课时达标检测(十三) 导数的概念及运算 Word版含解析

合集下载

2019大一轮高考总复习文数北师大版课时作业提升13 导

2019大一轮高考总复习文数北师大版课时作业提升13 导

课时作业提升(十三) 导数的概念及运算A 组 夯实基础1.(2018·衡水调研卷)设f (x )=x ln x ,若f ′(x 0)=2,则x 0的值为( ) A .e 2 B .e C .ln 22D .ln 2解析:选B 由f (x )=x ln x ,得f ′ (x )=ln x +1.根据题意知ln x 0+1=2,所以ln x 0=1,因此x 0=e.2.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(1)+ln x ,则f ′(1)等于( ) A .-e B .-1 C .1D .e解析:选B 由题由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.3.设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( ) A .0 B .1 C .2D .3解析:选D y ′=a -1x +1,由题意得,当x =1时,y ′=2,即a -1=2,所以a =3. 4.(2018·日照月考)直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值等于( )A .2B .-1C .1D .-2解析:选C 依题意知,y ′=3x 2+a ,则⎩⎪⎨⎪⎧13+a ×1+b =3,3×12+a =k ,k ×1+1=3,由此解得⎩⎪⎨⎪⎧a =-1,b =3,k =2,所以2a +b =1,选C .5.已知f (x )=x 3-2x 2+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于( )A .4B .5C .254D .132解析:选C ∵f (x )=x 3-2x 2+x +6,∴f ′(x )=3x 2-4x +1,∴f ′(-1)=8,故切线方程为y -2=8(x +1),即8x -y +10=0,令x =0,得y =10,令y =0,得x =-54,∴所求面积S =12×54×10=254.6.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________. 解析:由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x =0,即a =-13x3(x >0),故a ∈(-∞,0).答案: (-∞,0)7.(2018·安徽七校联考)若曲线y =32x 2+x -12的某一切线与直线y =4x +3平行,则切线方程为________.解析:设切点为(x 0,y 0),切线的斜率k =y ′|x =x 0=3x 0+1,3x 0+1=4⇒x 0=1.又y 0=32x 20+x 0-12=2,则切点为(1,2),故切线的方程为y -2=4(x -1)⇒y =4x -2. 答案:y =4x -28.若曲线f (x )=a cos x 与曲线g (x )=x 2+bx +1在交点(0,m )处有公切线,则a +b =________.解析:∵两曲线的交点为(0,m ),∴⎩⎪⎨⎪⎧m =a ,m =1,即a =1,∴f (x )=cos x ,∴f ′(x )=-sin x ,则f ′(0)=0,f (0)=1. 又g ′(x )=2x +b ,∴g ′(0)=b ,∴b =0,∴a +b =1. 答案:19.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图像为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知,⎩⎪⎨⎪⎧k ≥-1,-1k≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞). 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解: (1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32.(2)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4.设切点的坐标为(x 0,y 0),则f ′(x 0)=3x 20+1=4,所以x 0=±1. 所以⎩⎪⎨⎪⎧ x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18), 切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.B 组 能力提升1.设函数f (x )在(0,+∞)内可导,且f (e x )=x +e x ,则f ′(2 017)=( ) A .1 B .2 C .12 017D .2 0182 017解析:选D 令e x =t ,则x =ln t ,所以f (t )=ln t +t ,故f (x )=ln x +x .求导得f ′(x )=1x +1,故f ′(2 017)=12 017+1=2 0182 017.2.给出定义:设f ′(x )是函数y =f (x )的导函数,f ″(x )是函数f ′(x )的导函数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.已知函数f (x )=3x +4sin x -cos x 的拐点是M (x 0,f (x 0)),则点M ( )A .在直线y =-3x 上B .在直线y =3x 上C .在直线y =-4x 上D .在直线y =4x 上解析:选B f ′(x )=3+4cos x +sin x ,f ″(x )=-4sin x +cos x ,由题可知f ″(x 0)=0,即4sin x 0-cos x 0=0,所以f (x 0)=3x 0,故M (x 0,f (x 0))在直线y =3x 上.故选B .3.已知函数f (x )=ln x +tan α,α∈⎝⎛⎭⎫0, π2的导函数为f ′(x ),若使得f ′(x 0)=f (x 0)成立的x 0满足x 0<1,则α的取值范围为________.解析:∵f ′(x )=1x ,∴f ′(x 0)=1x 0,由f ′(x 0)=f (x 0),得1x 0=ln x 0+tan α,∴tan α=1x 0-ln x 0.又0<x 0<1,∴1x 0-ln x 0>1,即tan α>1,又α∈⎝⎛⎭⎫0, π2,∴α∈⎝⎛⎭⎫π4, π2. 答案:⎝⎛⎭⎫π4, π24.设函数y =x 2-2x +2的图像为C 1,函数y =-x 2+ax +b 的图像为C 2,已知过C 1与C 2的一个交点的两切线互相垂直,求a +b 的值.解:对于C 1:y =x 2-2x +2,有y ′=2x -2, 对于C 2:y =-x 2+ax +b ,有y ′=-2x +a , 设C 1与C 2的一个交点为(x 0,y 0),由题意知过交点(x 0,y 0)的两条切线互相垂直. ∴(2x 0-2)(-2x 0+a )=-1, 即4x 20-2(a +2)x 0+2a -1=0,① 又点(x 0,y 0)在C 1与C 2上,故有⎩⎪⎨⎪⎧y 0=x 20-2x 0+2,y 0=-x 20+ax 0+b , 即2x 20-(a +2)x 0+2-b =0.② 由①②消去x 0,可得a +b =52.5.(2018·唐山月考)已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解: (1)由已知得f ′(x )=3ax 2+6x -6a ,因为f ′(-1)=0,所以3a -6-6a =0,所以a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x0=±1.当x0=-1时,切线方程为y=9;当x0=1时,切线方程为y=12x+9.由(1)知f(x)=-2x3+3x2+12x-11,①由f′(x)=0得-6x2+6x+12=0,解得x=-1或x=2. 在x=-1处,y=f(x)的切线方程为y=-18;在x=2处,y=f(x)的切线方程为y=9,所以y=f(x)与y=g(x)的公切线是y=9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10,所以y=f (x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。

导数的概念及其运算(解析版)

导数的概念及其运算(解析版)

