膨胀螺栓底孔

膨胀螺栓底孔
膨胀螺栓底孔

宝贝名称:不锈钢膨胀螺丝

宝贝规格:M6-M20全系列

宝贝材质:不锈钢(201 304 316)

可广泛用于:

1: 紧固空调、热水器、吸油烟机、悬挂物品等

2: 固定无框阳台窗、防盗门窗、厨房、浴室组件等

3: 吊顶丝杆固定(与套管及锥帽组合使用)等

4: 其他需要固定的场合等

膨胀螺丝安装有一下几点须注意:

1、钻孔深度:相关资料介绍的是膨胀管的长度,但我们在具体施工中发现这个深度不够,可能给孔内杂物残留量有关,所以你最好还是比膨胀管的长度深5毫米左右。只要你大于或等于了膨胀管的长度,那么留在地下的膨胀螺栓的长度等于或小于膨胀管的长度。

2、钻孔直径:

M6系列钻孔直径为10mm,M8系列钻孔直径为12mm

M10系列钻孔直径为14mm,M12系列钻孔直径为16mm

M14系列钻孔直径为19mm,M16系列钻孔直径为23mm

M18系列钻孔直径为26mm,M20系列钻孔直径为26mm

3、膨胀螺栓对地面的要求当然是越硬越好,这也要看你需要固定的物件受力情况。安装在混凝土中(C13-15)的受力强度是在砖体中的五倍。

4、正确安装在混凝土中的一颗M6、M8、M10、M12的膨胀螺栓后,它的最大静止受力分别是120kg、170kg、320kg、

510kg。

大型管道支吊架计算选型及安装施工步骤图解

大型管道支吊架计算选型及安装施工步骤图解 1重点、难点分析 难点: 1、管道系统复杂,支架形式多样,选型难以把握,支架易变形产生隐患;措施: 1、采用优质钢材制作; 2、进行满载荷计算,对支架进行受力分析; 3、选取经济可靠的支架; 难点: 2、管道管径大,受力集中;支架数量庞大,安全隐患点多; 措施:

1、对焊工进行技术交底,选用技术过硬焊工进行专职制作;确保焊接质量和效率; 2、对焊缝进行防腐处理,必要时进行探伤检查; 2支吊架的选型 1、计算管道重量 按设计管道支吊架间距内的管道自重、满管水重、保温层重及10%的附加重量(管道连接件等)计算; 2、设计载荷 垂直荷载:考虑制造、安装等因素,采用支吊架间距的标准荷载乘以1.35的荷载分项系数; 水平荷载:水平荷载按垂直荷载的0.3倍计算; 不考虑风荷载。

3、横担抗弯强度计算 横担存在水平推力时抗弯强度按下式计算 横担不存在水平推力时抗弯强度按下式计算

式中: rx、ry ? ?截面塑性发展系数 1)承受静力荷载或间接承受动力荷载时, rx = ry =1.05。 2)直接承受动力荷载时, rx = ry =1。 Mx、My? ?所验算截面绕x轴和绕y轴的弯矩(N?mm ) Wx、Wy ? ?所验算截面对x轴和对y轴的净截面抵抗矩(mm3 ) f? ?钢材的抗弯、抗拉强度设计值(N/mm2) 4、实例分析 现以两根DN400的无缝钢管一起做支架进行举例说明:

(1)支架具体数据如上图所示,支架间距设置为4.8m一个;(2)计算管道重量: 查阅五金手册并计算可得下表: (3)计算时,以10Kg为基数,即不满10Kg的按照10Kg计算。支架间距为4.8m,即每个支架相当于要承受4.8m管道的重量4.8mDN400无缝钢管重量: M=4.8*每m满水重=4.8*230=1104kg 故受力F=M*g=11040N (4)载荷计算

膨胀螺栓规格表

膨胀螺栓规格表: 规格有如下种类: 6*60 6*65 6*80 6*100 8*60 8*70 8*80 8*100 8*120 8*150 10*80 10*90 10*100 10*120 10*150 10*180 10*200 12*80 12*90 12*100 12*110 12*120 12*150 12*180 12*200 14*100 14*120 14*150 14*180 14*200 16*120 16*150 16*180 16*200 16*250 18*150 18*180 18*200 20*150 20*180 20*200 20*250 22*150 22*180 22*200 22*250 24*150 24*200 24*250 24*300 根据品牌不同略有差异! 膨胀螺栓,是将管路支/吊/托架或设备固定在墙上、楼板上、柱上所用的一种特殊螺纹连接件。碳钢螺栓的等级分为3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10余个等级。 小数点前后的数字分别表示螺栓材料的公称抗拉强度和屈强比,例如:标记8.8级螺栓表示材料的抗拉强度达到800MPa,屈强比为0.8即其屈服强度达到800x0.8=640MPa。 性能等级4.6级的膨胀螺栓,其含义是: 1、膨胀螺栓材质公称抗拉强度达400MPa级;

