红外热像仪工作原理
flir红外热像仪基本原理

• 对于不透明物体:
– =0 – e+g=1 – e = 1 - g, i. e, e <=1
发射率
© FLIR Systems 2009. All Rights Reserved.
Friday, April 16, 2021
12
发射率
物体表面发射热量的能力叫 发射率.
Friday, April 16, 2021
23
大气窗口
© FLIR Systems 2009. All Rights Reserved.
红外通过大气的透射率取决于波长 和大气条件.
Friday, April 16, 2021
红外图像的大气窗口为: 3 - 5 微米 – 中波/MWIR (SWIR)
© FLIR Systems 2009. All Rights Reserved.
Friday, April 16, 2021
16
黑体 & 实体
• 黑体是反射和透射都为零的物体 .
– 对于黑体: g = 0, = 0, e = 1 – 黑体是完美的辐射体.
• 一个发射率 < 1 的物体通常成为灰体.
© FLIR Systems 2009. All Rights Reserved.
Friday, April 16, 2021
flir红外热像仪基本原 理
1
内容
• 关于红外 • 热传递 • 发射率 • 黑体 & 实体 • 普朗克定律 • 大气窗口 • 热像技术 • 热像技术 vs. 可见光 • 发射 & 反射 • 测量规律
– 对于灰体 : e < 1, e = 常数
红外热成像仪的介绍及工作原理

1.红外热成像技术红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。
红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。
由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征。
因此采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。
2.什么是红外热像图一般我们人眼能够感受到的可见光波长为:0.38—0.78微米。
通常我们将比0.78微米长的电磁波,称为红外线。
自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。
同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。
3.红外热像仪的原理热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,热图像的上面的不同颜色代表被测物体的不同温度。
红外热像仪的非接触式测温方式,能够在不影响轧辊工作的同时测量其实时温度,并随时采取降温措施。
红外热像仪的原理4.红外热成像的特点自然界所有温度在绝对零度(-273℃)以上的物体,都会发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。
大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。
因此,这两个波段被称为红外线的“大气窗口”。
我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。
5.在线式红外热像仪采用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热像仪。
热成像漏水检测仪的工作原理

热成像漏水检测仪的工作原理
热成像漏水检测仪利用红外热像仪技术来检测和定位漏水位置。
其工作原理如下:
1. 红外热像仪感应:热成像漏水检测仪使用红外热像仪感应周围环境的温度变化。
红外热像仪将周围的红外辐射能量转化为电信号,形成红外热图像。
2. 温度差异检测:漏水导致的温度差异是漏水检测的关键。
热成像漏水检测仪通过比较不同区域的温度差异来检测漏水位置。
当漏水后的区域温度较高时,红外热像仪能够准确地检测到漏水。
3. 数据分析和显示:热成像漏水检测仪通过对红外热图像进行数据分析和处理,将漏水位置以图形或数字的形式显示出来。
用户可以根据显示结果来定位和修复漏水问题。
总体来说,热成像漏水检测仪通过感知温度差异来检测和定位漏水位置,具有高精度和快速的优点,可以在实际工程中方便地应用于漏水检测和预防。
制冷型红外热像仪原理

制冷型红外热像仪原理红外热像仪是一种能够感知并显示物体表面红外辐射能量分布的设备。
制冷型红外热像仪是其中一种常见的热像仪,其原理是利用红外辐射与物体热量的关系进行测量和成像。
