27.1图形的相似
人教版数学九年级下册27.1图形的相似(教案)

1.分组讨论:学生们将分成若干小组,每组讨论一个与图形相似相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似图形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“图形相似在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
-难点三:相似多边形周长比和面积比的计算,学生需要理解比例因子在计算过程中的作用;
-难点四:将相似知识应用于解决综合性问题,如涉及几何图形的面积计算、实际情境的比例尺应用等。
举例:针对难点二,教师可以通过具体的图形示例,演示在不同情况下如何选择合适的相似判定定理。例如,当已知两个多边形的两个角分别相等时,引导学生运用AA相似定理;当已知两个多边形的一对对应角相等且对应边成比例时,引导学生运用SAS相似定理。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个物体形状非常相似的情况?”比如,放大镜下的图形与原图形相似。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形相似的奥秘。
五、教学反思
在今天的课程中,我们探讨了图形的相似这一章节。我发现,对于相似图形的定义和性质,大多数学生能够较快地理解和接受。通过具体的案例和实验操作,他们能够直观地感受到相似图形在实际中的应用。然而,我也注意到在相似判定方法的应用上,部分学生还存在一些困惑。
比如,在讲解AA相似定理、SAS相似定理和SSS相似定理时,有的学生对于何时使用这些定理判断相似多边形感到迷茫。为了帮助学生克服这个难点,我采用了较多的图形示例,并引导他们通过观察和比较来找出相似的关键特征。在接下来的教学中,我考虑再增加一些针对性的练习,让学生在实际操作中更好地掌握这些判定方法。
27.1 图形的相似(优秀公开课课件)

2、全等图形与相似图形的关系:
全等图形是相似图形的特殊情况。
3、两个相似图形之间有什么关系吗?
两个图形相似,其中一个图形可以看作 由另一个图形放大或缩小得到.
4、图形的相似具有传递性
图形 A
图形 B
图形 C
如果图形A与图形B相似,图形B与图形 C相似, 那么图形A与图形C相似。
放大镜下的图形和原来 的图形相似吗?
6、相似多边形及相似比
(1)相似多边形的判定:
两个边数相同的多边形,如果他们的 角分别相等,边成比例,那么这两个多 边形叫做相似多边形.
相似多边形对应边的比叫做这两个多 边形的相似比.
注意:相似比具有顺序性
相似于:∽
特别地,当相似比为1时,相似的两
个图形有什么关系? 全等
符号语言:
H
D
E
A
B
C
G
一、复习回顾:全等图形
形状、大小都相同的图形称为全等图形。
二、探究新知:
漩涡鸣人,啊哈哈~~~
2寸照片和4寸照片
图形的相似
图形的相似
图形的相似
图形的相似
图形的相似
同一字体,不同字号!
你从上述几组图片发现了什么?
它们的形状相同.
1、相似图形的概念:
形状相同的图形叫做相似图形。
注意:相似图形的大小不一定相同。
3
练习:
800
x
(3)如图1,则
╮1250
x= 2.5 ,y = 1.5 , y
α= 900 ;
30
(4)如图2,x= 22.5 .
6 65╰0
800
5
α╭
图1
3
15
20
九年级数学下册第二十七章【相似】重要知识点总结

九年级数学下册第二十七章【相似】重要知识点总结27.1 图形的相似1、相似的定义如果两个图形形状相同,但大小不一定相等,那么这两个图形相似。
(相似的符号:∽)2、相似的判定如果两个多边形满足对应角相等,对应边的比相等,那么这两个多边形相似。
3、相似比相似多边形的对应边的比叫相似比。
相似比为1时,相似的两个图形全等相似多边形的对应角相等,对应边的比相等。
相似多边形的周长比等于相似比。
相似多边形的面积比等于相似比的平方。
27.2相似三角形1、相似三角形的判定(★重难点)(1).平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似(2)三边对应成比例(3)两边对应成比例,且夹角相等(4)两个三角形的两个角对应相等★常考题型:利用三角形的相似测量塔高、河宽2、相似三角形判定的常用模型A字型、8字型、三等角模型3、相似的性质1.相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比。
