时空大数据(PPT60页)

合集下载

时空大数据的特点和应用(一)2024

时空大数据的特点和应用(一)2024

时空大数据的特点和应用(一)引言概述时空大数据是指以时空为基础,利用大数据技术获取、存储、处理以及分析的数据集合。

时空大数据的应用潜力巨大,对于许多领域来说,可以帮助提高决策的准确性和效率。

本文将从时空大数据的特点和应用出发,探讨其在不同领域的重要性和实际运用。

一、时空大数据的特点1. 数据规模庞大:时空大数据的特点之一是数据量巨大,具有海量、高维的特点。

2. 时空性强:时空数据的要素包括时和空,涉及时间和地理位置等关键信息。

3. 多源异构性:时空大数据涉及的数据源多样化,并且数据格式、数据结构等存在差异。

4. 实时性要求高:时空大数据分析对数据的实时性要求较高,需要快速获取和处理实时数据。

5. 隐私和安全性需要保障:时空大数据中包含大量个人隐私信息,隐私和安全性的保护是使用时空大数据的重要问题。

二、时空大数据的应用1. 城市交通管理- 实时交通监测:利用时空大数据对交通状况进行实时分析,帮助交通管理部门及时采取相应的调控措施。

- 交通网络优化:通过分析时空大数据,优化交通网络,提高交通流量的效率。

2. 环境监测和气象预测- 空气质量监测:利用时空大数据分析城市空气质量的时空变化规律,并预测未来趋势,用于环境管理和健康保护。

- 极端天气预警:通过时空大数据的分析,提前预警极端天气事件,为相关部门和民众做好应对准备。

3. 金融风控- 欺诈检测:通过分析时空大数据,识别金融欺诈行为的特征,从而帮助金融机构及时发现和防范风险。

- 信用评估:基于时空大数据分析个体信用的时空变化趋势,为金融机构提供信用评估和风险控制的支持。

4. 健康医疗- 疾病流行监测:利用时空大数据分析病例的时空分布规律,预测疾病的传播趋势,帮助制定疫情防控措施。

- 健康管理:通过分析个人的时空行为数据,为个体提供健康管理指导和个性化服务。

5. 基础设施管理- 城市规划优化:利用时空大数据分析人口流动、地理信息等,优化城市规划,提高城市的可持续发展能力。

大数据培训讲义PPT(共 75张)

大数据培训讲义PPT(共 75张)
+ 软件改变世界!
大数据生态:软件是引擎
大数据技术要解决的问题
企业用以分析的数据越全面,分析的结果就越接近于真实。大数据分析意 味着企业能够从这些新的数据中获取新的洞察力,并将其与已知业务的各 个细节相融合。
大数据技术被设计用于在 成本可承受的条件下,通 过非常快速(velocity) 地采集、发现和分析,从 大量(volumes)、多 类别(variety)的数据 中提取价值(value), 将是IT 领域新一代的技 术与架构。
大数据
主讲人:刘永磊
大数据的定义理解
1
大数据时代的背景
什么是大数据 2
大数据的“4V”特征
3
大数据的构成
大数据时代的背景
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到 了一个开始引发变革的程度。它不仅使世界充斥着比以往更多的信息,而且其 增长速度也在加快。互联网(社交、搜索、电商)、移动互联网(微博)、物 联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银 行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。
• 统计和分析:A/B test; top N排行榜;地域占比; 海量数据的查询、统计、更新等操作效率低
文本情感分析
• 非结构化数据
• 数据挖掘:关联规则分析;分类;聚类
图片、视频、word、pdf、ppt等文件存储
• 模型预测:预测模型;机器学习;建模仿真
不利于检索、查询和存储
• 半结构化数据
• 非关系数据库
(NoSQL)
• 数据仓库
• 云计算和云存储
• 实时流处理
分布式文件系统
分布式文件系统(Distributed File System)是指文件系统管理 的物理存储资源不一定直接连接在本地节点上,而是通过计算机 网络与节点相连。

什么是时空大数据(一)

什么是时空大数据(一)