制冷型红外热像仪的核心部件是红外探测器。
红外探测器是一种能够感受红外辐射并将其转化为电信号的器件。
制冷型红外热像仪使用的红外探测器通常是基于半导体材料的探测器,如铟锑(SbIn)、铟镓锑(InGaAs)等化合物半导体材料。
这些材料具有良好的红外辐射响应特性,能够在较高温度范围内工作。
在制冷型红外热像仪中,红外探测器的工作温度通常需要维持在较低的温度,以提高探测器的灵敏度和分辨率。
为了实现这一点,制冷型红外热像仪使用了制冷系统来冷却红外探测器。
制冷系统通常采用热电冷却(TEC)或者制冷机制冷的方式。
这些制冷系统能够将红外探测器的温度降低到几十摄氏度以下,以保证其正常工作。
当红外探测器接收到物体表面的红外辐射时,辐射能量会引起探测器内部的电荷变化。
红外探测器将这些电荷变化转化为电信号,并经过放大、滤波等处理后传递给成像系统。
成像系统将接收到的电信号转换为图像,并在显示屏上显示出来。
制冷型红外热像仪的工作原理可以简单概括为:红外辐射能量进入红外探测器,探测器将其转化为电信号,经过处理后由成像系统显示为热像。
热像图能够直观显示物体表面的温度分布情况,不同温度的物体在热像图上呈现不同的颜色。
制冷型红外热像仪在许多领域有着广泛的应用。
例如,制冷型红外热像仪可以用于夜视、安防监控、火灾检测、电力设备检测等领域。
在夜视领域,人们可以利用制冷型红外热像仪观察夜晚的景象,发现隐藏在黑暗中的目标。
在安防监控领域,制冷型红外热像仪可以监测人体的红外辐射,实现对安全隐患的及时发现和预警。
在火灾检测领域,制冷型红外热像仪可以通过监测火源的热辐射,快速准确地发现火灾,并进行报警。
在电力设备检测领域,制冷型红外热像仪可以用于检测电力设备的运行状态,发现异常热点,避免设备故障和事故的发生。
热成像摄像机的工作原理

热成像摄像机的工作原理热成像摄像机,又称红外热像仪,是一种能够捕捉和显示物体红外辐射的设备。
它通过感应和记录物体的红外辐射热量,将其转化为可见的图像,从而实现对热量分布的观测和分析。
热成像摄像机的工作原理十分复杂,本文将详细介绍其工作原理及其应用。
一、红外辐射与热成像1. 红外辐射红外辐射是指处于可见光的紫外辐射和微波辐射之间的电磁波辐射,其波长范围大约为0.75至1000微米。
与可见光相比,红外辐射在大气中传输能力更强,不受光线干扰,能够穿透烟尘、雾霾和一些非金属材料。
2. 热辐射物体在温度高于绝对零度时都会发射热辐射,即红外辐射。
热辐射的强度和波长分布与物体的温度密切相关,因此可以通过检测物体的红外辐射来测量其表面温度。
二、1. 红外传感器热成像摄像机包含一个称为红外传感器的关键部件。
红外传感器由一系列微小的测温点组成,每个测温点都可以测量被观测物体上对应的区域的温度。
红外传感器的数量和管理密度决定了热成像摄像机的分辨率。
2. 红外辐射感应当热成像摄像机对准一物体时,被观测物体会发射红外辐射,部分红外辐射会进入热成像摄像机的镜头。
镜头具有红外透过性,在红外光谱范围内允许红外辐射通过。
3. 红外辐射转换进入镜头的红外辐射经过透镜等光学元件的聚焦和转换,会被聚集到红外传感器上的测温点上。
红外传感器通过测量红外辐射的强度并将其转换为电信号,进一步处理。
4. 红外图像生成热成像摄像机将红外传感器测得的电信号转换为数字信号,并根据信号的大小和颜色编码生成一张红外图像。
图像中的每个像素点代表了一个测温点的温度,颜色的变化则用来显示不同温度区域的热分布。
5. 图像显示热成像摄像机将生成的红外图像通过内置的显示屏或输出接口进行显示。
用户可以直接观察并分析得到的红外图像,了解物体的热量分布情况。
三、热成像摄像机的应用1. 电力行业热成像摄像机在电力行业中广泛应用,用于检测电力设备的温度异常。
通过对电力设备进行红外图像扫描,可以及时发现异常热点,预防火灾和设备故障。
红外成像系统简介

THANKS FOR WATCH时监测
实时红外成像技术能够实现快速的目标物监测,及时发现异常情 况,提高预警和响应速度。
动态跟踪
实时红外成像技术能够实现动态跟踪,对移动目标进行连续监测, 提高跟踪精度和实时性。
促进智能化应用
实时红外成像技术能够与人工智能等技术相结合,实现智能化应 用,提高红外成像系统的应用价值。
性能指标
电源效率、稳定性、可靠性等。
03 红外成像系统的特点
穿透烟雾和灰尘的能力
01
由于红外线波长较长,能够较好 地穿透烟雾和灰尘,因此在火灾 、烟雾等场景中,红外成像系统 能够清晰地观测到目标。
02
在工业领域,红外成像系统也常 用于检测设备运行时的温度异常 ,穿透工厂内的烟尘和气体。
夜间或低光环境下的观测能力
红外成像系统简介
目 录