考点20 导数的概念及其运算【命题解读】从高考对导数的要求看,考查分三个层次,一是考查导数公式,求导法则与导数的几何意义;二是导数的简单应用,包括求函数的单调区间、极值、最值等;三是综合考查,如研究函数零点、证明不等式、恒成立问题、求参数范围等.除压轴题,同时在小题中也加以考查,难度控制在中等以上.应特别是注意将导数内容和传统内容中有关不等式、数列、函数图象及函数单调性有机结合,设计综合题,考查学生灵活应用数学知识分析问题、解决问题的能力.【基础知识回顾】1. 导数的概念设函数y=f(x)在区间(a,b)上有定义,且x0∈(a,b),若Δx无限趋近于0时,比值Δy Δx=f(x0+Δx)-f(x0)Δx无限趋近于一个常数A,则称f(x)在x=x0处可导,并称该常数A为函数f(x)在x=x0处的导数,记作f′(x0).若函数y=f(x)在区间(a,b)内任意一点都可导,则f(x)在各点的导数也随着x的变化而变化,因而是自变量x的函数,该函数称作f(x)的导函数,记作f′(x).2. 导数的几何意义函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点P(x0,f(x0))处的切线的斜率,过点P 的切线方程为y-y0=f′(x0)(x-x0).3. 基本初等函数的导数公式续表4. 导数的运算法则若f′(x),g′(x)存在,则有:(1)[f(x)±g(x)]′=f′(x)±g′(x);(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);(3)⎣⎢⎡⎦⎥⎤f (x )g (x )=f′(x )g (x )-f (x )g′(x )g 2(x )(g(x)≠0). 5. 复合函数的求导法则(1)一般地,对于两个函数y =f(u)和u =g(x),如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数y =f(u)和u =g(x)的复合函数,记作y =f(g(x)).(2)复合函数y =f(g(x))的导数和函数y =f(u),u =g(x)的导数间的关系为y′x =y′u ·u ′x ,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.1、下列求导结果正确的是( )A .()21'12x x -=-B .()cos30'sin30︒=-︒C .()1ln 2'2x x=⎡⎤⎣⎦ D .'=【答案】D【解析】对于A ,2(1)2x x -'=-,故A 错误; 对于B ,(cos30)0︒'=,故B 错误; 对于C ,11[(2)](2)2ln x x x x'=⨯'=,故C 错误;对于D 31223()2x x '===,故D 正确.故选:D .2、若()ln2x f x e x =,则()f x '=( )A .ln 22xx e e x x+B .ln 2xx e e x x-C .ln 2xxe e x x+D .12xe x⋅【答案】C【解析】()()ln2(ln2)x x f x e x e x =+⋅'⋅''ln 2xxe e x x=+.故选:C .3、(2020·广东肇庆市·高三月考)已知函数1()e ln x f x x x -=+,则()1f '=( )A .0B .1C .eD .2【答案】D【解析】因为1()e ln x f x x x -=+,所以111()e ln e 1ln x x f x x x x x--'=++⨯=++, 所以11(1)e 1ln12f -'=++=, 故选:D4、 设M 为曲线C :y =2x 2+3x +3上的点,且曲线C 在点M 处切线倾斜角的取值范围为⎣⎢⎡⎭⎪⎫3π4,π,则点M 横坐标的取值范围为(D )A . [)-1,+∞B . ⎝⎛⎭⎪⎫-∞,-34C . ⎝ ⎛⎦⎥⎤-1,-34D . ⎣⎢⎡⎭⎪⎫-1,-34 【答案】D【解析】、 由题意y ′=4x +3,切线倾斜角的范围是⎣⎢⎡⎭⎪⎫34π,π,则切线的斜率k 的范围是[)-1,0,∴-1≤4x +3<0,解得-1≤x<-34. 故选D . 5、下列求导过程正确的选项是( ) A.⎝⎛⎭⎫1x ′=1x 2 B .(x )′=12x C .(x a )′=ax a -1D .(log a x )′=⎝⎛⎭⎫ln x ln a ′=1x ln a 【答案】 BCD【解析】 根据题意,依次分析选项: 对于A ,⎝⎛⎭⎫1x ′=(x -1)′=-1x 2,A 错误;对于B ,(x )′=12()x '=12×12x -=12x ,B 正确;对于C ,(x a )′=ax a -1,C 正确;对于D ,(log a x )′=⎝⎛⎭⎫ln x ln a ′=1x ln a ,D 正确; 则B ,C ,D 正确.6、(江苏省南通市西亭高级中学2019-2020学年高三下学期学情调研)若曲线(1)x y ax e =+在(0,1)处的切线斜率为-1,则a =___________. 【答案】2-【解析】,((1)1)x x y y ax e ax a e '=+=++,011,2x y a a ='=+=-∴=-. 故答案为:-2.7、(江苏省如皋市2019-2020学年高三上学期10月调研)已知a R ∈,设函数()ln f x ax x =-的图象在点(1,(1)f )处的切线为l ,则l 在y 轴上的截距为________ . 【答案】1 【解析】函数f (x )=ax −ln x ,可得()1'f x a x=-,切线的斜率为:()'11k f a ==-, 切点坐标(1,a ),切线方程l 为:y −a =(a −1)(x −1), l 在y 轴上的截距为:a +(a −1)(−1)=1. 故答案为1.考向一 基本函数的导数例1、求下列函数的导数(1)()2(34)21y x x x =-+; (2) 31yx x; (3) ln x ye x ;(4) tan yx ; (5)2ln 1x y x =+; (6)2ln(15)xyx .【解析】(1)∵y =(3x 2-4x )(2x +1)=6x 3+3x 2-8x 2-4x =6x 3-5x 2-4x ,∴218104y x x '=--.(2) 322132y x x -'=-+;(3) 1ln x y e x x ⎛⎫'=+ ⎪⎝⎭;(4) 21cos y x'=;(5)y '=(ln x )′(x 2+1)-ln x (x 2+1)′(x 2+1)2=1x (x 2+1)-2x ln x (x 2+1)2=x 2+1-2x 2ln xx (x 2+1)2; (6) 52ln 251x y x '=+-.变式1、求下列函数的导数.(1)y =x 2sin x ;(2)y =ln x +1x ; (3)y =cos x e x .【解析】、(1)y ′=(x 2)′sin x +x 2(sin x )′=2x sin x +x 2cos x .(2)y ′=⎝⎛⎭⎫ln x +1x ′=(ln x )′+⎝⎛⎭⎫1x ′=1x -1x 2.(3)y ′=⎝⎛⎭⎫cosx e x ′=(cos x )′e x-cos x (e x)′(e x )2=-sin x +cos x e x . 变式2、求下列函数的导数: (1)f (x )=x 2+xe x ;(2)f (x )=x 3+2x -x 2ln x -1x 2; (3)y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2.【解析】、(1)f ′(x )=(2x +1)e x -(x 2+x )e x (e x )2=1+x -x 2e x . (2)由已知f (x )=x -ln x +2x -1x 2. ∴f ′(x )=1-1x -2x 2+2x 3=x 3-x 2-2x +2x 3. (3)∵y =x sin ⎝⎛⎭⎫2x +π2cos ⎝⎛⎭⎫2x +π2=12x sin(4x +π)=-12x sin 4x , ∴y ′=-12sin 4x -12x ·4cos 4x =-12sin 4x -2x cos 4x .方法总结:求函数导数的总原则:先化简解析式,再求导.注意以下几点:连乘形式则先展开化为多项式形式,再求导;三角形式,先利用三角函数公式转化为和或差的形式,再求导;分式形式,先化为整式函数或较为简单的分式函数,再求导;复合函数,先确定复合关系,由外向内逐层求导,必要时可换元考向二 求导数的切线方程例2、(1)函数ln 2()x xf x x-=的图象在点(1,2)P -处的切线方程为__________. (2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,则实数a 的取值范围是( ) A .(-∞,-2] B .(-∞,2) C .(2,+∞)D .(0,+∞)【答案】 (1)x -y -3=0 (2)B【解析】 (1)f ′(x )=1-ln xx 2,则f ′(1)=1,故该切线方程为y -(-2)=x -1,即x -y -3=0.(2)函数f (x )=ln x +ax 的图象存在与直线2x -y =0平行的切线,即f ′(x )=2在(0,+∞)上有解.所以f ′(x )=1x +a =2在(0,+∞)上有解,则a =2-1x .因为x >0,所以2-1x <2,所以a 的取值范围是(-∞,2).变式1、(1)已知曲线S :y =-23x 3+x 2+4x 及点P(0,0),那么过点P 的曲线S 的切线方程为____.(2)已知函数f(x)=x ln x ,过点A(-1e 2,0)作函数y =f(x)图像的切线,那么切线的方程为____.【答案】(1)y =4x 或y =358x(2)x +y +1e 2=0【解析】 (1)设过点P 的切线与曲线S 切于点Q(x 0,y 0),则过点Q 的曲线S 的切线斜率为k =y ′|x =x 0=-2x 20+2x 0+4,又当x 0≠0时,k PQ =y 0x 0,∴-2x 20+2x 0+4=y 0x 0. ①∵点Q 在曲线S 上,∴y 0=-23x 30+x 20+4x 0.②将②代入①得-2x 20+2x 0+4=-23x 30+x 20+4x 0x 0,化简,得43x 30-x 20=0,∴x 0=34或x 0=0, 当x 0=34时,则k =358,过点P 的切线方程为y =358x.当x 0=0时,则k =4,过点P 的切线方程为y =4x ,故过点P 的曲线S 的切线方程为y =4x 或y =358x. (2)设切点为T(x 0,y 0),则k AT =f′(x 0), ∴x 0ln x 0x 0+1e 2=ln x 0+1,即e 2x 0+ln x 0+1=0. 设h(x)=e 2x +ln x +1,则h′(x)=e 2+1x ,当x>0时,h ′(x)>0,∴h(x)在(0,+∞)上是单调增函数,∴h(x)=0最多只有一个根. 又h ⎝⎛⎭⎫1e 2=e 2×1e 2+ln 1e 2+1=0,∴x 0=1e 2.由f′(x 0)=-1得切线方程是x +y +1e 2=0.变式2、已知函数f(x)=x 3+x -16.(1)求曲线y =f(x)在点(2,-6)处的切线的方程;(2)若直线l 为曲线y =f(x)的切线,且经过原点,求直线l 的方程及切点坐标;(3)如果曲线y =f(x)的某一切线与直线y =-14x +3垂直,求切点坐标与切线方程.【解析】 (1)由函数f(x)的解析式可知点(2,-6)在曲线y =f(x)上,∴f ′(x)=(x 3+x -16)′=3x 2+1, ∴在点(2,-6)处的切线的斜率为k =f′(2)=13, ∴切线的方程为y -(-6)=13(x -2), 即y =13x -32.(2)(方法1)设切点为(x 0,y 0), 则直线l 的斜率为f′(x 0)=3x 20+1,∴直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16. 又∵直线l 过点(0,0),∴0=(3x 20+1)(-x 0)+x 30+x 0-16, 整理得x 30=-8,∴x 0=-2, ∴y 0=(-2)3+(-2)-16=-26, f ′(-2)=3×(-2)2+1=13,故直线l 的方程为y =13x ,切点坐标为(-2,-26).(方法2)设直线l 的方程为y =kx ,切点坐标为(x 0,y 0),则k =y 0-0x 0-0=x 30+x 0-16x 0. 又∵k =f′(x 0)=3x 20+1, ∴x 30+x 0-16x 0=3x 20+1,解得x 0=-2, ∴y 0=(-2)3+(-2)-16=-26,k =3×(-2)2+1=13,∴直线l 的方程为y =13x ,切点坐标为(-2,-26).(3)∵曲线f(x)的某一切线与直线y =-x4+3垂直,∴该切线的斜率k =4.设切点的坐标为(x 0,y 0), 则f′(x 0)=3x 20+1=4,∴x 0=±1,∴⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18.故切线方程为y -(-14)=4(x -1)或y -(-18)=4(x +1),即y =4x -18或y =4x -14.方法总结: 利用导数研究曲线的切线问题,一定要熟练掌握以下三点:(1)函数在切点处的导数值是切线的斜率,即已知切点坐标可求切线斜率,已知斜率可求切点坐标. (2)切点既在曲线上,又在切线上,切线还有可能和曲线有其它的公共点.(3)曲线y =f(x)“在”点P(x 0,y 0)处的切线与“过”点P(x 0,y 0)的切线的区别:曲线y =f(x)在点P(x 0,y 0)处的切线是指点P 为切点,若切线斜率存在,切线斜率为k =f′(x 0),是唯一的一条切线;曲线y =f(x)过点P(x 0,y 0)的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.考向三 导数几何意义的应用例3、已知函数32()3611f x ax x ax =+--,2()3612g x x x =++和直线:9m y kx =+,且(1)0f '-=.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线()y f x =的切线,又是曲线()y g x =的切线?如果存在,求出k 的值;如果不存在,请说明理由.【解析】:(1)由已知得f ′(x )=3ax 2+6x -6a , ∵f ′(-1)=0,∵3a -6-6a =0,∵a =-2. (2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线,则设切点为(x 0,3x 20+6x 0+12).∵g ′(x 0)=6x 0+6, ∵切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0),将(0,9)代入切线方程,解得x 0=±1.当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9.由(1)知f (x )=-2x 3+3x 2+12x -11, ∵由f ′(x )=0得-6x 2+6x +12=0,解得x =-1或x =2. 在x =-1处,y =f (x )的切线方程为y =-18;在x =2处,y =f (x )的切线方程为y =9,∵y =f (x )与y =g (x )的公切线是y =9. ∵由f ′(x )=12得-6x 2+6x +12=12,解得x =0或x =1. 在x =0处,y =f (x )的切线方程为y =12x -11; 在x =1处,y =f (x )的切线方程为y =12x -10; ∵y =f (x )与y =g (x )的公切线不是y =12x +9.综上所述,y =f (x )与y =g (x )的公切线是y =9,此时k =0.变式1、已知函数()()3cos2sin 2,,4f x x x x a f f x π⎛⎫''=++= ⎪⎝⎭是()f x 的导函数,则过曲线3y x =上一点(),P a b 的切线方程为__________________.变式2:若直线2y x m =+是曲线ln y x x =的切线,则实数m 的值为________. 【答案】:(1)3x -y -2=0或3x -4y +1=0 (2)-e【解析】:(1)由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x , 则a =f ′(π4)=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,当P 点为切点时,切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1). 故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0.当P 点不是切点时,设切点为(x 0,x 30),∵切线方程为y -x 30=3x 20(x -x 0), ∵P (a ,b )在曲线y =x 3上,且a =1,∵b =1.∵1-x 30=3x 20(1-x 0),∵2x 30-3x 20+1=0,∵2x 30-2x 20-x 20+1=0,∵(x 0-1)2(2x 0+1)=0,∵切点为11,28⎛⎫-- ⎪⎝⎭,∵此时的切线方程为131842y x ⎛⎫+=+ ⎪⎝⎭, 综上,满足题意的切线方程为3x -y -2=0或3x -4y +1=0. (2)设切点为(x 0,x 0ln x 0),由y ′=(x ln x )′=ln x +x ·1x =ln x +1,得切线的斜率k =ln x 0+1,故切线方程为y -x 0ln x 0=(ln x 0+1)(x -x 0),整理得y =(ln x 0+1)x -x 0,与y =2x +m 比较得⎩⎪⎨⎪⎧ln x 0+1=2,-x 0=m ,解得x 0=e ,故m =-e. 变式3、(2019常州期末) 若直线kx -y -k =0与曲线y =e x (e 是自然对数的底数)相切,则实数k =________. 【答案】、 e 2【解析】、设切点A(x 0,e x 0),由(e x )′=e x,得切线方程为y -e x 0=e x 0(x -x 0),即y =e x 0x +(1-x 0)e x 0,所以⎩⎪⎨⎪⎧k =e x 0,-k =(1-x 0)e x 0,解得⎩⎪⎨⎪⎧x 0=2,k =e 2.方法总结:1.利用导数的几何意义求参数的基本方法利用切点的坐标、切线的斜率、切线的方程等得到关于参数的方程(组)或者参数满足的不等式(组),进而求出参数的值或取值范围.2.求解与导数的几何意义有关问题时应注意的两点 (1)注意曲线上横坐标的取值范围; (2)谨记切点既在切线上又在曲线上.1、【2020年高考全国Ⅰ卷理数】函数43()2f x x x =-的图像在点(1(1))f ,处的切线方程为 A .21y x =-- B .21y x =-+ C .23y x =- D .21y x =+【答案】B 【解析】()432f x x x =-,()3246f x x x '∴=-,()11f ∴=-,()12f '=-,因此,所求切线的方程为()121y x +=--,即21y x =-+. 故选:B .2、【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==,D .1e a -=,1b =-【答案】D【解析】∵e ln 1,x y a x '=++∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=,将(1,1)代入2y x b =+,得21,1b b +==-. 故选D .3、【2018年高考全国Ⅰ卷理数】设函数32()(1)f x x a x ax =+-+.若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为 A .2y x =- B .y x =- C .2y x = D .y x =【答案】D【解析】因为函数f(x)是奇函数,所以a −1=0,解得a =1,所以f(x)=x 3+x ,f′(x)=3x 2+1, 所以f′(0)=1,f(0)=0,所以曲线y =f(x)在点(0,0)处的切线方程为y −f(0)=f′(0)x ,化简可得y =x . 故选D.4、【2019年高考全国Ⅰ卷理数】曲线23()e x y x x =+在点(0)0,处的切线方程为____________. 【答案】30x y -=【解析】223(21)e 3()e 3(31)e ,x x x y x x x x x '=+++=++ 所以切线的斜率0|3x k y ='==,则曲线23()e x y x x =+在点(0,0)处的切线方程为3y x =,即30x y -=5、【2018年高考全国Ⅲ卷理数】曲线()1e xy ax =+在点()0,1处的切线的斜率为2-,则a =________.【答案】−3【解析】()e 1e xxy a ax =++',则0|12x y a ='=+=-,所以a =−3.6、【江苏省南通市2019-2020学年高三上学期期初】给出下列三个函数:①1y x=;②sin y x =;③e x y =,则直线12y x b =+(b R ∈)不能作为函数_______的图象的切线(填写所有符合条件的函数的序号). 【答案】①【解析】直线12y x b =+的斜率为k =12, 对于①1y x =,求导得:'21y x =-,对于任意x≠0,21x -=12无解,所以,直线12y x b =+不能作为切线;对于②sin y x =,求导得:'1cos 2y x ==有解,可得满足题意; 对于③x y e =,求导得:'12x y e ==有解,可得满足题意; 故答案为:①7、【江苏省南通市通州区2019-2020学年高三第一次调研抽测】已知函数()()x f x ax b e =+,若曲线y f x =()在点(0,(0))f 处的切线方程为310x y -+=,则(1)f 的值为_______.【答案】3e【解析】因为()()x f x ax b e =+,所以((()))++=++'=x x x ax b f x ae a e x b e a ,则(0)'=+f a b , 又曲线y f x =()在点(0,(0))f 处的切线方程为310x y -+=,当0x =时,1y =,即(0)1f =,所以有31a b b +=⎧⎨=⎩,解得2,1a b ==.因此()(21)x f x x e =+,所以(1)3f e =.故答案为3e8、【2020届江苏省南通市如皋市高三上学期教学质量调研(二)】如图,曲线2f x x =在点M t f t ,处的切线为l ,直线l 与x 轴和直线1x =分别交于点P 、Q ,点()1,0N ,则PQN 的面积取值范围为_____.【答案】80,]27( 【解析】2f x x =的导数为'2f x x ,在点M t f t ,处的切线斜率为2k t ,切点为2,t t ,切线方程为2201y t t x t t (), 令1x =可得22y t t ;令0y =,可得2t x =, 则PQN 的面积为()21112222t S PN QN t t ⎛⎫=⋅=-- ⎪⎝⎭, 由211384(2)(32)44S t t t t , 当203t < 时,0S > ,函数S 递增;当213t <<时,0S < ,函数S 递减, 可得23t = 处S 取得极大值,且为最大值827, 且0t =时,0S =;1t =时,14S , 可得PQN 的面积取值范围为80,]27(, 故答案为:80,]27(.。