什么是时空大数据(一)引言概述:时空大数据是指通过对时间和空间信息进行采集、储存、管理、分析和应用,获取大规模、多维度、高精度的时空数据的技术和方法。

时空大数据的应用范围广泛,涉及领域包括城市规划、交通管理、环境监测、气象预测等等。

本文将为大家介绍什么是时空大数据的基本概念和特点。

正文内容:一、时空大数据的定义和基本概念1. 时空大数据的定义2. 时空数据和时空大数据的区别3. 时空大数据的基本特点4. 时空大数据的来源和获取方式5. 时空大数据的应用领域和发展前景二、时空大数据的数据特点和处理方法1. 多维度的数据信息2. 高维度的数据量和数据密度3. 多样化的数据形式和格式4. 时空数据的时序性和地理性5. 时空数据的随机性和动态性6. 时空大数据的数据挖掘和分析方法三、时空大数据的存储和管理技术1. 时空数据的存储模式和结构化方法2. 时空数据的索引方法和优化策略3. 时空数据的压缩和加密手段4. 时空大数据的备份和恢复策略5. 时空大数据的安全和隐私保护技术四、时空大数据分析和应用的关键技术1. 时空大数据的数据预处理和清洗方法2. 时空大数据的特征提取和选择技术3. 时空大数据的聚类和分类算法4. 时空大数据的关联分析和推荐算法5. 时空大数据的可视化和交互分析方法五、时空大数据的挑战和发展趋势1. 时空大数据的隐私保护和安全性问题2. 时空大数据的数据共享和开放性3. 时空大数据的数据质量和一致性问题4. 时空大数据的算法效率和计算复杂性5. 时空大数据的跨领域和跨学科合作总结:本文介绍了时空大数据的定义和基本概念,分析了时空大数据的数据特点和处理方法,讨论了时空大数据的存储和管理技术,阐述了时空大数据分析和应用的关键技术,提出了时空大数据的挑战和发展趋势。

随着时空大数据的快速发展,它将在各个领域发挥重要作用,对社会经济发展产生深远影响。

时空大数据

时空大数据

02
PART TWO
“互联网+”与大数据
2.“互联网+”与大数据
2015年3月5日上午举行的十二届全国人大三次会议上,李克强总理 在《政府工作报告》中首次提出“互联网+”,制定了“互联网+”行动计 划,旨在推动移动互联网、物联网、云计算、大数据等与现代制造业结合, 促进电子商务、工业互联网和互联网金融健康发展,引导互联网企业拓展 国际市场。
1.引言
成立的研究机构: 1. 国 家 超 级 计 算 天 津 中 心 大 数 据 处 理 技 术 与 应 用 国 家 地 方 联 合 工程实验室 2.中国科学院大学工程管理与信息技术学院大数据工程技术研究室 3.浙江省海洋大数据工程技术重点实验室 4.江苏省大数据工程技术实验室(创建于 2011 年,依托单位:南京信 息工程大学) 5.南京大学PASA大数据实验室(创建于2010年,依托单位:南京大学) 6.四川省成都市电子科大大数据研究中心(创建于2014年,依托单位 : 成都电子科技大学) 7.京津翼大数据研究中心(创建于 2015 年,依托单位:首都经济贸易 大学)
2.“互联网+”与大数据 如何认识大数据
• 定义
关于大数据的定义,目前还没有一个统一的公认的说法。综合Gartner公 司的 Merv Adrian 、麦肯锡全球数据研究所、 Wikipedia 和大数据研究机构
Cartner等给出的定义(概念),可以认为:
大数据是指其规模(体量)和复杂程度(多样性)都常常超出了目前数据 库管理软件和传统数据处理技术在可接受的时间内(快速性)收集、存储、管 理、检索、分析、挖掘和可视化(价值)能力的数据集的聚合。
1.引言
9. 段云峰,秦晓飞著,大数据的互联网思维 [M] ,电子工业出版社, 2015.10 10. (美)埃里克·西格尔著,周昕译,大数据预测 [M] ,中信出版社, 2015.4 11. (美)Bernard Marr著,秦磊,曹正凤译,智能大数据SMART准则: 数据分析方法、案例和行动纲领[M],电子工业出版社,2015.10 12. (美)陈封能,(美)斯坦巴赫,(美)库玛尔著,范明等译,数 据挖掘导论(完整版)[M],人民邮电出版社,2011.1 13. (美)Michael Manoochehri著,戴志伟,许杨毅等译,寻路大数 据:海量数据与大规模分析[M],电子工业出版社,2014.11 14. 杨旭著,重构大数据统计[M],电子出版社,2014.8 15. 杨轶莘著,大数据时代下的统计学[M],电子出版社,2015.9 16. 陈建英,黄演红著,互联网+大数据—精准营销的利器[M],人民邮 电出版社,2015.8