2.相似三角形周长的比等于相似比。
3.相似三角形面积的比等于相似比的平方4.多边形的面积的比等于相似比的平方,周长比等于相似比。
27.3位似1、定义:如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行,那么这两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。
2、位似的相关性质(1)位似图形的对应点和位似中心在同一直线上,它们到位似中心的距离之比等于相似比。
(2)位似多边形的对应边平行或共线。
(3)位似可以将一个图形放大或缩小。
(4)位似图形的中心可以在任意的一点,不过位似图形也会随着位似中心的位变而位变。
(5)根据一个位似中心可以作两个关于已知图形一定位似比的位似图形,这两个图形分布在位似中心的两侧,并且关于位似中心对称。
★易错点1、位似是一种具有位置关系的相似,所以两个图形是位似图形,必定是相似图形,而相似图形不一定是位似图形;2、两个位似图形的位似中心只有一个;3、两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧;4、位似比就是相似比.利用位似图形的定义可判断两个图形是否位似;5、平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形位似。
27.1图形的相似课件

C
D
C1
∠A =∠A1,∠B =∠B1, ∠C =∠C1 ∠D =∠D1,∠E =∠E1, ∠F =∠F1
D1 对应角相等
对应边有什么关系? A1 正八边形
AF
B
放大 B1 E
F1 E1
C
D
AB
=
BC
=
CD
=
DE
=
EF
=
C1 FA
,
D1
A1B1 = B1C1 = C1D1 = D1E1 = E1F1 = F1A1
过程与方法
• 通过观察、操作,了解相似图形的过程。 • 进一步了解相似形在实际生活中的应用。 • 掌握简单的画图方法,在动手操作中认识 • 相似图形。
情感态度与价值观
• 注学生能否从图形相似的角度识别现 • 实生活中大量存在的观察和规律。 • 培养合作交流意识。
教学重难点
• 认识形状相同的图形。 • 对相似图形概念的理解。 • 抓住形状相同的图形的特征,认
AB BC CD DE EF FA
===来自==A1B1 B1C1 C1D1 D1E1 E1F1 F1A1
对应边成比例
不规则四边形 B
请分别量出
这两个不规则四
边形各内角的度
数,求出对应边 的长度。
C
缩小
B1 对应边有什么关系?
C1
A A1
对 应 角 有 什 么 D关 系?
D1
知识要点
相似多边形
对应角相等,对应边成比例。
回顾旧知
这一版邮票有什么特点?
全等图形
A
A
B C B
C
形状、
大小完全相 同的图形是 全等图形。
新课导入
人教版数学九年级下册27.1《图形的相似》教案

(3)相似变换的性质:相似变换是本节课的另一个难点,教师需要详细讲解相似变换的性质,如对应点、对应线段的比等,并通过实例使学生理解这些性质。
举例:讲解旋转变换、平移变换等相似变换的性质,让学生在实际操作中体会相似变换的特点。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个形状看起来很相似的物体?”(如两个相似的三角形装饰品)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形相似的奥秘。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似图形相关的实际问题,如相似三角形的周长比、面积比等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如制作两个相似三角形并比较它们的性质。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
教学内容与课本紧密相关,旨在帮助学生掌握图形相似的相关知识,提高解决问题的能力。
二、核心素养目标
《图形的相似》章节的核心素养目标如下:
1.培养学生的空间观念,提高对图形相似性的认识,增强观察、分析图形的能力。
2.培养学生运用数学语言进行表达、交流、合作的能力,提高解决实际问题的能力。
3.培养学生逻辑思维和推理能力,能运用相似性质进行严密的论证。