• 红外成像系统概述 • 红外成像系统的组成 • 红外成像系统的特点 • 红外成像系统的优势与限制 • 红外成像系统的未来发展
01 红外成像系统概述
红外成像系统的定义
红外成像系统是一种能够接收并处理 红外辐射的设备,通过将红外辐射转 换为可见光图像,实现对目标物体的 非接触式检测和识别。
红外成像系统不受光照条件限制,能够在夜间或低光环境下 正常工作,观测目标。
在军事侦察、野生动物研究等领域,红外成像系统是不可或 缺的工具,能够在黑暗中捕捉到目标的热辐射。
对温度变化的敏感性
红外成像系统通过测量目标发射的红外辐射来感知温度变化,因此对温度变化非常 敏感。
在医疗领域,红外成像系统可用于检测人体病变部位的温度异常,如乳腺肿瘤等。
工作原理
基于热电效应或光电效应, 将红外辐射转换为电信号。
性能指标
红外热成像仪的原理
红外热成像仪的原理1.红外热成像技术红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。
红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。
由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征。
因此采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。
2.什么是红外热像图一般我们人眼能够感受到的可见光波长为:0.38—0.78微米。
通常我们将比0.78微米长的电磁波,称为红外线。
自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。
同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。
3.红外热像仪的原理热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,热图像的上面的不同颜色代表被测物体的不同温度。
红外热像仪的非接触式测温方式,能够在不影响轧辊工作的同时测量其实时温度,并随时采取降温措施。
红外热像仪的原理4.红外热成像的特点自然界所有温度在绝对零度(-273℃)以上的物体,都会发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。
大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。
因此,这两个波段被称为红外线的“大气窗口”。
我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。
5.在线式红外热像仪采用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热像仪。
红外热成像仪原理和分类
红外热成像仪分类和原理红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。
通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。
热图像的上面的不同颜色代表被测物体的不同温度。
红外辐射简介红外辐射是指波长在0.75um至lOOOum,介于可见光波段与微波波段之间的电磁辐射。
红外辐射的存在是由天文学家赫胥尔在1800年进行棱镜试验时首次发现。
红外辐射具有以下特点及应用:(1)所有温度在热力学绝对零度以上的物体都自身发射电磁辐射,而一般自然界物体的温度所对应的辐射峰值都在红外波段。
因此,利用红外热像观察物体无需外界光源,相比可见光具有更好的穿透烟雾的能力。
红外热像是对可见光图像的重要补充手段,广泛用于红外制导、红外夜视、安防监控和视觉增强等领域。
(2)根据普朗克定律,物体的红外辐射强度与其热力学温度直接相关。
通过检测物体的红外辐射可以进行非接触测温,具有响应快、距离远、测温范围宽、对被测目标无干扰等优势。
因此,红外测温特别是红外热像测温在预防性检测、制程控制和品质检测等方面具有广泛应用。
(3)热是物体中分子、原子运动的宏观表现,温度是度量其运动剧烈程度的基本物理量之一。
各种物理、化学现象中,往往都伴随热交换及温度变化。
分子化学键的振动、转动能级对应红外辐射波段。
因此,通过检测物体对红外辐射的发射与吸收,可用于分析物质的状态、结构、状态和组分等。
(4)红外辐射具有较强的热效应,因此广泛地用于红外加热等。
综上所述,红外辐射在我们身边无处不在。
而对于红外辐射的检测及利用,更是渗透到现代军事、工业、生活的各个方面。
由于人眼对于红外辐射没有响应,因此对于红外辐射的感知和检测必须利用专门的红外探测器。