时空大数据的典型应用

时空大数据的典型应用

时空大数据的典型应用引言时空大数据在当今社会发展中扮演着重要的角色,它涵盖了时间和空间两个维度的信息,可以帮助我们深入了解现实世界中发生的各种事件、现象和规律。

本文将介绍时空大数据的定义、特点以及其在各个领域的典型应用。

时空大数据的定义和特点时空大数据的定义时空大数据是指包含时间和空间信息的大规模数据集合。

它可以是通过传感器、监测设备、移动设备等采集到的现实世界中各种事件和物体的数据,也可以是通过人工智能、互联网等渠道收集到的相关数据。

时空大数据的特点1.大规模:时空大数据是大规模数据的一种,它包含了庞大的数据量,需要使用大数据处理技术来进行存储、管理和分析。

2.多样性:时空大数据来源的多样性使得数据的类型和结构各异,包括文本、图像、音频、视频等多种形式的数据。

3.高时空分辨率:时空大数据具有高时空分辨率的特点,可以精确描述不同时间点和地点的信息。

4.实时性:时空大数据具有实时性,可以及时反映现实世界中发生的事件和现象。

时空大数据在城市规划中的应用交通拥堵识别与优化1.数据采集:利用传感器、摄像头等设备采集道路交通数据,包括车辆流量、车速和交通信号灯信息等。

2.数据分析:根据采集到的数据,通过大数据分析技术判断交通是否拥堵,并确定拥堵的原因和位置。

3.交通优化:基于数据分析的结果,进行交通信号灯优化、路线规划等措施,提高城市交通效率。

城市人流热点分析1.数据采集:通过无线网络、移动设备等采集城市居民的位置信息,用于分析人流分布和热点区域。

2.数据处理:利用大数据处理技术,对采集到的位置信息进行聚类和热力图绘制,得出人流热点分布图。

3.人流管理:根据人流热点分析结果,合理规划城市设施和资源,优化人流分布,提高城市运行效率。

空气质量监测与预测1.数据采集:利用传感器和监测设备采集城市空气中的各种污染物浓度数据。

2.数据分析:通过大数据分析技术,对采集到的数据进行处理和分析,得出各个地区的空气质量指数。

时空大数据的特点和应用(二)2024

时空大数据的特点和应用(二)2024

时空大数据的特点和应用(二)引言概述:时空大数据是指基于时间和空间信息所产生的大规模数据集合。

随着科技的不断进步和人类对大数据的需求增加,时空大数据的重要性也日益凸显。

本文将从以下五个大点来阐述时空大数据的特点和应用。

正文:一、时空大数据的特点1.数据量巨大:时空大数据是由大量的时间和空间信息构成,数据量庞大,造成了数据管理和分析的挑战。

2.数据多样性:时空大数据包含多种类型的数据,如GPS轨迹数据、卫星遥感数据、传感器数据等,多样性使得数据处理更为复杂。

3.数据高维度:时空大数据涉及的数据维度往往很高,需要采用特定的方法和算法来进行处理和分析。

4.数据实时性:时空大数据是实时生成的,需要实时处理和分析,以满足实时决策和应用需求。

5.数据隐私性:时空大数据可能包含个人隐私信息,需要进行隐私保护和安全性控制。

二、时空大数据的应用领域1.智能交通:利用时空大数据可以分析交通流量、交通拥堵情况,优化交通导航和路况预测系统。

2.环境监测:通过分析时空大数据,可以实时监测大气污染、水质变化、地质灾害等环境信息,提供环境管理和预警决策支持。

3.城市规划:借助时空大数据,可以分析人口分布、城市用地利用状况等信息,为城市规划和建设提供决策参考。

4.灾害管理:时空大数据可以用于预测和管理自然灾害,如地震、台风等,提高灾害应对能力和减少人员伤亡。

5.社交网络:利用时空大数据可以分析人际关系网络、用户行为模式,为社交媒体推荐系统和广告定向提供支持。

三、时空大数据的挑战和问题1.数据清洗和校正:时空大数据中存在噪声和错误数据,需要进行清洗和校正,以提高数据质量和准确性。

2.数据存储和管理:时空大数据的存储量庞大,需要采用合适的存储结构和管理策略,提高数据的访问效率和可靠性。

3.数据分析和挖掘:时空大数据的高维度和多样性使得数据分析和挖掘变得更为复杂,需要开发创新的算法和模型来处理和分析数据。

4.隐私保护和安全性:时空大数据可能包含敏感信息,需要采取隐私保护和安全性措施,防止数据泄露和滥用。

时空大数据是什么意思(二)2024

时空大数据是什么意思(二)2024

时空大数据是什么意思(二)引言概述
时空大数据是一种新兴的数据类型,它结合了时空信息和大数据分析技术,可以帮助我们理解和洞察人类活动在时空维度下的变化规律。

本文是《时空大数据是什么意思》系列的第二部分,将继续探讨时空大数据的定义、应用场景以及技术挑战等方面。

正文内容
一、时空大数据的定义
1. 时空大数据的基本概念
2. 时空大数据的特点和特性
3. 时空大数据与传统数据的区别与联系
4. 时空大数据的数据来源和获取方式
5. 时空大数据的数据处理和存储方法
二、时空大数据的应用场景
1. 城市规划与交通管理
2. 智慧旅游与地理信息服务
3. 环境监测与资源管理
4. 天气预测与灾害应对
5. 金融科技与商业分析
三、时空大数据的技术挑战
1. 数据获取和预处理的挑战
2. 数据存储和索引的挑战
3. 数据可视化和交互分析的挑战
4. 时空数据模型和算法的挑战
5. 隐私保护和安全性的挑战
四、时空大数据的前景与发展趋势
1. 时空大数据对社会发展的重要性
2. 时空大数据的市场前景与商业价值
3. 时空大数据技术的研究与创新方向
4. 时空大数据与人工智能、物联网等技术的融合
5. 时空大数据的应用案例与成功经验分享
五、总结
时空大数据作为一种新兴的数据类型,具有广泛的应用前景和挑战。