高考数学 热点题型和提分秘籍 专题13 导数的概念及其

高考数学 热点题型和提分秘籍 专题13 导数的概念及其

- 1 - 专题13 导数的概念及其运算- 【高频考点解读】 1.了解导数概念的实际背景. 2.理解导数的几何意义.

3.能根据导数的定义求函数y=c(c为常数),y=x,y=x2,y=x3,y=1x,y=x的导数. 4.能利用常见的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数. 【热点题型】 题型一 导数的概念 例1、曲线y=2x-x3在x=-1处的切线方程为( ) A.x+y+2=0 B.x+y-2=0 C.x-y+2=0 D.x-y-2=0

【提分秘籍】 1.并不是所有的函数在其定义域上的每一点处都有导数,如函数y=|x|在点x=0处就没有导数,但在定义域上的其他点处都有导数. 2.曲线y=f(x)在点P(x0,y0)处的切线是指P为切点,斜率为k=f′(x0)的切线,是唯一的一条切线. 3.曲线y=f(x)过点P(x0,y0)的切线,是指切线经过P点.点P可以是切点,也可以不是切点,而且这样的直线可能有多条. 【举一反三】 直线y=kx+1与曲线y=x3+ax+b相切于点A(1,2),则ab=( ) A.-8 B.-6 C.-1 D.5

答案:A 【热点题型】 题型二 导数的运算 例2、函数y=xcos x-sin x的导数为( ) A.xsin x B.-xsin x C.xcos x D.-xcos x - 2 -

【举一反三】 函数f(x)=(x+2a)(x-a)2的导数为( ) A.2(x2-a2) B.2(x2+a2) C.3(x2-a2) D.3(x2+a2)

【热点题型】 题型三 导数的几何意义 例3、 (1)曲线y=x3-2x+1在点(1,0)处的切线方程为( ) A.y=x-1 B.y=-x+1 C.y=2x-2 D.y=-2x+2

(2)已知曲线y=13x3+43. ①求曲线在点P(2,4)处的切线方程; ②求斜率为4的曲线的切线方程. - 3 -

专题13 导数的概念及其意义、导数的运算(解析版)

专题13 导数的概念及其意义、导数的运算(解析版)
【点睛】本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题
6.(2020年高考数学课标Ⅲ卷理科)若直线l与曲线y= 和x2+y2= 都相切,则l的方程为( )
A.y=2x+1B.y=2x+ C.y= x+1D.y= x+
【答案】D
解析:设直线 在曲线 上的切点为 ,则 ,函数 的导数为 ,则直线 的斜率 ,设直线 的方程为 ,即 ,
【小问2详解】 ,则 在点 处的切线方程为 ,整理得 ,设该切线与 切于点 , ,则 ,则切线方程为 ,整理得 ,则 ,整理得 ,令 ,则 ,令 ,解得 或 ,
令 ,解得 或 ,则 变化时, 的变化情况如下表:
0
1
0
0
0
则 的值域为 ,故 的取值范围为 .
4.(2022·新高考Ⅰ卷T22)已知函数 和 有相同 最小值.
2.函数f(x)的导函数:函数f′(x)= 为f(x)的导函数.
基本题型:
1.设 为可导函数,且满足 ,则 为()
A.1B.
C.2D.
【答案】B
【分析】利用导数的定义进行求解.
【详解】因为 ,所以 ,即
所以 .
2.已知函数 ,且 ,则 的值为()
A. B.2C. D.
【答案】D
【分析】利用导数定义,可求得 ,代入 ,即得解
②当P点不是切点时,设切点为A(x0,y0),由定义可求得切线的斜率为k=3x .
∵点A在曲线上,∴y0=x ,∴ =3x ,∴x -3x +4=0,∴(x0+1)(x0-2)2=0,
解得x0=-1或x0=2(舍去),∴y0=-1,k=3,此时切线方程为y+1=3(x+1),即3x-y+2=0.
故经过点P的曲线的切线有两条,方程为12x-y-16=0或3x-y+2=0.