举例:分析相似四边形的性质,解决面积、周长等与相似多边形相关的问题。
2.教学难点
(1)相似图形的识别:学生往往在识别相似图形时存在困难,需要教师通过丰富的实例和引导,帮助学生掌握识别相似图形的方法。
27.1 图形的相似教案

27.1 图形的相似《图形的相似》是继“轴对称、平移、旋转”之后集中研究图形形状的内容,从实际问题引入,通过对生活中的实例认识图形的相似,让学生理解图形相似的概念,让学生体验图形与现实世界的密切联系,体会图形相似与图形全等等内容之间的内在联系.本节课是学生在认识了全等形的基础上进行教学的,研究相似比研究全等更具一般性,相似图形、相似多边形的概念是后续学习相似三角形的基础,是空间与图形领域中的重要内容.本节课所涉及的内容来源于实际生活,为学生的数学建模能力搭建了一个平台,从中学到的不仅仅是知识、方法,还会将生活语言转化为数学语言,提高了学生的应用意识,有着承上启下、贯穿始终的作用.【情景导入】播放一些著名建筑物的图片(如图所示),让学生在音乐中欣赏,感受生活中形状相同的图形.欣赏并找出图中哪些图形是相同的.【说明与建议】说明:让学生留心观察生活中存在的大量形状相同的图形,增强学生的感性认识.伴着音乐欣赏美丽的图片,提高了学生的学习兴趣,从而让学生感受到数学学习的内容都是现实的、有趣的,让学生体会到数学就在我们身边.建议:让学生经历从现实世界中抽象出平面图形的过程,直观地感受图片中有很多相同的图形,从而引出课题.【置疑导入】下图中每一组图形的形状相同吗?大小相同吗?每一组图形是全等图形吗?(1)等边三角形(2)正方形(3)矩形【说明与建议】说明:通过图形的比较,让学生感受相似图形所具备的共同特征,同时引导学生自然地得出相似多边形的定义.建议:在得到相似多边形定义的时候要抓住两个关键点:一是各角对应相等,二是各边对应成比例.【回顾导入】如图,下边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.问题:对于图中两个相似的四边形,它们的对应角是否相等?对应边的比是否相等?【说明与建议】教师可以让学生依据相似图形的概念画出后,利用量角器和直尺测量对应角、对应边,从而引导学生得出相似多边形的概念.命题角度1 识别相似图形、判断相似多边形1.下列图形一定相似的是(C)A.两个平行四边形B.两个矩形C.两个正方形D.两个等腰三角形命题角度2 利用相似多边形的性质求线段和角2.如图,四边形ABCD∽四边形EFGH,∠A=80°,∠C=90°,∠F=70°,则∠H=(D)A.70°B.80°C.110° D.120°3.已知四边形ABCD与四边形A′B′C′D′相似,相似比为3∶4,其中四边形ABCD 的周长为18 cm,则四边形A′B′C′D′的周长为24cm.命题角度3 判断四条线段是否成比例及利用成比例线段的定义求线段的长4.下列各组线段中,线段a,b,c,d是成比例线段的是(A)A.a=1,b=2,c=4,d=8 B.a=2,b=1,c=4,d=8C.a=1,b=2,c=8,d=4 D.a=1,b=4,c=8,d=25.已知a,b,c,d是成比例线段,其中a=1 cm,b=4 cm,c=2 cm,则d=(C) A.2 cm B.4 cm C.8 cm D.10 cm命题角度4 利用比例尺求距离6.若一张地图的比例尺是1∶150 000,在地图上量得甲、乙两地的距离是5 cm,则甲、乙两地的实际距离是(D)A.3 000 m B.3 500 m C.5 000 m D.7 500 m《苏轼巧分田产》相传,北宋大文学家苏轼在凤翔作官时,为官清正,秉公执法,深得百姓拥戴.一天,有兄弟四人前来告状.苏轼坐在公案前,展开状纸一看:“小民杨大毛,家住城南寨.先父临终时,留下两顷田,只因分不均,兄弟反目.青天大老爷,请把理来断.”苏轼接过地契,心中暗暗盘算,杨家田地为工字形,如何分配,才能让四兄弟满意呢?沉思片刻,计上心来,遂唤一名差役耳语道:“只需如此如此……”差役遵嘱叫上四兄弟当场丈量,不一会儿,只见四兄弟满面带笑地跑过来,叩头不迭道:“多谢恩公明断!”你知道苏轼是怎样使分开后的四块田地形状相同,面积相等的吗?分法如下:课题27.1 图形的相似授课人素养目标1.理解相似图形的特征,掌握相似图形的识别方法.2.了解成比例线段的含义,会判断四条线段是不是成比例线段.3.理解相似多边形的概念、性质及判定,会计算和相似多边形有关的角度和线段的长.教学重点1.理解并掌握相似图形、相似多边形的概念及特征.2.探索相似多边形的性质中的“对应”关系.