2、膨胀螺栓材质的屈强比值为0.6; 3、膨胀螺栓材质的公称屈服强度达400×0.6=240MPa级 膨胀螺栓性能等级的含义是国际通用的标准,相同性能等级的膨胀螺栓,不管其材料和产地的区别,其性能是相同的,设计上只选用性能等级即可。 注意事项 1、打孔深度:具体施工中深度最好还是比膨胀管的长度深5毫米左右。只要大于或等于了膨胀管的长度,那留在地下的内膨胀螺栓的长度等于或小于膨胀管的长度。 2、内膨胀螺栓对地面的要求当然是越硬越好,这也要看你需要固定的物件受力情况。安装在混泥土中(C13-15)的受力强度是在砖体中的五倍。 3、正确安装在混泥土中的一颗M6/8/10/12的内膨胀螺栓后,它的最理想最大静止受力分别是120/170/320/510公斤。 适用范围 目前主要应用于国外高端建筑领域,如欧洲,美国,中东,日韩等发达国家,2013年进入国内市场。 优势 1.适用性广泛。只要公件螺纹尺寸符合,适合任何形式锚栓头型。 2.施工法选择。可依需求采定点预置,或於单一施工补行钻孔在打(装)入,其功能与成效完全一致.

膨胀螺栓标准

膨胀螺栓标准,膨胀螺栓国家标准JB/ZQ4763-2006 膨胀螺栓规格表

膨胀螺栓执行标准 一、膨胀螺丝之固定原理 膨胀螺丝之固定乃是利用挈形斜度来促使膨胀产生摩擦握裹力,达到锚定效果。 二、膨胀螺丝之埋入深度 一般膨胀螺丝之埋入深度以其固定用螺栓径之4倍为计算基准,当然埋入越深其所能承受之拉力、剪力也越大,但因厂家设计时需要考虑因素含材质及锚定等问题。 三、膨胀螺丝使用之参考依据 (一)混凝土之强度 (二)固定螺丝之强度(依材质计算之) (三)膨胀螺丝之强度(厂家设计) 四、膨胀螺丝的强度 膨胀螺丝的强度测试,以往均以油压器加压,在拉出膨胀螺丝的最大力量为其抗拉强度,这种测试方法的缺点就是未能测知螺丝离开水泥的变位情况,也就是说,我们无法知道膨胀本身材料的弹性应力是在几牛顿之内,因此新型的测试仪器,是把拉力与变位以坐标图画出,Y轴为拉力,X轴为变位(如图)当拉力上升时,变位随之增大,直到水泥破裂或膨胀螺丝,拔出或拉断。此一曲线的最高点,即为极限抗拉力,另外当拉力上升到某一点,如去除拉力后,变位仍能回到原处者,这一点正是膨胀螺丝本身材料的降伏点,也正是我们设计上所要的比例荷重。 常用膨胀螺丝的变位曲线,约可分为5钟。 1、化学锚栓,SB高拉力膨胀螺丝 2、NC型锤钉式.H型.DR型 3、SH型套管式SHF型

4、尼龙套 5、木塞 五、安全率之采用 一般安全采用方向有二: (一)极限强度法:此法乃是将膨胀打入混凝土内拉出,以其破坏点为基准,再以4-5倍之安全率为可用强度。此法于国外之采用已有数十年之历史。 (二)比例强度法:此法测试方法用(一),但重点为求出变形点(即为比例荷重),以此为采用基准,再考虑以安全率2倍为可用强度,因其可为路德线(Luder''s Line)观知“应力一应变”情形,故较为精确及便捷,但因其欲求出变点(比例荷重),较极限强度法复难,且须使用而较精准之仪器,故一般为研究上采用,此法亦符合ASTME488-88规定。 极限强度安全法之安全率,以目前国内大都采用4倍为主(依建筑技术规则之规定,吊装件重量四倍强度)但因考虑地震等因素,对于较重要之工程或建物,需顾及其安全性、生命性等因素时,应考虑5倍以上。而动荷重因其加力于物体上之动力条件使材料产生棒内阻力(resiting force of bar)最大为逐渐返加外力之两倍,故动荷重之安全率考虑为8倍以上,若已考虑突发加力或震动力时,当可按一般之安全率考虑使用4-5倍,上述棒内应力系限定于比例限度之内。事实上,安全率之考虑,应由设计者或工程师依据设计实际需要加以研判考虑。 比例强度法之安全率较为单纯,因其已求出比例荷重,故一般以比例荷重之40%-60%为安全率,本公司建议采用之一般长期荷重为比例强度之50%。 六、水泥强度之考虑 水泥在灌浆过程中,由于沉沙或出水问题,往往造成水泥本身上下强度不均的事实现象,这也是必需现场测试的主要原因,另外也就是要把实验室中所测试的结果加以修正以应用到实际的工程位置上,因此修正系数如下: ●天花板及墙壁之施工修正系数为0.8—0.9 ●地面施工,修正系数为0.7—0.8