通过对时空大数据的定义和特点进行概述,我们了解到了它的重要性和在不同领域中的应用场景。

同时,时空大数据在获取、存储、处理和分析过程中也面临着一系列的技术挑战。

未来,随着技术的不断进步和应用的深入探索,时空大数据有望成为推动社会发展和创新的重要力量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为人类社会创造大价值,一切靠数据说话,凭 数据决策,已经成为人们必须面对的问题。正因为如此,关注并从事该领 域研究的人越来越多,特别是近几年来,一些学者撰写和出版了不少有关 大数据的著作,各地先后成立了不少大数据方面的中心、实验室、研究院 等。
1.引言
撰写出版的著作:
1. (英)迈尔-舍恩伯格,(英)库克耶著,盛杨燕,周涛译,大数据 时代[M],浙江人民出版社,2013.6
1.引言
9. 段云峰,秦晓飞著,大数据的互联网思维[M],电子工业出版社, 2015.10
10. (美)埃里克·西格尔著,周昕译,大数据预测[M],中信出版社, 2015.4
11. (美)Bernard Marr著,秦磊,曹正凤译,智能大数据SMART准则: 数据分析方法、案例和行动纲领[M],电子工业出版社,2015.10
2. (美)BillFranks著,黄海,车皓阳,王悦等译,驾驭大数据[M], 人民邮电出版社
3. (美)著,王斌译,大数据挖掘[M],人民邮电出版社,2013.2 4. (英)迈尔-舍恩柏格著,袁杰译,删除:大数据取舍之道[M],浙
江人民出版社,2013.1 5. 涂子沛著,大数据[M],广西师范大学出版社,2012 6. (美)Jure Leskovec,Anand Rajaraman,Jeffrey David Ullman
时空大数据:挑战与机遇
2020年11月25日
01 引言
CONTENT
02 “互联网+”与大数据
03 时空大数据 04 面临的挑战与机遇
05 总结
01 引言 PART ONE
1.引言
当前,人们都在谈论“大数据”,甚至认为全球信息化已迈入 “大数据时代”。随着智能感知、互联网和物联网及云计算(互联网+) 等新兴信息技术的迅速发展,人们的行为、位置,甚至身体、生理特征, 大气、水质、环境的每一点变化,都成为了可被感知、记录、存储、分析 和利用的数据;事实上,随着全球卫星导航定位技术、天空地一体遥感技 术、地理信息系统技术和通信网络技术的发展,地球表层的几何特征和物 理特征等,早就成为了可被感知、记录、存储、分析和利用的地理时空数 据(时空数据)。因此,“大数据时代”的到来,是信息时代数字化、网 络化和智能化发展的必然趋势,是全球信息化发展到高级阶段的产物。
20. (美)雷·库兹韦尔著,盛杨燕译,人工智能的未来(揭示人类思维 的奥秘)[M],浙江人民出版社,2016.3
21. (日)松尾丰,盐野诚 ,陆贝施译,大智能时代:智能科技如何改 变人类的经济、社会与生活[M],机械工业出版社,2016.1
22. 王汉华,刘兴亮,张小平著,智能爆炸(开启智能新时代)[M],机 械工业出版社,2015.9
23. 王家耀等编著,网格地理信息服务概论[M],科学出版社,2014.6
1.引言