高考数学一轮复习 课时分层训练13 导数的概念及运算

高考数学一轮复习 课时分层训练13 导数的概念及运算

课时分层训练(十三) 导数的概念及运算A 组 基础达标 (建议用时:30分钟)一、选择题1.若f (x )=2xf ′(1)+x 2,则f ′(0)等于( )【导学号:00090060】A .2B .0C .-2D .-4D [f ′(x )=2f ′(1)+2x ,令x =1,则f ′(1)=2f ′(1)+2,得f ′(1)=-2, 所以f ′(0)=2f ′(1)+0=-4.]2.已知f (x )=x 3-2x 2+x +6,则f (x )在点P (-1,2)处的切线与坐标轴围成的三角形的面积等于( ) A .4 B .5 C .254D .132C [∵f (x )=x 3-2x 2+x +6,∴f ′(x )=3x 2-4x +1,∴f ′(-1)=8, 故切线方程为y -2=8(x +1),即8x -y +10=0, 令x =0,得y =10,令y =0,得x =-54,∴所求面积S =12×54×10=254.]3.(2018·武汉模拟)已知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为( ) A .1 B .-1 C .2 D .-2A [f (x +1)=x +-1x +1,故f (x )=2x -1x ,即f (x )=2-1x,对f (x )求导得f ′(x )=1x2,则f ′(1)=1,故所求切线的斜率为1,故选A .]4.(2018·成都模拟)已知函数f (x )的图像如图2­10­1,f ′(x )是f (x )的导函数,则下列数值排序正确的是( )图2­10­1A .0<f ′(2)<f ′(3)<f (3)-f (2)B .0<f ′(3)<f ′(2)<f (3)-f (2)C .0<f ′(3)<f (3)-f (2)<f ′(2)D .0<f (3)-f (2)<f ′(2)<f ′(3) C [如图:f ′(3)、f (3)-f (2)⎝⎛⎭⎪⎫f -f 3-2、f ′(2)分别表示直线n ,m ,l 的斜率,故0<f ′(3)<f (3)-f (2)<f ′(2),故选C .]5.(2018·福州模拟)已知f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x ,f ′(x )为f (x )的导函数,则f ′(x )的图像是( )A [∵f (x )=14x 2+sin ⎝ ⎛⎭⎪⎫π2+x =14x 2+cos x ,∴f ′(x )=12x -sin x ,它是一个奇函数,其图像关于原点对称,故排除B 、D .又f ′⎝ ⎛⎭⎪⎫π6=π12-12<0,故排除C ,选A .]二、填空题6.(2017·郑州二次质量预测)曲线f (x )=x 3-x +3在点P (1,3)处的切线方程是________. 【导学号:00090061】2x -y +1=0 [由题意得f ′(x )=3x 2-1,则f ′(1)=3×12-1=2,即函数f (x )的图像在点P (1,3)处的切线的斜率为2,则切线方程为y -3=2(x -1),即2x -y +1=0.] 7.若曲线y =ax 2-ln x 在点(1,a )处的切线平行于x 轴,则a =________.12 [因为y ′=2ax -1x ,所以y ′|x =1=2a -1.因为曲线在点(1,a )处的切线平行于x 轴,故其斜率为0,故2a -1=0,a =12.]8.如图2­10­2,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=________.图2­10­20 [由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由题图可知f (3)=1,所以g ′(3)=1+3×⎝ ⎛⎭⎪⎫-13=0.]三、解答题9.求下列函数的导数:(1)y =x nlg x ; (2)y =1x +2x 2+1x3;(3)y =sin x xn . [解] (1)y ′=nx n -1lg x +x n·1x ln 10=xn -1⎝ ⎛⎭⎪⎫n lg x +1ln 10. (2)y ′=⎝ ⎛⎭⎪⎫1x ′+⎝ ⎛⎭⎪⎫2x 2′+⎝ ⎛⎭⎪⎫1x 3′=(x -1)′+(2x -2)′+(x -3)′ =-x -2-4x -3-3x -4=-1x 2-4x 3-3x4.(3)y ′=⎝⎛⎭⎪⎫sin x x n ′ =x n sin x ′-x n ′sin x x 2n=x n cos x -nx n -1sin x x 2n=x cos x -n sin xx n +1.10.已知点M 是曲线y =13x 3-2x 2+3x +1上任意一点,曲线在M 处的切线为l ,求:(1)斜率最小的切线方程;(2)切线l 的倾斜角α的取值范围. 【导学号:00090062】 [解] (1)y ′=x 2-4x +3=(x -2)2-1≥-1, 2分所以当x =2时,y ′=-1,y =53,所以斜率最小的切线过点⎝ ⎛⎭⎪⎫2,53, 4分斜率k =-1,所以切线方程为x +y -113=0.6分(2)由(1)得k ≥-1,9分所以tan α≥-1,所以α∈⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.12分B 组 能力提升 (建议用时:15分钟)1.(2016·山东高考)若函数y =f (x )的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称y =f (x )具有T 性质,下列函数中具有T 性质的是( )A .y =sin xB .y =ln xC .y =e xD .y =x 3A [若y =f (x )的图像上存在两点(x 1,f (x 1)),(x 2,f (x 2)), 使得函数图像在这两点处的切线互相垂直,则f ′(x 1)·f ′(x 2)=-1.对于A :y ′=cos x ,若有cos x 1·cos x 2=-1,则当x 1=2k π,x 2=2k π+π(k ∈Z )时,结论成立;对于B :y ′=1x ,若有1x 1·1x 2=-1,即x 1x 2=-1,∵x >0,∴不存在x 1,x 2,使得x 1x 2=-1;对于C :y ′=e x,若有e x 1·e x 2=-1,即e x 1+x 2=-1.显然不存在这样的x 1,x 2; 对于D :y ′=3x 2,若有3x 21·3x 22=-1,即9x 21x 22=-1,显然不存在这样的x 1,x 2. 综上所述,选A .]2.(2016·全国卷Ⅲ)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1-x ,则曲线y =f (x )在点(1,2)处的切线方程是________.2x -y =0 [设x >0,则-x <0,f (-x )=ex -1+x .∵f (x )为偶函数,∴f (-x )=f (x ),∴f (x )=e x -1+x .∵当x >0时,f ′(x )=e x -1+1,∴f ′(1)=e1-1+1=1+1=2.∴曲线y =f (x )在点(1,2)处的切线方程为y -2=2(x -1), 即2x -y =0.]3.已知函数f (x )=x -2x,g (x )=a (2-ln x )(a >0).若曲线y =f (x )与曲线y =g (x )在x=1处的切线斜率相同,求a 的值,并判断两条切线是否为同一条直线. [解] 根据题意有f ′(x )=1+2x 2,g ′(x )=-ax.2分曲线y =f (x )在x =1处的切线斜率为f ′(1)=3, 曲线y =g (x )在x =1处的切线斜率为g ′(1)=-a , 所以f ′(1)=g ′(1),即a =-3.6分曲线y =f (x )在x =1处的切线方程为y -f (1)=3(x -1),所以y +1=3(x -1),即切线方程为3x -y -4=0. 9分曲线y =g (x )在x =1处的切线方程为y -g (1)=3(x -1),所以y +6=3(x -1),即切线方程为3x -y -9=0, 所以,两条切线不是同一条直线.12分。

[高考数学]2020届13导数的概念及运算理70.doc

[高考数学]2020届13导数的概念及运算理70.doc
课后限时集训 ( 十三 ) 导数的概念及运算
( 建议用时: 60 分钟 )
A 组 基础达标
一、选择题 1.函数 y= ln(2 x2+1) 的导数是 (
1 A.
2x2 + 1
) 4x
B. 2x2+ 1
4x
C.

4
D.

1
4x
B [ y′=
·4x=
,故选 B.]
2x2 + 1
2x2 +1
2. f ( x) = ax3+ 3x2+2,若 f ′( - 1) = 4,则 a 的值等于 (
1 ∴ x+ x- a= 0 有解,
1 ∴ a= x+ x≥ 2( x> 0) . ]
三、解答题 9.已知函数 f ( x) = x3- 4x2+5x- 4. (1) 求曲线 f ( x) 在点 (2 , f (2)) 处的切线方程; (2) 求经过点 A(2 ,- 2) 的曲线 f ( x) 的切线方程.
8. (2019 ·大连调研
) 若函数
f
(
x)

1 2x
2

ax+
ln
x 存在垂直于
y 轴的切线,则实数
a 的取值
范围是 ________.
[2 ,+∞ )
[
∵f
(
x)

1 2
x2-
ax+
ln
x,
1 ∴ f ′ ( x) = x- a+ x.
∵ f ( x) 存在垂直于 y 轴的切线, ∴ f ′ ( x) 存在零点,
A [ y′=
-ex +
-1
x
x1