膨胀螺栓施工及拉拔试验要求

膨胀螺栓施工及拉拔试验要求 一、施工要求: 1、膨胀螺栓的选用:品牌及样品必须经过项目部确认,到场实物与样品一致,并提供产品合格证明资 料,选用规格参照附件《膨胀螺栓安装试验参数》。 2、打孔前最好使用光电测量仪进行吊点的弹线定位,装修吊顶及长距离各类管线必须使用。 3、每次批量安装膨胀螺栓打孔之前,应先做钻头规格适配试验,经适配试验合格后方可批量打孔。在 更换钻头和使用不同批次材料时,应重新做适配试验。 4、根据膨胀螺栓长度需要的钻孔深度,在电锤上设置限位。 5、打孔时电锤应垂直用力,不要摆动,防止孔洞直径偏大,而造成膨胀螺丝锚固不牢。 6、作业人员手持电锤打孔,禁止将电锤绑在长杆上打孔。 7、除特殊位置不具备条件外,膨胀螺栓锚固位置与混凝土结构边缘的间距要大于倍孔深,膨胀螺栓之 间的间距也要尽量满足同样要求。 8、安装后套管不外露、加垫片并将螺母紧固牢固,紧固螺母时禁止采用手持长杆套筒紧固的作法。 二、拉拔试验要求 1、拉拔试验仪器首选可显示试验拉力数据的电子测量仪,如条件不具备,可选用能直观看出重量的重 物作为测试块,试验承重支架离开地面高度不超过200mm。 2、试验荷载应考虑施工人员在吊载物体上面作业的动荷载以及系统运行中的震动疲劳载荷,以专业工 程师计算实际承载重量的2倍为基准,但不得超过其极限抗拉力。 3、禁止采用吊篮上站人方法进行试验。 4、试验完成后填写部门提供的《膨胀螺栓拉拔试验报告》,并由相关人员签字确认。 三、拉拔试验步骤:

a) 试验前检查螺母安装是否紧固,用记号笔做好标记 b) 试验时对电子测试仪的读数进行拍照,作为依据 C)试验后检查紧固螺母位置是否有松动和旋转,膨胀螺栓是否有拉出现象 附件

膨胀螺栓规格及性能

1.普通膨胀螺栓 (1)性能、用途:膨胀螺栓由膨胀螺栓套管及螺栓两件组成,适用于在混凝土及砖砌体墙、地基上作锚固体。其受力性能见表48~49。 膨胀螺栓受力性能(一)表48 螺栓规格 (毫米) 钻孔尺寸(毫米)受力性能(公斤) 直径深度允许拉力允许剪力 M6 M8 M10 M12 M16 10.5 12.5 14.5 19 23 40 50 60 75 100 240 440 700 1030 1940 180 330 520 740 1440 注:表列数据系按铺固基体为标号大于150号混凝土。膨胀螺栓受力性能(二)表49 螺栓规格(毫米)埋深 (毫米) 不同基(砌)体时的受 力性能(公斤) 锚固在75#砖砌体上锚固在150#混凝土上 拉力剪力拉力剪力 允许值极限值允许值极限 值 允许 值 极限 值 允许 值 极限 值 M6×55 M8×70 M10×85 M12×105 M16×14035 45 55 65 90 100 225 390 440 500 305 675 1175 1325 1500 70 105 165 245 460 200 319 500 734 1380 245 540 940 1060 1250 610 1350 2350 2650 3100 80 150 235 345 650 200 375 588 863 1625 (2)规格见图26、表50~51。 膨胀螺栓规格(一)表50 型号规格 (毫米) 各部尺寸尺寸(毫米) 安装后尺寸 (毫米) L L1 φH a b 重量 (公斤/100件) Ⅰ型M6×65 M6×75 M6×85 M8×80 M8×90 M8×100 M10×95 M10×110 65 75 85 80 90 100 95 110 35 35 35 45 45 45 55 55 10 10 10 12 12 12 14 14 3 3 3 3 3 3 3 3 8 8 8 9 9 9 12 12 2.77 2.93 3.15 6.14 6.42 6.72 10 10.9

