场占地面积大,基建投资较高,但铜回收率较高,选矿尾渣含铜可以控制在0.3%以内,并且渣中金银回收率较高、能耗低、成本低,因而被广泛应用。国内采用选矿富集处理铜冶炼渣的企业主要有白银有色集团、江西铜业集团、铜陵有色集团、大冶有色集团及祥光铜业集团等。 江西铜业贵溪冶炼厂、山东阳谷祥光铜业冶炼厂目前已成功应用铜冶炼渣缓 冷半自磨+球磨铜矿物浮选。新工艺,有效解决了铜冶炼渣中铜晶体粒度过细 导致难以单体解离、常规破碎因冶炼渣中夹带冰铜块导致的中细碎设备生产能力和运转率低等一系列技术难题,实现了钢冶炼渣中铜的有效回收。3 年应用数据表明,对于含铜2.7%左右的铜冶炼渣,获得的铜精矿品位大于26%,尾渣品位含铜低于0.3%。 白银有色集团排渔场堆存的白银炉渣约为700 万吨,并且毎年还在产出新的

基于过程强化的铜冶炼烟灰中砷选择性去除工艺及机理

基于过程强化的铜冶炼烟灰中砷选择性去除工艺及机理 我国是世界第一大铜生产和消费国,在矿产资源开采、运输和选冶过程中,会产生大量含重金属固体废弃物,与开采及尾矿处理过程产生的烟尘相比,冶炼过程中产生的烟灰粒径较小(≤0.1μm)、比表面积较大,不仅可进行长距离的迁移造成区域性污染,而且易通过呼吸系统被人体吸收,从而对生态环境产生更大的危害;另外,有色金属矿物冶炼被IPCS认定为最重要的砷排放点源之一,据统计,全球大气中的砷约40%来自于冶炼过程,其中铜矿冶炼排放量占80%。因此,从环境保护的角度,冶炼烟灰中砷的脱除及稳定化对于全球砷污染的控制具有积极意义。从地球资源角度,冶炼烟尘除含有大量Cu、Pb、Zn等金属外,还含有大量稀贵金属,如In、Ge、Ga等,相对日渐贫乏的精矿品味,烟尘中的有价金属含量甚至超过很多富矿,可作为十分珍贵的金属资源。然而,杂质砷的大量存在不仅增加资源化过程的负担,而且影响所产金属质量,已成为此类烟灰资源化的主要限制因素。随着铜精矿进一步匮乏,冶炼过程中产生固体废弃物(炉渣、烟尘等)必将成为“再生铜”资源重要组成部分,而如何实现此类材料中有价金属高效资源化已成为湿法冶金领域重要研究课题之一。目前,针对冶炼废弃物中有价金属元素资源化,大部分研究仍聚焦于有价金属元素湿法冶金技术的开发及机理,然而,与其他金属化合物相比,含As化合物热力学稳定性较低,易溶解于强酸、强碱等常用浸出剂。冶炼烟灰常与铜矿等制样后返回熔炼炉,但随着铜矿资源的锐减,高砷铜由砷化

合物具,矿的广泛使用必将导致冶炼烟灰中砷含量的持续增大. 有较高反应活性,因此极易进入后续分离工序,致使阴极铜质量下降。鉴于此,开发选择性浸出技术对烟灰进行脱砷预处理后再熔炼对其资源化具有积极意义。NaOH-Na2S复合浸出体系理论上可选择性除砷,但仍存在药剂消耗量大、耗时长、浸出率低等缺点,并且随着烟灰中砷含量增高,这种缺点则越突出。考虑到烟灰中砷和其它金属的价态和存在形式等是决定其浸出率的主要控制因素,因此,准 确确定砷及其它金属在烟尘颗粒内部的赋存状态是开发强化浸出技 术的首要问题;另外,仍缺乏从微观水平上NaOH、Na2S等药剂浸出砷各自作用机理及其协同作用机制。为此,本文以铜冶炼澳炉烟灰为研究对象,在分析烟灰组成成分、物相、形貌分析所用烟灰ANC\BNC等特征基础上,对比研究了水洗预处理前后烟灰中有价金属元素(Cu、Zn、Bi、Sn、Mo、Sb、Ba、Al等)及有毒有害金属元素(Pb、Ni、As、Cd、Co等)浸出特性并构建了烟灰中重金属赋存状态与其浸出特性之间关系,揭示了溶解-沉控制机制、吸附-解吸控制机制、传质控制机制对其浸出作用规律各金属元素在不同pH条件下浸出机理及主要控制因素;为了开发符合清洁生产标准的高效脱砷技术,确定了微波、超声、球磨三种新型辅助浸出技术对As在 NaOH-Na2S浸出体系分离浸出效率,并从微观尺度上揭示了NaOH、Na2S浸出砷作用机制。论文的主要工作及结论如下:(1)从热力学角度构建了烟灰中重金属赋存状态与其浸出特性之间关系,揭示了溶解-沉控制机制、吸附-解吸控制机制、传质控制、