1 ,因为 e > 0,所以 e + ex≥2

高考数学一轮复习 专题13 导数的概念及运算(含解析)-人教版高三全册数学试题

专题13导数的概念及运算最新考纲1.了解导数概念的实际背景.2.通过函数图象直观理解导数的几何意义.3.能根据导数定义求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y =1x,y =x 的导数.4.能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,(理)能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数.基础知识融会贯通1.导数与导函数的概念(1)一般地,函数y =f (x )在x =x 0处的瞬时变化率是lim Δx →0Δy Δx=lim Δx →0fx 0+Δx-f x 0Δx,我们称它为函数y =f (x )在x =x 0处的导数,记作f ′(x 0)或0x x y ='|,即f ′(x 0)=lim Δx →0ΔyΔx =lim Δx →0fx 0+Δx-fx 0Δx.(2)如果函数y =f (x )在开区间(a ,b )内的每一点处都有导数,其导数值在(a ,b )内构成一个新函数,这个函数称为函数y =f (x )在开区(a ,b )间内的导函数.记作f ′(x )或y ′. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率k ,即k =f ′(x 0).3.基本初等函数的导数公式基本初等函数导函数f (x )=c (c 为常数) f ′(x )=0 f (x )=x α(α∈Q *) f ′(x )=αx α-1 f (x )=sin x f ′(x )=cos x f (x )=cos xf ′(x )=-sin xf (x )=e x f ′(x )=e x f (x )=a x (a >0,a ≠1)f ′(x )=a x ln a f (x )=ln x f ′(x )=1xf (x )=log a x (a >0,a ≠1)f ′(x )=1x ln a4.导数的运算法则若f ′(x ),g ′(x )存在,则有(1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ); (3)⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x [g x ]2(g (x )≠0).5.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 【知识拓展】1.奇函数的导数是偶函数,偶函数的导数是奇函数,周期函数的导数还是周期函数. 2.[af (x )+bg (x )]′=af ′(x )+bg ′(x ).3.函数y =f (x )的导数f ′(x )反映了函数f (x )的瞬时变化趋势,其正负号反映了变化的方向,其大小|f ′(x )|反映了变化的快慢,|f ′(x )|越大,曲线在这点处的切线越“陡”.重点难点突破 【题型一】导数的计算 【典型例题】 求下列函数的导数 (1)y =2x 3﹣3x 2﹣4; (2)y =xlnx ;(3).【解答】解:(1)y′=6x2﹣6x;(2)y′=lnx+1;(3).【再练一题】已知函数f(x)=e x(2﹣lnx),f'(x)为f(x)的导函数,则f'(1)的值为.【解答】解:根据题意,函数f(x)=e x(2﹣lnx)=2e x﹣e x lnx,其导数f′(x)=2e x﹣e x lnx,则f′(1)=2e1﹣e1ln1e,故答案为:e.思维升华导数计算的技巧(1)求导之前,应对函数进行化简,然后求导,减少运算量.(2)复合函数求导时,先确定复合关系,由外向内逐层求导,必要时可换元.【题型二】导数的几何意义命题点1 求切线方程【典型例题】32.已知曲线C:y=x3﹣3x2+2x(1)求曲线C上斜率最小的切线方程.(2)过原点引曲线C的切线,求切线方程及其对应的切点坐标.【解答】解:(1)y'=3x2﹣6x+2=3(x﹣1)2﹣1,所以,x=1时,y'有最小值﹣1,把x=1代入曲线方程得:y=0,所以切点坐标为(1,0),故所求切线的斜率为﹣1,其方程为:y=﹣x+1.(2)设切点坐标为M(x0,y0),则y0=x03﹣3x02+2x0,切线的斜率为3x02﹣6x0+2,故切线方程为y﹣y0=(3x02﹣6x0+2)(x﹣x0),因为切线过原点,所以有﹣y0=(3x02﹣6x0+2)(﹣x0),即:x03﹣3x02+2x0=x0(3x02﹣6x0+2),解之得:x0=0或.所以,切点坐标为M(0,0)或,相应的切线方程为:y=2x或即切线方程为:2x﹣y=0或x+4y=0.【再练一题】已知函数y=e x(1)求这个函数在x=e处的切线方程;(2)过原点作曲线y=e x的切线,求切线的方程.【解答】解:(1)函数y=e x,f(e)=e e,则切点坐标为(e,e e),求导y′=e x,则f′(e)=e e,即切线斜率为e e,则切线方程为y﹣e e=e e(x﹣e),化简得y=e e x﹣e e+1+e e;(2)y=e x,y′=e x,设切点的坐标为(x0,e x0),则切线的斜率为f′(x0)=e x0,故切线方程为y﹣e x0=e x0(x﹣x0),又切线过原点(0,0),则﹣e x0=e x0(﹣x0),解得x0=1,y0=e,则切线方程为y=ex.命题点2 求参数的值【典型例题】若过点P(﹣1,m)可以作三条直线与曲线C:y=xe x相切,则m的取值X围是()A.(,+∞)B.()C.(0,+∞)D.()【解答】解:设切点为(x0,y0),过点P的切线方程为,代入点P坐标化简为m,即这个方程有三个不等根即可,令,求导得到f′(x)=(﹣x﹣1)(x+2)e x,函数在(﹣∞,﹣2)上单调递减,在(﹣2,﹣1)上单调递增,在(﹣1,+∞)上单调递减,故得到f(﹣2)<m<f(﹣1),即故选:D.【再练一题】已知函数f(x)=e x+ax2(a∈R),若曲线y=f(x)在点P(m,f(m))(m>1)处的切线为l,且直线l 在y轴上的截距小于1,则实数a的取值X围是()A.(,+∞)B.[﹣1,+∞)C.[,+∞)D.(﹣1,)【解答】解:函数f(x)=e x+ax2的导数为f′(x)=e x+2ax,可得曲线y=f(x)在点P(m,f(m))(m>1)处的切线斜率为e m+2am,即有切线的方程为y﹣(e m+am2)=(e m+2am)(x﹣m),可令x=0可得y=e m﹣me m﹣am2,由题意可得e m﹣me m﹣am2<1对m>1恒成立,则a,由g(m)1,由e m﹣me m﹣1+m2=(1﹣m)(e m﹣1﹣m),由m>1可得1﹣m<0,由y=e x﹣1﹣x的导数为y′=e x﹣1,当x>0时,y′>0,函数y递增;当x<0时,y′<0,函数y递减,可得y=e x﹣1﹣x的最小值为e0﹣1﹣0=0,可得m>1时,e m﹣1﹣m>0,则(1﹣m)(e m﹣1﹣m)<0,即g(m)<0,则1恒成立,可得a≥﹣1,即a的X围是[﹣1,+∞).故选:B.命题点3 导数与函数图象【典型例题】已知三次函数f(x)=ax3+bx2+cx+d的图象如图所示,则.【解答】解:f′(x)=3ax2+2bx+c;根据图象知,x=﹣1,2是f(x)的两个极值点;∴x=﹣1,2是方程3ax2+2bx+c=0的两实数根;根据韦达定理,;∴2b=﹣3a,c=﹣6a;∴.故答案为:1.【再练一题】如图所示,y =f (x )是可导函数,直线l :y =kx +3是曲线y =f (x )在x =1处的切线,若h (x )=xf (x ),则h ′(1)=.【解答】解:∵直线l :y =kx +3是曲线y =f (x )在x =1处的切线, ∴点(1,2)为切点,故f ′(1)=k ,f (1)=k +3=2, 解得k =﹣1,故f ′(1)=﹣1,f (1)=2, 由h (x )=xf (x )可得h ′(x )=f (x )+xf ′(x ), ∴h ′(1)=f (1)+f ′(1)=1, 故答案为:1.思维升华 导数的几何意义是切点处切线的斜率,应用时主要体现在以下几个方面: (1)已知切点A (x 0,f (x 0))求斜率k ,即求该点处的导数值k =f ′(x 0).(2)若求过点P (x 0,y 0)的切线方程,可设切点为(x 1,y 1),由⎩⎪⎨⎪⎧y 1=f x 1,y 0-y 1=f ′x 1x 0-x 1求解即可.(3)函数图象在每一点处的切线斜率的变化情况反映函数图象在相应点处的变化情况.基础知识训练1.点P 在曲线上移动,若曲线在点处的切线的倾斜角为,则的取值X 围是( )A .B .C .D .【答案】A【解析】,即切线的斜率X围是,那么倾斜角的X围是,故选A.2.已知,若,则a的值等于()A. B. C. D.【答案】B【解析】由题意知,所以,解得.3.如图所示,函数的图象在点处的切线方程是,则()A. B. C. D.【答案】B【解析】由题中图象知由导数的几何意义知.∴4.下面说法正确的是()A.若不存在,则曲线在点处没有切线B.若曲线在点处有切线,则必存在C.若不存在,则曲线在点处的切线斜率不存在D.若曲线在点处没有切线,则有可能存在【答案】C【解析】()0,2-的几何意义是曲线在点处切线的斜率.当切线与x轴垂直时,切线斜率不存在,可知选项A,B,D不正确.5.函数在处的导数的几何意义是( )A .在点处的斜率B .在点处的切线与轴所夹的锐角的正切值C .曲线在点处切线的斜率D .点与点连线的斜率【答案】C【解析】由导数的几何意义可知,函数在的导数为曲线在点处的切线的斜率. 6.函数在闭区间内的平均变化率为( )A .B .C .20t s =D .20t s = 【答案】D 【解析】∵,∴该函数在区间内的平均变化率为,故选D.7.若,则( )A .B .C .D .【答案】B【解析】根据导数的定义可知,所以,故选B.8.已知为的导数,且,则()A. B.C. D.【答案】D【解析】.9.【某某省某某市2019届高三第二次模拟考试】曲线处的切线与坐标轴围成的三角形的面积为()A.B.C.D.【答案】B【解析】,所以,且,所以切线方程为,即,此直线与轴、轴交点坐标分别为,所以切线与坐标轴围成的三角形面积是,故选B.10.【某某省某某市2019届高三第一次模拟考试】过点引曲线的两条切线,这两条切线与轴分别交于两点,若,则()A.B.C.D.【答案】B【解析】设切点坐标为,即.解得,即.故.故选:B11.【甘青宁2019届高三3月联考】若直线与曲线相切,则()A.3 B.C.2 D.【答案】A【解析】设切点为,∵,∴由①得,代入②得,则,故选A.12.【某某省某某市2019届高三总复习质检】设点P在曲线上,点Q在曲线上,点R 在直线上,则的最小值为A.B.C.D.【答案】D【解析】由题意,函数的导数为,设曲线与直线的平行线相切的切点为,可得,即,可得切点为,此时PR的最小值为,的导数为,设曲线与直线的平行线相切的切点为,可得,即,可得切点为,此时RQ的最小值为,则P,Q重合为,R为,取得最小值为.故选:D.13.【某某壮族自治区某某市2019届高三毕业班3月模拟考试】已知函数的图像上存在关于原点对称的对称点,则实数的取值X围是______.【答案】【解析】函数的图像上存在关于原点对称的对称点,∴方程,即上有解,∴方程有解.设,且的切线,设切点为,由,则有,解得.由图象可得,要使直线的图象有公共点,则,解得.所以实数的取值X围是.故答案为:.14.【2019年3月高三第一次全国大联考(新课标Ⅱ卷)】若曲线处的切线与直线垂直,则切线、直线轴围成的三角形的面积为____________.【答案】【解析】由题可得,故切线的斜率为,又切点坐标为,所以切线的方程为,因为切线与直线垂直,所以,所以直线的方程为,易得切线与直线的交点坐标为,因为切线轴的交点坐标为,直线轴的交点坐标为,所以切线、直线轴围成的三角形的面积为.15.【某某省揭阳市2019届高三一模】在曲线的所有切线中,斜率为1的切线方程为________.【答案】【解析】,所以切点为,切线方程为16.【某某省某某市2019届高三上学期期末教学质量检测】曲线在点处的切线与圆相切,则______.【答案】【解析】的导数为,可得切线的斜率为,切点为,即有在处的切线方程为,即为,由切线与圆相切,可得,可得.故答案为:.17.已知曲线.(1)试求曲线在点处的切线方程;(2)试求与直线平行的曲线的切线方程.【答案】(1)(2)或【解析】(1)∵,∴,求导数得,∴切线的斜率为,∴所求切线方程为,即.(2)设与直线平行的切线的切点为,则切线的斜率为.又∵所求切线与直线平行,∴,解得,代入曲线方程得切点为或,∴所求切线方程为或,即或.18.在赛车中,赛车位移与比赛时间存在函数关系(的单位为,的单位为).求:(1),时的与;(2)时的瞬时速度.【答案】(1),(2)【解析】(1)..(2).当,时,.答:,时的为,为,在时的瞬时速度为.19.求下列函数的导数:(1)f(x)=(x+1)2(x-1); (2)f(x)=2-2sin2;(3)f(x)=; (4)f(x)=2tan x.【答案】(1);(2);(3);(4)【解析】(1)因为f(x)=(x+1)2(x-1)=(x2+2x+1)(x-1)=x3+x2-x-1,所以f '(x)=3x2+2x-1.(2)因为f(x)=2-2sin2=1+cos x,所以f '(x)=-sin x.(3)f '(x)=.(4)因为f(x)=2tan x=,所以. 20.求满足下列条件的函数.(1) 是三次函数,且(2) 是二次函数,且.【答案】(1) (2)【解析】(1)由题意设则由已知得解得,故(2)由题意设,则.所以,化简得,因为此式对任意x都成立,所以,解得,故.能力提升训练1.【某某某某一中(西校区)2018-2019学年高二下学期第一次月考】下列式子不.正确的是 ( ) A.B.C.D.【答案】C【解析】对于选项C,,C错误故选C2.【某某省棠湖中学2018-2019学年高二下学期第一次月考】若函数f(x)满足f(x)=x3-f′(1)·x2-x,则f′(1)的值为()A.1 B.2 C.0 D.-1【答案】C【解析】依题意,令,解得,故选C.3.【某某省部分重点中学2019届高三第二次联考高三】已知函数,若函数是奇函数,则曲线在点处的切线方程是()A. B. C. D.【答案】B【解析】由题意得,∴函数为奇函数,∴,∴.∴,∴,∴,又,∴所求切线方程为,即.故选B.4.【某某省某某市普通高中2019届高三质量监测(二)】已知曲线在点处的切线为,则下列各点中不可能在直线上的是()A. B. C. D.【答案】C【解析】由题意,画岀切线扫过的区域,如图所示,当时,此时切线都在轴的上方,所以不可能在直线上的点为.故选C.5.【某某省日照市2017届高三下学期第一次模拟考试】曲线的一条切线l与轴三条直线围成的三角形记为,则外接圆面积的最小值为A. B. C. D.【答案】C【解析】设直线l与曲线的切点坐标为(),函数的导数为.则直线l方程为,即,可求直线l与y=x的交点为A(),与y轴的交点为,在△O AB中,,当且仅当2=2时取等号.由正弦定理可得△OAB得外接圆半径为,则△OAB外接圆面积,故选:C.6.【某某省某某外国语学校2018-2019学年高二下学期第一次】等比数列中,,函数()A.B.C.D.【答案】C【解析】由题意知,所以,令,则=,故选C7.【某某省双流县棠湖中学2019届高三上学期期末考试】已知直线是曲线与曲线的一条公切线,与曲线切于点,且是函数的零点,则的解析式可能为( )A.B.C.D.【答案】B【解析】由可得,由可得,设公切线在上的切点坐标为,在上的切点坐标为,利用导函数研究函数切线的性质可得:,整理可得:,①结合斜率公式有:,②将①代入②中整理可得:,则的解析式可能为.本题选择B选项.8.【某某省某某市阆中中学2018-2019学年高二3月月考】已知函数(1)求(2)求曲线在点处的切线的方程;【答案】(1)(2)【解析】(1)(2)可判定点在曲线上.在点处的切线的斜率为.切线的方程为即9.【某某省某某市八一中学、洪都中学等七校2018-2019学年高二上学期期末考试】设函数f(x)=ae x lnx+,(1)求导函数f′(x)(2)若曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x﹣1)+2,求a,b.【答案】(1)见解析(2)a=1,b=2【解析】(1)由f(x)=ae x lnx+,得;(2)由于切点既在函数曲线上,又在切线上,将x=1代入切线方程得:y=2.将x=1代入函数f(x)得:f(1)=b.∴b=2.将x=1代入导函数,则f'(1)=ae=e.∴a=1.10.【某某省某某华侨学校2018-2019学年高二上学期第三次月考】求下列函数的导数:(1);(2);(3).【答案】(1)6x-sinx;;(3)lnx+【解析】(1)y′=6x-sinx(2)y′=(3)y′==lnx+故答案为:6x-sinx;;lnx+。