支架制作安装及选型

5.2.1 支架制作安装流程 图5.2.1-1 支架制作安装流程 5.2.2 支吊架制作安装要求 1、支架下料前,先将型钢调直。小型型钢下料采用砂轮切割机切割,大型型钢可采用火焰切割。割切断面的延边和毛刺,用砂轮磨光机磨光,保证切口端面美观。 2、支架钻孔应使用台钻,严禁使用火焰割孔,直角支架在转角处要采用煨弯,煨制要圆滑均匀。支吊架要做到无毛刺、豁口、漏焊等缺陷,本工程支架采用镀锌型钢支架,因此支架制作好安装前要二次镀锌,在安装后有损坏部分及时刷漆防腐。 3、支架安装要牢固可靠,生根点采用膨胀螺栓的,所钻孔的直径与膨胀螺栓的外径应匹配,严禁在空心砖墙上使用膨胀螺栓,确保生根点的承重能力。在预埋件上焊接生根时要确保焊接质量,防止虚焊及焊接强度不够。 4、成排管道尽量使用综合支架,综合支架的生根点必须在预埋件上焊接,如没有预埋件必须使用符合要求的膨胀螺栓,以确保支架的承重能力。 5、立管的承重支架安装要牢固可靠,所采用的形式及组合焊接的质量必须达到要求,必要时应做承重试验,支架与管道的锚接必须可靠牢固。 6、管道支、吊架位置要准确,做到横平竖直,平整牢固,与管道接触紧密。在支架上固定管道,采用U型管卡。制作固定管卡时,卡圈必须与管道外径紧密吻合、紧固件大小与管径匹配,拧紧固定螺母后,管道要牢固不动。管卡外露丝扣必须相同,长短一致。 7、垂直管道支架安装应设置防晃支架和固定承重支架。立管底部设一个承重固定支架,同时设置防晃支架;主管三通与管道弯头处应增设支架固定,固定支架必须安装在设计规定的位置上,不得任意移动。立管支架现场制作安装时,采用“吊垂线”法,从立管安装位置的顶端,吊线锤,逐层核对,确保该管线在能够施工的有效尺寸范围内;再确定该管线具体安装位置,标注需要设置支架的地点,测量出该点支架外形尺寸,编号登记,依次制作安装。 9、对采用沟槽连接的大口径水平管,在卡箍连接点,需增设支架。

膨胀螺栓国家标准规格表

膨胀螺丝膨胀螺栓国家标准JB/ZQ4763-2006 膨胀螺栓规格表 膨胀螺栓执行标准 一、膨胀螺丝之固定原理膨胀螺丝之固定乃是利用挈形斜度来促使膨胀产生摩擦握裹力,达到锚定效果。 二、膨胀螺丝之埋入深度一般膨胀螺丝之埋入深度以其固定用螺栓径之 4 倍为计算基准,当然埋入越深其所能承受之拉力、剪力也越大,但因厂家设计时需要考虑因素含材质及锚定等问题。 三、膨胀螺丝使用之参考依据 (一)混凝土之强度 (二)固定螺丝之强度(依材质计算之) (三)膨胀螺丝之强度(厂家设计) 四、膨胀螺丝的强度膨胀螺丝的强度测试,以往均以油压器加压,在拉出膨胀螺丝的最大力量为其抗拉强度,这种测试方法的缺点就是未能测知螺丝离开水泥的变位情况,也就是说,我们无法知道膨胀本身材料的弹性应力是在几牛顿之内,因此新型的测试仪器,是把拉力与变位以坐标图画出,Y 轴为拉力,X 轴为变位(如图)当拉力上升时,变位 随之增大,直到水泥破裂或膨胀螺丝,拔出或拉断。此一曲线的最高点,即为极限抗拉力,另外当拉力上升到某一点,如去除拉力后,变位仍能回到原处者,这一点正是膨胀螺丝本身材料的降伏点,也正是我们设计上所要的比例荷重。 拉爆螺丝 常用膨胀螺丝的变位曲线,约可分为 5 钟。1、化学锚栓,SB 高拉力膨胀螺丝2、NC 型锤钉式.H 型.DR 型3、SH 型套管式SHF 型4、尼龙套5、木塞 五、安全率之采用一般安全采用方向有二: (一)极限强度法:此法乃是将膨胀打入混凝土内拉出,以其破坏点为基准,再以4-5 倍之安全率为可用强度。此法于国外之采用已有数十年之历史。 (二)比例强度法:此法测试方法用(一),但重点为求出变形点(即为比例荷重),以此为采用基准,再考虑以安全率 2 倍为可用强度,因其可为路德线(Luder's Line) '观知“应力一应变”情形,故较为精确及便捷,但因其欲求出变点(比例荷重),较极限强度法复难,且须使用而较精准之仪器,故一般为研究上采用,此法亦符合ASTME488-88 规定。极限强度安全法之安全率,以目前国内大都采用 4 倍为主(依建筑技术规则之规定,吊装件重量四倍强度)但因考虑地震等因素,对于较重要之工程或建物,需顾及其安全性、生命性等因素时,应考虑 5 倍以上。而动荷重因其加力于物体上之动力条件使材料产生棒内阻力(resiting force of bar)最大为逐渐返加外