关于编制再生铜冶炼项目可行性研究报告编制说明

再生铜冶炼项目 可行性研究报告 编制单位:北京中投信德国际信息咨询有限公司编制时间:https://www.360docs.net/doc/c51787078.html, 高级工程师:高建

关于编制再生铜冶炼项目可行性研究报告 编制说明 (模版型) 【立项 批地 融资 招商】 核心提示: 1、本报告为模板形式,客户下载后,可根据报告内容说明,自行修改,补充上自己项目的数据内容,即可完成属于自己,高水准的一份可研报告,从此写报告不在求人。 2、客户可联系我公司,协助编写完成可研报告,可行性研究报告大纲(具体可跟据客户要求进行调整) 编制单位:北京中投信德国际信息咨询有限公司 专 业 撰写节能评估报告资金申请报告项目建议书 商业计划书可行性研究报告

目录 第一章总论 (1) 1.1项目概要 (1) 1.1.1项目名称 (1) 1.1.2项目建设单位 (1) 1.1.3项目建设性质 (1) 1.1.4项目建设地点 (1) 1.1.5项目主管部门 (1) 1.1.6项目投资规模 (2) 1.1.7项目建设规模 (2) 1.1.8项目资金来源 (3) 1.1.9项目建设期限 (3) 1.2项目建设单位介绍 (3) 1.3编制依据 (3) 1.4编制原则 (4) 1.5研究范围 (5) 1.6主要经济技术指标 (5) 1.7综合评价 (6) 第二章项目背景及必要性可行性分析 (7) 2.1项目提出背景 (7) 2.2本次建设项目发起缘由 (7) 2.3项目建设必要性分析 (7) 2.3.1促进我国再生铜冶炼产业快速发展的需要 (8) 2.3.2加快当地高新技术产业发展的重要举措 (8) 2.3.3满足我国的工业发展需求的需要 (8) 2.3.4符合现行产业政策及清洁生产要求 (8) 2.3.5提升企业竞争力水平,有助于企业长远战略发展的需要 (9) 2.3.6增加就业带动相关产业链发展的需要 (9) 2.3.7促进项目建设地经济发展进程的的需要 (10) 2.4项目可行性分析 (10) 2.4.1政策可行性 (10) 2.4.2市场可行性 (10) 2.4.3技术可行性 (11) 2.4.4管理可行性 (11) 2.4.5财务可行性 (11) 2.5再生铜冶炼项目发展概况 (12)

铜闪速熔炼烟灰浸出试验研究

Metallurgical Engineering 冶金工程, 2015, 2(3), 151-157 Published Online September 2015 in Hans. https://www.360docs.net/doc/c51787078.html,/journal/meng https://www.360docs.net/doc/c51787078.html,/10.12677/meng.2015.23022 Study on Leaching of Dust of Copper Flash Smelting Furnace Yan Wen Tong Ling Nonferrous Metals Group Holding Co., Ltd., Tongling Anhui Email: weny@https://www.360docs.net/doc/c51787078.html, Received: Aug. 20th, 2015; accepted: Sep. 10th, 2015; published: Sep. 16th, 2015 Copyright ? 2015 by author and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.360docs.net/doc/c51787078.html,/licenses/by/4.0/ Abstract The influence of initial concentration of sulfuric acid, leaching temperature, leaching time and liquid-solid ratio on the dust of the flash smelting furnace was investigated. And the structure of the dust of the flash smelting furnace and leaching slag was characterized by X-ray diffrac-tion (XRD). Results showed that the chemical forms of copper in the dust of the flash smelting furnace are mainly copper sulfate and copper ferrite. The copper sulfate is water-soluble, while the copper ferrite is difficult to leach even under high concentration of acid and high tempera-ture. What’s more, it is found that the initial concentration of sulfuric acid, leaching tempera-ture and leaching time have limited influence on the leaching efficiency of copper, iron, arsenic and zinc. Keywords Dust of Flash Smelting Furnace, Sulphating Leaching, Cu, Fe, As 铜闪速熔炼烟灰浸出试验研究 文燕 铜陵有色金属集团股份有限公司,安徽铜陵 Email: weny@https://www.360docs.net/doc/c51787078.html, 收稿日期:2015年8月20日;录用日期:2015年9月10日;发布日期:2015年9月16日

相关文档
最新文档