高考数学一轮复习 13.1 导数的概念及基本运算课时闯关 文(含解析)新人教A版

2014届高考数学一轮复习 13.1 导数的概念及基本运算课时闯关 文(含解析)新人教A 版一、选择题1.(2011·高考重庆卷)曲线y =-x 3+3x 2在点(1,2)处的切线方程为( ) A .y =3x -1 B .y =-3x +5 C .y =3x +5 D .y =2x解析:选A.∵y ′=-3x 2+6x ,∴y ′|x =1=3.∴曲线y =-x 3+3x 2在点(1,2)处的切线方程为y -2=3(x -1),即y =3x -1.2.若函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,则f ′(-1)等于( ) A .-1 B .-2 C .2 D .0解析:选B.f ′(x )=4ax 3+2bx 为奇函数, ∴f ′(-1)=-f ′(1)=-2.3.(2011·高考湖南卷)曲线y =sin x sin x +cos x -12在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为( )A .-12 B.12C .-22D.22解析:选B.y ′=cos xx +cos x -x -sin xxx +cos x 2=1x +cos x2,故y ′⎪⎪⎪x =π4=12,∴曲线在点M ⎝ ⎛⎭⎪⎫π4,0处的切线的斜率为12.第十三章 导 数高三数学文·广西专用若曲线y =x 2-1与y =1-x 3在x =x 0处的切线互相垂直,则x 0等于( ) A.3366B .-3366C.23D.23或0 解析:选A.由2x 0·(-3x 20)=-1,得x 30=16,x 0=3366.5.已知函数f (x )=x 2+bx 的图象在点A (1,f (1))处的切线l 与直线3x -y +2=0平行,若数列{1f n}的前n 项和为S n ,则S 2 013的值为( )A.2 0132 014 B.2 0122 013 C.2 0112 012 D.2 0102 011解析:选A.f ′(x )=2x +b ,由f ′(1)=2+b =3,得b =1.于是1f n =1n 2+n =1n n +=1n -1n +1,S 2 013=1f+1f+…+1f=1-12+12-13+…+12 013-12 014=1-12 014=2 0132 014.二、填空题6.已知曲线C :y =2x 2,点A (0,-2)及点B (3,a ),从点A 观察点B ,要实现不被曲线C 挡住,则实数a 的取值范围是________.解析:在曲线C :y =2x 2上取一点D (x 0,2x 20)(x 0>0),∵y =2x 2,∴y ′=4x ,y ′|x =x 0=4x 0.令2x 20+2x 0=4x 0,得x 0=1,此时,D (1,2),k AD =2--1-0=4,直线AD 的方程为y =4x -2.要实现不被曲线C 挡住,则实数a <4×3-2=10,即实数a 的取值范围是(-∞,10). 答案:(-∞,10)7.曲线y =2x 2在点(-1,2)处的切线方程为________.解析:∵y =2x 2,∴y ′=4x ,y ′|x =-1=-4.故在点(-1,2)处的切线方程为y -2=-4(x +1), 化简得4x +y +2=0. 答案:4x +y +2=08.已知直线y =12x +3,函数y =x 上到直线的距离最近的点的坐标为________.解析:设y =x 上点A (x 0,y 0)到直线的距离最近,则f ′(x )=12,∴f ′(x 0)=(x 120)′=12x 0, ∴12x 0=12,∴x 0=1,y 0=1. 答案:(1,1) 三、解答题9.已知函数f (x )=ax 2+3ax +1.若f (x )>f ′(x )对一切实数x 恒成立,求a 的取值范围.解:由题意得,f ′(x )=2ax +3a , 则f (x )>f ′(x )对一切实数x 恒成立,即ax 2+3ax +1>2ax +3a 对一切实数x 恒成立,即ax 2+ax +1-3a >0对一切实数x 恒成立,当a =0时,1>0,f (x )>f ′(x )对一切实数x 恒成立;当a ≠0时,则⎩⎪⎨⎪⎧a >0a 2-4a +12a 2<0,∴0<a <413. 综上所述,a 的取值范围为[0,413).10.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,试求a 的值.解:设曲线y =x 3上切点为(x 0,x 30), ∵y ′|x =x 0=3x 20,∴x 30x 0-1=3x 20,∴2x 30=3x 20,∴x 0=32或x 0=0,∴公切线斜率为k =274或k =0,∴切线方程为y =274(x -1)或y =0.当直线方程为y =0时,求得a =-2564;当直线方程为y =274(x -1)时,求得a =-1.所以a =-1或a =-2564.11.(探究选做)若直线y =kx 与曲线y =x 3-3x 2+2x 相切,试求k 的值.解:∵y =x 3-3x 2+2x ,∴y ′=3x 2-6x +2. ∴y ′|x =0=2.又∵直线与曲线都经过原点,则①若直线与曲线切于原点时,k =2.②若直线与曲线切于原点外一点(x 0,y 0)(x 0≠0)时,k =y 0x 0. 由(x 0,y 0)在曲线上知y 0=x 30-3x 20+2x 0.∵k =y 0x 0,∴k =y 0x 0=x 20-3x 0+2.又∵y ′=3x 2-6x +2,∴k =3x 20-6x 0+2. ∴x 20-3x 0+2=3x 20-6x 0+2.∴x 0=0(舍)或x 0=32.∴k =(32)2-3×32+2=-14.综上所述k =2或k =-14.。