设备安装抗震加固螺栓的计算及选择

设备安装抗震加固螺栓的计算与选择 关于此次陕西西安联通数据中心用的底座采用冷轧板钢质材料焊接而成,底座600宽,1200深,高760(单位:mm)单个底座与地面固定采用M12膨胀螺丝,每个底座配置4个8公分长不锈钢膨胀螺丝与地面固定,底座与底座配置6个螺丝固定,整体稳固性很强,底座有4个支角,现场可以快速水平调节。 一、计算与选择的步骤及要点: 1 计算安装在建筑物楼面上通信设备的水平地震作用;一般我们 无法得到建筑物自振周期与通信设备自振周期,当缺乏上述参数时,水平地震作用按公式(1)计算: 水平地震作用计算公式: F = 1.5 ?k ? (1 + 2 h ) ?a max ? G(1) H 1 H 其中:k1表示设备的重要度系数, h 表示设备所在楼面的地上高度,(mm) H 表示建筑物地上总高度,(mm) α max表示相应于建造物基本自振周期的最大水平地震影响系数, G 表示设备的重力荷载,(N) 2 计算设备顶部与上梁锚固螺栓的轴向力,当每个连连构件采用一个锚固螺栓时,与上梁锚固螺栓的轴向力按公式(2)计算。 N = γEh? F H? h G (2)m? h e 其中:N 表示加固螺栓轴心力(N); h G表示设备重心高度(mm); he 表示设备总高度(mm); M 表示连结螺栓的数量,一般为 2 个; γ Eh表示地震作用分项系数,取1.3。 3 根据上述计算结果、对照 GB/T 3098.1-2000《紧固件机械性能螺栓、螺钉和螺柱》的保证荷载表,选择适当等级的螺栓规格。

n h e 其中: N V表示锚固螺的剪力(N); h G表示设备重心高度(mm); 1

膨胀螺栓选型计算_20141027

机械式膨胀螺栓选型计算 本计算的主要依据为《JGJ 145-2004混凝土结构后锚固技术规程》,所采用的膨胀螺栓尺寸 及规格符应合《GB/T 22795-2008混凝土用膨胀锚栓型式与尺寸》,本计算中采用膨胀螺栓的称呼主要目的与习惯上的描述一致,在以下计算中可简称为膨胀螺栓或螺栓或锚栓。本计算中所适用的膨胀螺栓主要结构如下图所示。 一、主要参数 1.1主要输入条件 膨胀螺栓螺杆材质 SS304膨胀螺栓螺杆力学性能等级 70 膨胀螺栓螺杆名义直径Dia M14mm 螺栓计算直径D 14mm 膨胀螺栓名义长度L 130mm 螺栓计算面积As 153.9mm 2混凝土强度等级C40螺栓特殊长度L 478.0mm 混凝土的厚度 900 mm 混凝土的厚度900.00mm 膨胀螺栓连接板在混凝土结构表面上的位置及尺寸参数 单个连接板上膨胀螺栓的数量 单个连接板螺栓数量2连接板类型A 根据连接板与混凝土的位置不同,连接板的类型(具体见下简图) Use Metric Units Use English Units 一个螺栓 四个螺栓 1-A 1-B 1-D 2-A 2-B 2-C 2-D A B C D 两个螺栓 HELP ME ! 螺栓特殊长度输入