红外辐射波段对应的能量在O.leV-l.OeV之间,所有在上述能量范围之内的物理化学效应都可以用于红外检测。
远红外热感成像 原理
远红外热感成像原理
远红外热感成像技术,也称为热红外成像或红外热成像,其工作原理基于自然界中所有温度高于绝对零度(-273.15℃)的物体都会不断向外发射红外辐射这一物理现象。
不同温度的物体发出的红外辐射强度和波长各不相同,其中远红外波段主要涵盖了8-14微米的长波红外区域。
具体原理包括以下几点:
1. 红外辐射与温度关系:
- 物体温度越高,其发出的红外辐射能量越强。
- 根据维恩位移定律,物体辐射出的红外光峰值波长与其绝对温度呈反比关系。
2. 探测转换过程:
- 热像仪利用敏感元件(如焦平面阵列,FPA)来捕捉这些红外辐射,并将其转换为电信号。
- 电信号经过放大、处理后形成数字信号,进而生成代表温度分布的图像。
3. 图像显示:
- 将不同的温度对应不同的颜色等级,在显示器上以伪彩色热图的形式呈现出来,使得肉眼可以直观地看到被测物体表面温度的分布差异,也就是所谓的“热像图”。
4. 应用优势:
- 远红外热成像技术能够实现非接触式、全天候的温度测量
和监控,尤其在黑暗、烟雾等视线受限环境中仍能有效工作,因此广泛应用于军事侦察、工业检测、医疗诊断、建筑节能、消防救援等领域。
红外热像仪实践报告(2篇)
第1篇一、前言红外热像仪是一种非接触式温度测量设备,能够实时、快速地检测物体表面的温度分布。
它广泛应用于工业、医疗、军事、科研等领域,具有很高的实用价值。
本报告旨在通过实际操作红外热像仪,了解其工作原理、操作方法及在实际应用中的表现,为后续研究和应用提供参考。
二、实验目的1. 理解红外热像仪的工作原理;2. 掌握红外热像仪的操作方法;3. 学习红外热像仪在实际应用中的表现;4. 分析红外热像仪的优缺点。
三、实验器材1. 红外热像仪一台;2. 待测物体(如金属板、塑料板等);3. 数据采集软件;4. 温度计;5. 实验记录表。
四、实验原理红外热像仪利用物体表面发射的红外辐射能量来检测其温度。
当物体表面温度发生变化时,发射的红外辐射能量也会发生变化。
红外热像仪通过检测物体表面的红外辐射能量,将其转换为电信号,经过处理后显示在屏幕上,从而得到物体表面的温度分布图。
五、实验步骤1. 熟悉红外热像仪的操作方法,包括开机、调整焦距、设置参数等;2. 将待测物体放置在实验台上,确保红外热像仪能够正常拍摄;3. 打开数据采集软件,设置采集参数,如帧率、分辨率等;4. 调整红外热像仪与待测物体的距离,使图像清晰;5. 拍摄待测物体表面的红外热像,并记录采集到的数据;6. 将采集到的数据导入数据采集软件,进行温度分布分析;7. 使用温度计对物体表面进行温度测量,与红外热像仪显示的温度进行对比;8. 实验结束后,整理实验数据,撰写实验报告。
六、实验结果与分析1. 红外热像仪能够实时、准确地检测物体表面的温度分布,具有很高的实用价值;2. 红外热像仪拍摄到的图像清晰,分辨率高,便于观察和分析;3. 通过与温度计的对比,红外热像仪显示的温度与实际温度基本一致,误差在可接受范围内;4. 在实际应用中,红外热像仪能够快速检测出物体表面的温度异常区域,为故障诊断、设备维护等提供有力支持。
七、实验结论1. 红外热像仪是一种实用、高效的温度测量设备,具有广泛的应用前景;2. 红外热像仪在实际应用中表现良好,能够满足各类温度检测需求;3. 在操作过程中,需注意调整焦距、设置参数等,以保证实验结果的准确性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
红外热像仪工作原理
红外热像仪是一种检测并记录物体表面温度的仪器。
其工作原理基于物体发射红外辐射的特性。
当物体的温度高于绝对零度时,其分子和原子会带有热能,从而以电磁波的形式发射能量。
这种辐射包括红外辐射,其波长范围在0.7微米至1000微米之间。
红外热像仪通过使用一种称为热电偶的传感器来探测红外辐射。
热电偶由两种不同材料的导体连接在一起,当它们暴露于红外辐射时,会产生微弱的电压。
这个电压信号被放大并转换成温度读数。
为了捕捉整个场景的红外辐射,红外热像仪使用一系列微小的红外传感器,将红外辐射转换成电压信号,然后映射为图像。
将这些红外传感器排列成一个矩阵,就能够得到高分辨率的红外图像。
红外热像仪图像的热量分布可以通过颜色来表示,通常使用的颜色映射方式是从深蓝色(代表低温)到红色(代表高温)。
用这种方式,可以明显地看到不同区域的温度差异,从而帮助用户分析和识别热点,或者异常温度区域。
红外热像仪在许多领域有着广泛的应用,如建筑工程、电力设备检测、环境监测、医学诊断等。
它可以帮助我们更直观地了解不同材料和物体的温度分布情况,从而提供更好的预防和维护措施。