教学难点能利用成比例线段的概念及相似多边形的性质进行有关计算. 授课类型新授课课时教学步骤师生活动设计意图回顾1.什么是全等形?全等形的形状和大小有什么关系?2.下面两个图形是不是全等形?如何判断?通过复习全等形的概念和判定,为本节课相似形的学习做铺垫.同时,通过欣赏、识别生活中的全等图片,让学生体会数学来源于生活,激发学生学习的兴趣,感受数学中的美.活动一:创设情境、导入新课【课堂引入】1.欣赏下面各组图片:(1)在空中不同高度飞行的两架型号相同的直升机;(2)大小不同的两个足球;(3)汽车和它的模型.2.你能看出上面各组图片的共同之处吗?把你的想法说给同学听听.通过对生活中形状相同的图形的观察和欣赏,从实际模型中抽象概括得出数学概念,自然地引出课题,使学生初步感受相似,同时进行美育渗透.活动二:实践探究、交流新知探究新知:1.探究相似图形的定义问题:(1)全等图形的形状和大小之间有什么关系?1.让学生亲自观察实际生活中的图形,在教师提出学生在教师的引导下,边动手操作边思考、回答问题,师生共同归纳出相似多边形的概念.相似多边形:两个边数相同的多边形,如果它们的角分别相等,边成比例,那么这两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比.中,教师通过设置层层深入的小问题,引导学生完成探究活动,降低了学生学习新知识的难度,让学生体验了知识的形成过程,提高了学生分析问题的能力.通过用几何语言表示相似多边形的定义和性质,完成文字语言与符号语言之间的转化,培养学生用符号语言表达数学知识的能力.活动三:开放训练、体现应用【典型例题】例(教材第25页练习第2题)如图,图形(a)~(f)中,哪些与图形(1)或(2)相似?解:图形(d)和图形(1)相似,图形(e)和图形(2)相似.【变式训练】如图所示的图形中,哪些是相似图形?通过经历对例题的探究过程,加深学生对相似图形的基本特征的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.活动四:课堂检测【课堂检测】1.下列四组长度的线段中,是成比例线段的是(C)A.4 cm,5 cm,6 cm,7 cm B.3 cm,4 cm,5 cm,8 cmC.5 cm,15 cm,3 cm,9 cm D.8 cm,4 cm,1 cm,3 cm2.观察下面图形,指出(1)~(9)中的图形有没有与给出的图形(a),(b),(c)形状相同的?解:通过观察可以发现图形(4)、(8)与图形(a)形状相同;图形(6)与图形(b)形状相同;图形(5)与图形(c)形状相同.3.如图,四边形ABCD与四边形EFGH相似,求角α,β的大小和EF的长度x.解:α=83°,β=81°,x=28.通过课堂检测,进一步巩固所学的新知,同时检测学习效果,做到“堂堂清”.课堂小结1.课堂小结:(1)通过本节课的学习,你有哪些收获?还有什么疑感?说给老师或同学听听.(2)教师与同学聆听部分同学的收获,解决部分同学的疑惑.教学说明:梳理本节课的重要方法和知识点,加深对本节课知识的理解.让学生在总结的过程中理清思路、整理经验,对本节课所学的知识结构有一个清晰的认识,再通过排忧解难让学生对知识形成正向迁移,从而构建出合理的知识体系,养成良好的学习习惯.2.布置作业:教材第27~28页习题27.1第1,3,5,6题.学生在反思中整理知识、梳理思维,获得成功的体验,积累学习的经验,养成系统整理所学知识的习惯.板书设计27.1 图形的相似提纲挈领,重点突出.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.。
人教版数学九年级下册27.1《图形的相似》课件(共17张PPT)
探究相似图形的关系
图形的放大 图形的缩小
相似图形的关系
两个图形相似,其中一个图形可以看作 由另一个图形放大或缩小得到。
随堂练习
1、教材P25.练习
补充:
1、你认为下列属于选项中哪个才是相似图形的本质属性(D )
A.大小不同
B.大小相同
C.形状不同
D.形状相同
2、下列说法:
①全等的图形一定相似;
归纳总结
所有的直角三角形不一定是相似图形 所以的等腰三角形不一定是相似图形 所有的锐角三角形不一定是相似图形 所有的等边三角形是相似图形 所有的等腰直角三角形是相似图形
相似图形的形状必须完全相同 相似图形与图形的大小、颜色、位置无关
购买楼房时,消费者只能根据户型平面图 纸选房,并且建筑工人建筑是严格按照图纸进 行施工,你认为选好的楼房结构可靠吗?