膨胀螺栓连接板的设计尺寸 B1457.2mm 457.2mm B2203.2mm 203.2mm a1111mm 111mm a2111mm 111 mm a3--mm mm a4--mm mm S1111mm 111mm S2--mm mm C1127mm 127mm C2127mm 127mm 地震荷载 恒荷载活荷载风荷载水平地震竖向地震 单个连接板设计荷载N (见右图)40040015001500250公斤力400.0400.01500.01500.0250.0公斤力 设计地震设防裂度 8 单个连接板设计荷载组合N d (见右图)3570公斤力设计拉力与锚固地面的夹角 α (o ) 45o 当前设计荷载组合是否已经包含地震荷载组合 Yes 检查数据是否完整YES 最终结果 YES 说明:以上荷载组合根据《GB 5009-2012建筑结构荷载规范》及《GB 50011-2010建筑抗震设计规范》相关条文规定,选取可能的最不利的荷载组合类型,分别按荷载组合数据计算。 根据以上各项荷载组合类别分别计算,产生最大效应时对应的组合是荷载组合五在本计算过程中产生最大荷载效应时,荷载组合具体类型如下: 1.2*(恒荷载+0.5*活荷载)+1.4*风荷载_Factor *风荷载+1.3*水平地震荷载说明: 本页面所显示所有数据为荷载计算是荷载 组合五的数据及计算结果。 单个螺栓的设计荷载组合值F SD 1785公斤力单个螺栓设计荷载-拉力设计值N SD,012.62KN 单个螺栓设计荷载-剪力设计值V SD,0 12.62 KN 4-A 4-B 4-D 第一种荷载组合 第二种荷载组合 第三种荷载组合 第四种荷载组合 第五种荷载组合第六种荷载组合 第七种荷载组合第八种荷载组合 清除所有计算数据 快速计算所有荷载组合 检查输入数据是否完整

螺栓型号大全

螺栓型号大全

————————————————————————————————作者:————————————————————————————————日期: ?

一、双头螺栓重量表 规 格直径×长度A型(双头丝) B型(全丝) 规 格直 径×长度 A型(双头丝) B型(全丝) 每千个螺栓重量(公 斤) 每千个螺栓重量(公 斤) 每千个螺栓重量(公 斤) 每千个螺栓重量(公 斤) 不带螺母带螺母不带螺母带螺母不带螺母带螺母不带螺母带螺母 M10×40 22 44 22 44 M14×9 M10×50 28 50 28 50M14×1 0 M10×6033 55 33 55 M16×6 M10×7 38 60 38 60 M16×7 M12×40 29 62 29 62 M16×8 5 M12×50 35 6836 69 M16×9 88 M12×60 41 7444 77 M16×1 201 M12×70 4780 57 84M16×11 4 M12×80 52 855891 M16×1228 M12 ×90 58 9166 99 M20×7 70 M14×5 M20×8 90 M14×6 M20×9 13 规 格直径×长度 A型(双头丝) B型(全丝) 规 格直 径×长度 A型(双头丝)B型(全丝) 每千个螺栓重量(公 斤) 每千个螺栓重量(公 斤) 每千个螺栓重量(公 斤) 每千个螺栓重量(公 斤) 不带螺母带螺母不带螺母带螺母不带螺母带螺母不带螺母带螺母 M14×7 M20×1 332 M14×8 M20×11 53 M20×12 74 M22× 2 614 M20×0 394M24×1 521 M20×14 17 M24 ×110 3 M20× 2 436M24×1 2 75 M22×8 57 M24×0604 M22×982 M24×14 33 M22×1 408 M24×9 673 M22×133 M24×16 92