人教A版2020版新一线高考理科数学一轮复习课后限时集训13导数的概念及运算含解析

课后限时集训(十三) 导数的概念及运算(建议用时:60分钟) A 组 基础达标一、选择题1.函数y =ln(2x 2+1)的导数是( ) A .12x 2+1 B .4x2x 2+1 C .4x(2x 2+1)ln 10D .4(2x 2+1)log 2eB [y ′=12x 2+1·4x =4x2x 2+1,故选B .] 2.f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值等于( ) A .193 B .163 C .133D .103D [因为f ′(x )=3ax 2+6x ,所以f ′(-1)=3a -6=4,解得a =103.故选D .] 3.(2018·广州一模)已知直线y =kx -2与曲线y =x ln x 相切,则实数k 的值为( ) A .ln 2 B .1 C .1-ln 2D .1+ln 2D [由y =x l n x 知y ′=l n x +1,设切点为(x 0,x 0l n x 0),则切线方程为y -x 0l n x 0=(l n x 0+1)(x -x 0),因为切线y =kx -2过定点(0,-2),所以-2-x 0l n x 0=(l n x 0+1)(0-x 0),解得x 0=2,故k =1+l n 2,选D .]4.设函数f (x )=x 3+ax 2,若曲线y =f (x )在点P (x 0,f (x 0))处的切线方程为x +y =0,则点P 的坐标为( ) A .(0,0) B .(1,-1)C .(-1,1)D .(1,-1)或(-1,1)D [由题意知,f ′(x )=3x 2+2ax ,所以曲线y =f (x )在点P (x 0,f (x 0))处的切线斜率为f ′(x 0)=3x 20+2ax 0,又切线方程为x +y =0,所以x 0≠0,且⎩⎨⎧3x 20+2ax 0=-1x 0+x 30+ax 20=0,解得a =±2,x 0=-a2.所以当⎩⎨⎧ x 0=1a =-2时,点P 的坐标为(1,-1);当⎩⎨⎧x 0=-1a =2时,点P 的坐标为(-1,1),故选D .]5.已知曲线y =1e x +1,则曲线的切线斜率取得最大值时的切线方程为( ) A .x +4y -2=0 B .x -4y +2=0 C .4x +2y -1=0 D .4x -2y -1=0 A [y ′=-e x(e x +1)2=-1e x +1ex +2,因为e x >0,所以e x +1e x ≥2e x ×1e x =2(当且仅当e x =1ex ,即x =0时取等号),则e x+1e x +2≥4,故y ′=-1e x +1e x +2≤-14(当x =0时取等号).当x=0时,曲线的切线斜率取得最大值,此时切点的坐标为⎝ ⎛⎭⎪⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.故选A .] 二、填空题6.(2019·漳州模拟)曲线y =-2sin x 在x =π3处的切线的倾斜角大小为________.3π4 [∵y ′=-2cos x ,∴y ′|x =π3=-2cos π3=-1, 设切线的倾斜角为θ,则tan θ=-1, 又0≤θ<π,∴θ=3π4.] 7.若曲线f (x )=ax 3+ln x 存在垂直于y 轴的切线,则实数a 的取值范围是______. (-∞,0) [由题意,可知f ′(x )=3ax 2+1x ,又存在垂直于y 轴的切线,所以3ax 2+1x =0,即a =-13x3(x >0),故a ∈(-∞,0).]8.(2019·大连调研)若函数f (x )=12x 2-ax +ln x 存在垂直于y 轴的切线,则实数a 的取值范围是________.[2,+∞) [∵f (x )=12x 2-ax +ln x ,∴f ′(x )=x -a +1x .∵f (x )存在垂直于y 轴的切线, ∴f ′(x )存在零点, ∴x +1x -a =0有解,∴a =x +1x ≥2(x >0).] 三、解答题9.已知函数f (x )=x 3-4x 2+5x -4. (1)求曲线f (x )在点(2,f (2))处的切线方程; (2)求经过点A (2,-2)的曲线f (x )的切线方程. [解] (1)∵f ′(x )=3x 2-8x +5,∴f ′(2)=1,又f (2)=-2,∴曲线在点(2,f (2))处的切线方程为y +2=x -2, 即x -y -4=0.(2)设曲线与经过点A (2,-2)的切线相切于点P (x 0,x 30-4x 20+5x 0-4), ∵f ′(x 0)=3x 20-8x 0+5,∴切线方程为y -(-2)=(3x 20-8x 0+5)(x -2),又切线过点P (x 0,x 30-4x 20+5x 0-4),∴x 30-4x 20+5x 0-2=(3x 20-8x 0+5)(x 0-2),整理得(x 0-2)2(x 0-1)=0,解得x 0=2或1,∴经过点A (2,-2)的曲线f (x )的切线方程为x -y -4=0或y +2=0.10.设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0. (1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.[解] (1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又因为f ′(x )=a +bx 2,所以⎩⎪⎨⎪⎧2a -b 2=12,a +b 4=74.解得⎩⎨⎧a =1,b =3,所以f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线y =f (x )上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0),即y -⎝ ⎛⎭⎪⎫x 0-3x 0=⎝ ⎛⎭⎪⎫1+3x 20(x -x 0).令x =0,得y =-6x 0,所以切线与直线x =0的交点坐标为⎝ ⎛⎭⎪⎫0,-6x 0.令y =x ,得y =x =2x 0,所以切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪⎪⎪-6x 0|2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.B 组 能力提升1.曲线y =e 12x 在点(4,e 2)处的切线与坐标轴所围成的三角形的面积为( ) A .92e 2 B .4e 2 C .2e 2D .e 2D [易知曲线y =e 12x 在点(4,e 2)处的切线斜率存在,设其为k .∵y ′=12e 12x ,∴k =12e12×4=12e 2,∴切线方程为y -e 2=12e 2(x -4),令x =0,得y =-e 2,令y =0,得x =2,∴所求面积为S =12×2×|-e 2|=e 2.]2.已知函数f (x )=x 2的图象在点(x 0,x 20)处的切线为l ,若l 也与函数y =ln x ,x ∈(0,1)的图象相切,则x 0必满足( ) A .0<x 0<12B .12<x 0<1 C .22<x 0< 2 D .2<x 0<3D [由题意,得f ′(x )=2x ,所以f ′(x 0)=2x 0,f (x 0)=x 20,所以切线l 的方程为y =2x 0(x -x 0)+x 20=2x 0x -x 20.因为l 也与函数y =ln x (0<x <1)的图象相切,设切点坐标为(x 1,lnx 1),易知y ′=1x ,则切线l 的方程为y =1x 1x +ln x 1-1,则有⎩⎪⎨⎪⎧2x 0=1x 1,1-ln x 1=x 20,又0<x 1<1,所以x 0>1,所以1+ln 2x 0=x 20,x 0∈(1,+∞).令g (x )=x 2-ln 2x -1,x ∈[1,+∞),则g ′(x )=2x -1x =2x 2-1x >0,所以g (x )在[1,+∞)上单调递增,又g (1)=-ln 2<0,g (2)=1-ln 22<0,g (3)=2-ln 23>0,所以存在x 0∈(2,3),使得g (x 0)=0,故2<x 0<3,选D .]3.(2017·天津高考)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.1 [∵f ′(x )=a -1x ,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ), ∴切线l 的方程为y -a =(a -1)(x -1). 令x =0,得y =1,故l 在y 轴上的截距为1.]4.已知函数f (x )=13x 3-2x 2+3x (x ∈R)的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.[解] (1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞).(2)设曲线C 的其中一条切线的斜率为k ,则由(2)中条件并结合(1)中结论可知, ⎩⎪⎨⎪⎧k ≥-1,-1k≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1, 得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).。

第13课 导数的概念及其运算(提分宝典)

第13课 导数的概念及其运算 1.导数的运算 (1)(经典题,16分)求下列函数的导数:

①y=(x+1)(x+2)(x+3);②y=exsinx;③y=1+x1-x+1-x1+x;

④y=-sinx21-2cos2x4;⑤y=ln(1-3x);⑥y=11-2x; ⑦y=lnxx2+1;⑧y=ln||x. 答案:①y′=3x2+12x+11 ②y′=ex(sinx+cosx)

③y′=4(1-x)2 ④y′=12cosx ⑤y′=-31-3x

⑥y′=(1-2x)-32 ⑦y′=x2-2x2lnx+1x(x2+1)2 ⑧y′=1x 解:①y=(x2+3x+2)(x+3)=x3+6x2+11x+6, ∴y′=3x2+12x+11.(2分) ②y′=(exsinx)′=exsinx+excosx=ex(sinx+cosx).(4分)

③y=1+x1-x+1-x1+x=(1+x)2+(1-x)2(1-x)(1+x)=2(1+x)1-x=41-x-2,

∴y′=4(1-x)2.(6分)

④y=-sinx2-cosx2=12sinx,

∴y′=12cosx.(8分)

⑤y′=11-3x·(1-3x)′=-31-3x.(10分)

⑥y=11-2x=(1-2x) 12.令y=u12,u=1-2x, ∴u′x=-2,∴y′=y′u·u′x=-12u32·(-2)=-12(1-2x) 32·(-2)=(1-2x)32.(12分)

⑦y′=1x·(x2+1)-lnx·2x(x2+1)2=x+1x-2xlnx(x2+1)2=x2-2x2lnx+1x(x2+1)2.(14分)

⑧y=lnx,x>0,ln(-x),x<0,当x>0时,y′=(lnx)′=1x;当x<0时,y′=[ln(-x)]′=(-x)′-x=1x.

综上所述,y′=1x.(16分)

(2)(2021改编,5分)已知函数f(x)=axlnx,x∈(0,+∞),其中a为实数, f′(x)为f(x)的导函数.若 f′(1)=3,则a的值为 . 答案:3 解析:因为f(x)=axlnx,所以f ′(x)=axlna·lnx+ax·1x.