②相似图形一定全等;
③关于某条直线轴对称的两个图形一定相似;
④关于某个点中心对称的两个图形相似。
正确的有:__①_②_③____
课堂小结
相似图形的定义:
形状相同的图形叫做相似图形。
两个图形相似,如果大小不同, 其中一个图形可以看作由另一个 图形放大或缩小得到。
小练习
1.在下列图形中找出相似图形。
解后思考:
F
位置不同, 但形状相同
F
2.判断下列各组图形是否相似
等 腰 直 角 三 角 形
(1)
等腰Βιβλιοθήκη 直角三角
形
(3)
一
般
直
等
角
边
三
三
角
角
形
形
等
腰
等
直
腰
角
27.1《图形的相似》教案
1.理论介绍:首先,我们要了解相似图形的基本概念。相似图形是指形状相同但大小不一定相同的图形。它是几何学中的一个重要概念,可以帮助我们解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。通过分析两个相似三角形的性质,展示相似图形在实际中的应用,以及如何帮助我们解决问题。
最后,通过本节课的教学,我也发现了一些自身需要改进的地方。比如,在讲解重点难点时,语言表达要更简洁明了,让学生更容易理解。同时,要注重课堂节奏的把握,确保教学内容充实而不紧张。
此外,实践活动环节,学生们在分组讨论和实验操作中表现积极,但也有一些小组在成果展示时表达不够清晰。为了提高学生的表达能力,我打算在以后的课堂中,多给予他们展示和交流的机会,培养他们的语言组织和表达能力。
在学生法的。但在讨论过程中,部分学生的思维过于发散,偏离了主题。针对这个问题,我需要在今后的教学中,加强对学生的引导,确保讨论围绕主题进行。
-难点三:相似图形面积比和周长比的计算。
-学生可能不清楚如何将相似比转化为面积比和周长比。
-举例:指导学生通过相似比计算相似图形的面积和周长的具体步骤,强调对应边的比例关系。
-难点四:将相似图形的知识应用于解决实际问题。
-学生可能不知道如何从实际问题中抽象出几何模型,并运用相似性进行求解。
-举例:提供实际情境,如地图比例尺、放大缩小图形等,指导学生如何运用相似图形的知识解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的相似》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体放大或缩小的情况?”比如,你们玩过的乐高积木,不同大小的积木之间是否有相似之处?这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索图形相似的奥秘。
人教版27.1图形的相似 课件(优质版)
画变式一:画上图把中上AB图、中A’等B’、腰B直C、角B△’CA’分B别C放记大为到a、原b
来、的c、两d倍,(则要a求=:__放_,大c 后=的__顶_,点a 在__格c点.上).
b
d
b
d
B
ac
A
CB’
bd
A’
C’
ac
6.当 __ 时,四条线段a、b、c、d是成比例线段.
bd
若a=3,b=4,c=9,则d=____.
第第二二十十七七章章 相相似似
自主学习,认识相似
2277..11 图图形形的的相似相似
合作交流,理解相似
A B
形状相同的图形叫相似图形.
A'
C
B'
C'
反馈练习,强化相似
1.观察以下每组图案,有相似的图形吗?为什么?
反馈练习,强化相似
反馈练习,强化相似
5.判断下列各组图形是否相似?并说明理由.
反思总结,收获相似
认识一种关系
相似
了解一种方法
放大、缩小
回顾一个旧知 体会一种思想
比例线段 形象到抽象
课堂检测,深化相似
1.下列哪两个图形是相似图形( )
A、(1)与(2)
B、(1)与(3)
C、(2)与(3)
D、(3)与(4)
(1)相似
2.下列图形中一定相似的有( ) ①天空中两朵白云;②两个等腰三角形; ③人民币上的国徽和天安门城楼上的国徽; ④两个正五边形;⑤两个菱形.
B
ac
A
CB’
b
A’
比例线段:对于四
条线段,如果其中两
条线段的比与另两条
d
线段的比相等,那么
27.1图形的相似
∠β=360°-(78°+83°+118°)=81°. H x E 21cm D 118° A β 24cm 18cm α 78° 83° C B F G
四边形ABCD和EFGH相似,它们的对应边 的比相等.由此可得
EH EF x 24 ,即 AC AB 21 18
解得 x=28(cm) E 24cm α F G x H
21cm D A β
18cm B 78° 83° C
118°
例2:如图,点E、F分别是矩形ABCD的边AD、 BC的中点,若矩形ABCD与矩形EABF相似, AB=1,求矩形ABCD的面积. E A D
解:∵矩形ABCD∽矩形EABF
1 1 又∵F是BC的中点 AE AD BC 2 2 1 2 2 BC AB 1 BC 2 2 S矩形ABCD AB BC 2
图形 A
图形 B
图形 C
如果图形A与图形B相似,图形B与图形C相似, 那么图形A与图形C相似。
放大镜下的图形和 原来的图形相似吗?
放大镜下的角与原 图形中角是什么关 系?
你看到过哈哈镜吗?哈哈镜中的形 象与你本人相似吗?
(A)
(B)
(C)
观察下列图形,哪些是相似形?
?
⑴ ⑵ ⑶ ⑷ ⑸ ⑹ (7)
• 相似图形 ——相同形状的图形
• 判断两个图形是否相似
• 利用相似放大或缩小图形
•相似多边形的特征和识别:
相似多边形
特征 识别
对应角相等 对应边成比例
(8)
(9)
?
(10) (11)
(12)
(13)
(14)
观察下面的图形(a)~(g),其中哪些 是与图形(1)、(2)或(3)相似的?