膨胀螺栓规格尺寸表及国家标准

本文由郭立算贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 膨胀螺栓国家标准 JB/ZQ4763-2006 膨胀螺栓规格表 膨胀螺栓执行标准一、膨胀螺丝之固定原理膨胀螺丝之固定乃是利用挈形斜度来促使膨胀产生摩擦握裹力,达到锚定效果。二、膨胀螺丝之埋入深度一般膨胀螺丝之埋入深度以其固定用螺栓径之 4 倍为计算基准,当然埋入越深其所能承受之拉力、剪力也越大,但因厂家设计时需要考虑因素含材质及锚定等问题。三、膨胀螺丝使用之参考依据(一)混凝土之强度(二)固定螺丝之强度(依材质计算之)(三)膨胀螺丝之强度(厂家设计)四、膨胀螺丝的强度膨胀螺丝的强度测试,以往均以油压器加压,在拉出膨胀螺丝的最大力量为其抗拉强度,这种测试方法的缺点就是未能测知螺丝离开水泥的变位情况,也就是说,我们无法知道膨胀本身材料的弹性应力是在几牛顿之内,因此新型的测试仪器,是把拉力与变位以坐标图画出,Y 轴为拉力,X 轴为变位(如图)当拉力上升时,变位随之增大,直到水泥破裂或膨胀螺丝,拔出或拉断。此一曲线的最高点,即为极限抗拉力,另外当拉力上升到某一点,如去除拉力后,变位仍能回到原处者,这一点正是膨胀螺丝本身材料的降伏点,也正是我们设计上所要的比例荷重。常用膨胀螺丝的变位曲线,约可分为 5 钟。 1、化学锚栓,SB 高拉力膨胀螺丝 2、NC 型锤钉式.H 型.DR 型 3、SH 型套管式 SHF 型 4、尼龙套 5、木塞五、安全率之采用一般安全采用方向有二:(一)极限强度法:此法乃是将膨胀打入混凝土内拉出,以其破坏点为基准,再以 4-5 倍之安全率为可用强度。此法于国外之采用已有数十年之历史。(二)比例强度法:此法测试方法用(一),但重点为求出变形点(即为比例荷重),以此为采用基准,再考虑以安全率 2 倍为可用强度,因其可为路德线(Luder' s Line) '观知“应力一应变”情形,故较为精确及便捷,但因其欲求出变点(比例荷重),较极限强度法复难,且须使用而较精准之仪器,故一般为研究上采用,此法亦符合 ASTME488-88 规定。极限强度安全法之安全率,以目前国内大都采用 4 倍为主(依建筑技术规则之规定,吊装件重量四倍强度)但因考虑地震等因素,对于较重要之工程或建物,需顾及其安全性、生命性等因素时,应考虑 5 倍以上。而动荷重因其加力于物体上之动力条件使材料产生棒内阻力(resiting force of bar)最大为逐渐返加外力之两倍,故动荷重之安全率考虑为 8 倍以上,若已考虑突发加力或震动力时,当可按一般之安全率考虑使用 4-5 倍,上述棒内应力系限定于比例限度之内。事实上,安全率之考虑,应由设计者或工程师依据设计实际需要加以研判考虑。比例强度法之安全率较为单纯,因其已求出比例荷重,故一般以比例荷重之 40%-60%为安全率,本公司建议采用之一般长期荷重为比例强度之 50%。六、水泥强度之考虑水泥在灌浆过程中,由于沉沙或出水问题,往往造成水泥本身上下强度不均的事实现象,这也是必需现场测试的主要原因,另外也就是要把实验室中所测试的结果加以修正以应用到实际的工程位置上,因此修正系数如下:●天花板及墙壁之施工修正系数为 0.8—0.9 ●地面施工,修正系数为 0.7—0.8 (1)长期静荷重一般长期荷重为比例荷重之修正值的 1/2 长期荷重=比例荷重×K/2 (K:修正系数; 2:安全率)

膨胀螺栓选型计算_20160606

机械式膨胀螺栓选型计算 本计算书的主要计算依据为《JGJ 145-2004混凝土结构后锚固技术规程》,所采用的荷载组合根据《GB 5009-2012建筑结构荷载规范》及《GB 50011-2010建筑抗震设计规范》,所采用的膨胀螺栓尺寸及规格符应合《GB/T 22795-2008混凝土用膨胀锚栓型式与尺寸》,本计算中采用膨胀螺栓的称呼主要是为了与习惯上的描述一致,在以下计算中可简称为膨胀螺栓或螺栓或锚栓。本计算中所适用的膨胀螺栓主要结构如下图所示。一、主要参数 1.1主要输入条件 膨胀螺栓螺杆材质 SS304 膨胀螺栓螺杆力学性能等级70A 螺杆计算小径D 1 13.84mm 膨胀螺栓螺杆名义直径Dia M16mm 螺杆计算直径D 16mm 膨胀螺栓名义长度L 150mm 螺杆计算面积A s 150.33mm 2混凝土强度等级C35混凝土的厚度 15.748 英寸混凝土的厚度C t 400 mm 膨胀螺栓连接板在混凝土结构表面上的位置及尺寸参数 单个连接板上膨胀螺栓的数量 单个连接板螺栓数量 2连接板类型C 根据连接板与混凝土的位置不同,连接板的类型(具体见下简图) 145150250 Use Metric Units 一个螺栓 四个螺栓 1-A 1-B 1-D 2-A 2-B 2-C 2-D A B C D 两个螺栓 HELP ME ! 螺栓特殊长度输入 检查混凝土厚度 螺栓特殊材质输入 1-C 1-E 2-E E