成立的研究机构: 1. 国 家 超 级 计 算 天 津 中 心 大 数 据 处 理 技 术 与 应 用 国 家 地 方 联 合 工程实验室 2.中国科学院大学工程管理与信息技术学院大数据工程技术研究室 3.浙江省海洋大数据工程技术重点实验室 4.江苏省大数据工程技术实验室(创建于2011年,依托单位:南京信 息工程大学) 5.南京大学PASA大数据实验室(创建于2010年,依托单位:南京大学) 6.四川省成都市电子科大大数据研究中心(创建于2014年,依托单位 : 成都电子科技大学) 7.京津翼大数据研究中心(创建于2015年,依托单位:首都经济贸易 大学)
12. (美)陈封能,(美)斯坦巴赫,(美)库玛尔著,范明等译,数 据挖掘导论(完整版)[M],人民邮电出版社,2011.1
13. (美)Michael Manoochehri著,戴志伟,许杨毅等译,寻路大数 据:海量数据与大规模分析[M],电子工业出版社,2014.11
14. 杨旭著,重构大数据统计[M],电子出版社,2014.8 15. 杨轶莘著,大数据时代下的统计学[M],电子出版社,2015.9 16. 陈建英,黄演红著,互联网+大数据—精准营销的利器[M],人民邮
1.引言
15.智能地学信息处理湖北省重点实验室(创建于2015年,依托单位: 中国地质大学(武汉))
16.华东师范大学数据科学与工程研究院(创建于2012年,依托单位华 东师范大学)
17.山东农业大学农业大数据研究中心 18.厦门大学云计算域大数据研究中心 19.华中科技大学大数据— 数据流联合研究中心 20.石油大学大数据研究中心 21.清华大学遥感大数据研究中心 22.湖南大学大数据处理与行业应用研究中心(创建于2013年,依托单
著,王斌译,大数据:互联网大规模数据挖掘与分布式处理(第2版) [M],人民邮电出版社,2015.7 7. (美)坎塔尔季奇著,王晓海,吴志刚译,数据挖掘:概念、模型、 方法和算法(第2版)[M],清华大学出版社,2013.1 8. (美)Jiawei Han等著,范明等译,数据挖掘:概念与技术[M],机 械工业出版社,2012.3
1.引言
8.中国国际经贸大数据研究中心(创建于2012年,依托单位:国家工业和信息 化部和电子商务协会) 9.中国教育大数据研究院(创建于2015年,依托单位:曲阜师范大学和中国统 计信息服务中心) 10.农业互联网大数据中心(创建于2015年,依托单位:中国农业大学和软通动 力信息技术(集团)有限公司) 11.环保大数据研究中心(创建于2014年,依托单位:西安交通大学) 12.中国旅游大数据研究中心(创建于2015年,依托单位:北京第二外国语学院) 13.国家级大数据产业发展集聚区(创建于2015年,依托单位:贵阳·贵安) 14.武汉东湖大数据交易中心(创建于2015年,依托单位:武大吉奥、武汉智慧 产业园、汉口银行、武汉东湖创投)
电出版社,2015.8
1.引言
17. 吴朝晖,陈华钧,杨建华著,空间大数据信息基础设施[M],浙江大 学出版社,2013.1
18. (美)库兹韦尔著,李庆诚,董振华,田源译,奇点临近(2045年, 当计算机智能超越人类)[M],机械工业出版社,2016.3
19. (美)杰瑞·卡普兰著 ,李盼译,人工智能时代(人机共生下财富、 工作与思维的大未来)[M],浙江人民出版,2016.4
相关文档
最新文档