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时达标检测(十三) 导数的概念及运算[小题对点练——点点落实]对点练(一) 导数的运算1.(2018·泉州质检)设函数f (x )=x (x +k )(x +2k ),则f ′(x )=( ) A .3x 2+3kx +k 2 B .x 2+2kx +2k 2 C .3x 2+6kx +2k 2D .3x 2+6kx +k 2解析:选C 法一:f (x )=x (x +k )(x +2k ),f ′(x )=(x +k )(x +2k )+x [(x +k )(x +2k )]′=(x +k )·(x +2k )+x (x +2k )+x (x +k )=3x 2+6kx +2k 2,故选C.法二:因为f (x )=x (x +k )(x +2k )=x 3+3kx 2+2k 2x ,所以f ′(x )=3x 2+6kx +2k 2,故选C.2.(2018·泰安一模)给出下列结论: ①若y =log 2x ,则y ′=1x ln 2;②若y =-1x ,则y ′=12x x;③若f (x )=1x 2,则f ′(3)=-227;④若y =a x (a >0),则y ′=a x ln a .其中正确的个数是( )A .1B .2C .3D .4解析:选D 根据求导公式可知①正确;若y =-1x =-x -12,则y ′=12x -32=12x x,所以②正确;若f (x )=1x 2,则f ′(x )=-2x -3,所以f ′(3)=-227,所以③正确;若y =a x (a >0),则y ′=a x ln a ,所以④正确.因此正确的结论个数是4,故选D.3.若函数y =x m 的导函数为y ′=6x 5,则m =( ) A .4 B .5 C .6D .7解析:选C 因为y =x m ,所以y ′=mx m -1,与y ′=6x 5相比较,可得m =6. 4.已知函数f (x )=xe x (e 是自然对数的底数),则其导函数f ′(x )=( )A.1+x e xB.1-x e xC .1+xD .1-x解析:选B 函数f (x )=xe x ,则其导函数f ′(x )=e x -x e x e 2x =1-x ex ,故选B.5.若f (x )=x 2-2x -4ln x ,则f ′(x )<0的解集为( ) A .(0,+∞) B .(0,2) C .(0,2)∪(-∞,-1)D .(2,+∞)解析:选B 函数f (x )=x 2-2x -4ln x 的定义域为{x |x >0},f ′(x )=2x -2-4x =2x 2-2x -4x ,由f ′(x )=2x 2-2x -4x<0,得0<x <2,∴f ′(x )<0的解集为(0,2),故选B. 6.(2018·信阳模拟)已知函数f (x )=a e x +x ,若1<f ′(0)<2,则实数a 的取值范围是( ) A.⎝⎛⎭⎫0,1e B .(0,1) C .(1,2)D .(2,3)解析:选B 根据题意,f (x )=a e x +x ,则f ′(x )=(a e x )′+x ′=a e x +1,则f ′(0)=a +1,若1<f ′(0)<2,则1<a +1<2,解得0<a <1,所以实数a 的取值范围为(0,1).故选B.对点练(二) 导数的几何意义1.(2018·安徽八校联考)函数f (x )=tan x 2在⎣⎡⎦⎤π2,f ⎝⎛⎭⎫π2处的切线的倾斜角α为( ) A.π6 B.π4 C.π3D.π2解析:选Bf ′(x )=⎝ ⎛⎭⎪⎫sin x2cos x 2′=12cos 2x 2,得切线斜率k =tan α=f ′⎝⎛⎭⎫π2=1,故α=π4,选B.2.若函数f (x )=x 3-x +3的图象在点P 处的切线平行于直线y =2x -1,则点P 的坐标为( )A .(1,3)B .(-1,3)C .(1,3)或(-1,3)D .(1,-3)解析:选C f ′(x )=3x 2-1,令f ′(x )=2,即3x 2-1=2⇒x =1或-1,又f (1)=3,f (-1)=3,所以P (1,3)或(-1,3),经检验,点(1,3),(-1,3)均不在直线y =2x -1上,故点P 的坐标为(1,3)或(-1,3).3.(2018·福州质检)过点(-1,1)与曲线f (x )=x 3-x 2-2x +1相切的直线有( ) A .0条B .1条C .2条D .3条解析:选C 设切点P (a ,a 3-a 2-2a +1),由f ′(x )=3x 2-2x -2,当a ≠-1时,可得切线的斜率k =3a 2-2a -2=(a 3-a 2-2a +1)-1a -(-1),所以(3a 2-2a -2)(a +1)=a 3-a 2-2a ,即(3a 2-2a -2)(a +1)=a (a -2)(a +1),所以a =1,此时k =-1.又(-1,1)是曲线上的点且f ′(-1)=3≠-1,故切线有2条.4.(2018·重庆一模)已知直线y =a 与函数f (x )=13x 3-x 2-3x +1的图象相切,则实数a的值为( )A .-26或83B .-1或3C .8或-83D .-8或83解析:选D 令f ′(x )=x 2-2x -3=0,得x =-1或x =3,∵f (-1)=83,f (3)=-8,∴a =83或-8. 5.(2018·临川一模)函数f (x )=x +ln xx 的图象在x =1处的切线与两坐标轴围成的三角形的面积为( )A.12B.14C.32D.54解析:选B 因为f (x )=x +ln xx ,f ′(x )=1+1-ln x x 2,所以f (1)=1,f ′(1)=2,故切线方程为y -1=2(x -1).令x =0,可得y =-1;令y =0,可得x =12.故切线与两坐标轴围成的三角形的面积为12×1×12=14,故选B.6.(2018·成都诊断)若曲线y =ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,+∞ C .(0,+∞)D .[0,+∞)解析:选D 由题意知,函数y =ln x +ax 2的定义域为(0,+∞),y ′=1x +2ax =2ax 2+1x≥0恒成立,即2ax 2+1≥0,a ≥-12x 2恒成立,又在定义域内,-12x 2∈(-∞,0),所以实数a 的取值范围是[0,+∞).7.(2017·柳州二模)已知函数f (x )=x 2+bx +c (b ,c ∈R ),F (x )=f ′(x )e x ,若F (x )的图象在x =0处的切线方程为y =-2x +c ,则函数f (x )的最小值是( )A .2B .1C .0D .-1解析:选C ∵f ′(x )=2x +b ,∴F (x )=2x +b e x ,F ′(x )=2-2x -be x,又F (x )的图象在x=0处的切线方程为y =-2x +c ,∴⎩⎪⎨⎪⎧ F ′(0)=-2,F (0)=c ,得⎩⎪⎨⎪⎧b =c ,b =4,∴f (x )=(x +2)2≥0,f (x )min=0.8.(2018·唐山模拟)已知函数f (x )=x 2-1,g (x )=ln x ,则下列说法中正确的为( ) A .f (x ),g (x )的图象在点(1,0)处有公切线B .存在f (x )的图象的某条切线与g (x )的图象的某条切线平行C .f (x ),g (x )的图象有且只有一个交点D .f (x ),g (x )的图象有且只有三个交点解析:选B 对于A ,f (x )的图象在点(1,0)处的切线为y =2x -2,函数g (x )的图象在点(1,0)处的切线为y =x -1,故A 错误;对于B ,函数g (x )的图象在(1,0)处的切线为y =x -1,设函数f (x )的图象在点(a ,b )处的切线与y =x -1平行,则f ′(a )=2a=1,a =12,故b = ⎝⎛⎭⎫122-1=-34,即g (x )的图象在(1,0)处的切线与f (x )的图象在⎝⎛⎭⎫12,-34处的切线平行,B 正确;如图作出两函数的图象,可知两函数的图象有两个交点,C ,D 错误.故选B.9.(2018·包头一模)已知函数f (x )=x 3+ax +1的图象在点(1,f (1))处的切线过点(2,7),则a =________.解析:函数f (x )=x 3+ax +1的导数为f ′(x )=3x 2+a ,f ′(1)=3+a ,又f (1)=a +2,所以切线方程为y -a -2=(3+a )(x -1),因为切线经过点(2,7),所以7-a -2=(3+a )(2-1),解得a =1.答案:1[大题综合练——迁移贯通]1.(2018·兰州双基过关考试)定义在实数集上的函数f (x )=x 2+x ,g (x )=13x 3-2x +m .(1)求函数f (x )的图象在x =1处的切线方程;(2)若f (x )≥g (x )对任意的x ∈[-4,4]恒成立,求实数m 的取值范围. 解:(1)∵f (x )=x 2+x ,∴f (1)=2. ∵f ′(x )=2x +1,∴f ′(1)=3.∴所求切线方程为y -2=3(x -1),即3x -y -1=0. (2)令h (x )=g (x )-f (x )=13x 3-x 2-3x +m ,则h ′(x )=(x -3)(x +1). ∴当-4≤x ≤-1时,h ′(x )≥0; 当-1<x ≤3时,h ′(x )≤0; 当3<x ≤4时,h ′(x )>0.要使f (x )≥g (x )恒成立,即h (x )max ≤0, 由上知h (x )的最大值在x =-1或x =4处取得, 而h (-1)=m +53,h (4)=m -203,∴h (x )的最大值为m +53,∴m +53≤0,即m ≤-53.∴实数m 的取值范围为⎝⎛⎦⎤-∞,-53. 2.(2018·青岛期末)设函数f (x )=ax -bx ,曲线y =f (x )在点(2,f (2))处的切线方程为7x -4y -12=0.(1)求f (x )的解析式;(2)证明曲线f (x )上任一点处的切线与直线x =0和直线y =x 所围成的三角形面积为定值,并求此定值.解:(1)方程7x -4y -12=0可化为y =74x -3,当x =2时,y =12.又因为f ′(x )=a +bx2,所以⎩⎨⎧2a -b 2=12,a +b 4=74.解得⎩⎪⎨⎪⎧a =1,b =3,所以f (x )=x -3x .(2)证明:设P (x 0,y 0)为曲线y =f (x )上任一点,由y ′=1+3x 2知曲线在点P (x 0,y 0)处的切线方程为y -y 0=⎝⎛⎭⎫1+3x 20(x -x 0), 即y -⎝⎛⎭⎫x 0-3x 0=⎝⎛⎭⎫1+3x 20(x -x 0). 令x =0,得y =-6x 0,所以切线与直线x =0的交点坐标为⎝⎛⎭⎫0,-6x 0.令y =x ,得y =x =2x 0,所以切线与直线y =x 的交点坐标为(2x 0,2x 0).所以曲线y =f (x )在点P (x 0,y 0)处的切线与直线x =0,y =x 所围成的三角形的面积S =12⎪⎪⎪⎪-6x 0 |2x 0|=6. 故曲线y =f (x )上任一点处的切线与直线x =0,y =x 所围成的三角形面积为定值,且此定值为6.3.已知函数f (x )=13x 3-2x 2+3x (x ∈R )的图象为曲线C .(1)求过曲线C 上任意一点切线斜率的取值范围;(2)若在曲线C 上存在两条相互垂直的切线,求其中一条切线与曲线C 的切点的横坐标的取值范围.(3)证明:不存在与曲线C 同时切于两个不同点的直线. 解:(1)由题意得f ′(x )=x 2-4x +3, 则f ′(x )=(x -2)2-1≥-1,即过曲线C 上任意一点切线斜率的取值范围是[-1,+∞). (2)设曲线C 的其中一条切线的斜率为k ,则由题意,及(1)可知,⎩⎪⎨⎪⎧k ≥-1,-1k ≥-1,解得-1≤k <0或k ≥1,故由-1≤x 2-4x +3<0或x 2-4x +3≥1,得x ∈(-∞,2-2]∪(1,3)∪[2+2,+∞).(3)证明:设存在直线与曲线C 同时切于不同的两点A (x 1,y 1),B (x 2,y 2),x 1≠x 2,则点A (x 1,y 1)处的切线方程为y -⎝⎛⎭⎫13x 31-2x 21+3x 1=(x 21-4x 1+3)(x -x 1),化简得y =(x 21-4x 1+3)x +⎝⎛⎭⎫-23x 31+2x 21,而点B (x 2,y 2)处的切线方程是y =(x 22-4x 2+3)x +⎝⎛⎭⎫-23x 32+2x 22. 由于两切线是同一直线,则有x 21-4x 1+3=x 22-4x 2+3,即x 1+x 2=4;又有-23x 31+2x 21=-23x 32+2x 22,即-23(x 1-x 2)·(x 21+x 1x 2+x 22)+2(x 1-x 2)(x 1+x 2)=0,则-13(x 21+x 1x 2+x 22)+4=0,则x 1(x 1+x 2)+x 22-12=0,即(4-x 2)×4+x 22-12=0,即x 22-4x 2+4=0,解得x 2=2.但当x 2=2时,由x 1+x 2=4得x 1=2,这与x 1≠x 2矛盾. 所以不存在与曲线C 同时切于两个不同点的直线.。

相关文档
最新文档