膨胀螺栓连接板的设计尺寸 a13英寸76.2mm a23英寸76.2mm a33英寸76.2mm a43英寸76.2mm B110英寸254mm B26英寸152.4mm S14英寸101.6mm S2--英寸mm C14英寸101.6mm 请输入螺栓至混凝土边距C1检查数据是否完整 YES C24英寸101.6mm 请输入螺栓至混凝土边距C2 C3--英寸700mm 无边界混凝土,假定5倍螺栓有效长度C4--英寸 700mm 无边界混凝土,假定5倍螺栓有效长度 1.2载荷数据输入 请注意以下载荷的方向,荷载为拉力时按正常数据输入。当载荷为压力时,当为压力时按负值输入。 地震荷载输入参数恒荷载活荷载风荷载 水平地震竖向地震单个连接板设计荷载N (见右图) 2.20 2.205000.004000.003000.00磅力 1.00 1.002267.961814.371360.78公斤力 设计地震设防裂度8所属地设计地震分组第一组单个连接板设计荷载组合N d (见右图) 3448公斤力 设计拉力与锚固地面的夹角 α (o ) 47o 当前页面显示的设计荷载组合是否已经包含地震荷载组合Yes 最终结果 YES 说明:以上荷载组合根据《GB 5009-2012建筑结构荷载规范》及《GB 50011-2010建筑抗震设计规范》相关条文规定,选取可能出现的最不利的荷载组合类型,分别按不两只荷载组合数据难处锚固是否安全。 根据以上各项荷载组合类别分别计算,产生最大效应时对应的组合是荷载 组合五 在本计算过程中产生最大荷载效应时,其荷载组合具体类型如下: 4-A 4-B 4-D 第一种荷载组合第二种荷载组合 第三种荷载组合 第四种荷载组合 第五种荷载组合第六种荷载组合第七种荷载组合第八种荷载组合 清除所有计算数据 快速计算所有荷载组合 检查输入数据是否完整 显示荷载组合 隐藏荷载组合4-C 4-E

槽钢支架及膨胀螺栓选型

膨胀螺栓选型 一、管道重量计算 计算公式:钢管重量=每米钢管重量×长度 1、DN400螺纹钢管重量: 每米重量为102.59kg,长度为8.4米 总重量为102.59×8.4=862kg 2、DN350螺纹钢管重量: 每米重量为62.54kg,长度为8.4米 总重量为62.54×8.4=526kg 3、DN250螺纹钢管重量: 每米重量为45.92kg,长度为8.4米 总重量为45.92×8.4=386kg 管道总重量G1=(862+526+386)×2=3548kg 二、管道满水状态水重计算 计算公式:满水状态水重=满水状态水体积×水密度1、DN400螺纹钢管满水状态水重: 总重量为3.14×0.22×8.4×1000=1055kg 2、DN350螺纹钢管满水状态水重: 总重量为3.14×0.1752×8.4×1000=808kg 3、DN250螺纹钢管满水状态水重: 总重量为3.14×0.1252×8.4×1000=413kg 管道满水状态水总重G2=(1055+808+413)×2=4552kg

三、槽钢重量计算 计算公式:槽钢重量=槽钢每米重量×总长度 16#槽钢理论重量为19.755kg/米 槽钢长度=1.06×3+3.2=6.38米 槽钢总重G3=19.755×6.38=127kg 四、运行重量计算 运行总重量=(G1+G2+G3)×系数 运行重量系数取保险值1.1 运行重量G=(3548+4552+127)×1.1=9050kg 五、每处支架承重说明 管道长度为70米,龙门架为12处 管道总重量为70×9050=633500kg 每处龙门架承重为633500÷12=5280kg 六、膨胀螺栓承重说明 每处龙门架的膨胀螺栓数量为12个 每个膨胀螺栓所受剪力=每个膨胀螺栓承重=每处龙门架的重量÷12 所以每个膨胀螺栓所受剪力=5280÷12=440kg.N 七、膨胀螺栓选型 M10膨胀螺栓最大剪力为,M12膨胀螺栓最大剪力为 因此选用M12膨胀螺栓。

膨胀螺栓规格表

规格如下: 6*60 6*65 6*80 6*100 8*60 8*70 8*80 8*100 8*120 8*150 10*80 10*90 10*100 10*120 10*150 10*180 10*200 12*80 12*90 12*100 12*110 12*120 12*150 12*180 12*200 14*100 14*120 14*150 14*180 14*200 16*120 16*150 16*180 16*200 16*250 18*150 18*180 18*200 20*150 20*180 20*200 20*250 22*150 22*180 22*200 22*250 24*150 24*200 24*250 24*300 根据品牌差异! 扩展数据:

膨胀螺栓是一种特殊的螺纹连接件,用于将管道支架/吊架/支架或设备固定在墙壁、地板和柱子上。碳钢螺栓的牌号分为3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等10多种牌号。 小数点前后的数字表示螺栓材料的标称抗拉强度和屈服比。如标8.8级螺栓,材料抗拉强度达到800MPa,屈服比为0.8,即屈服强度达到800x0.8=640mpa。 性能等级为4.6的膨胀螺栓指: 1膨胀螺栓的公称抗拉强度为400MPa; 2膨胀螺栓材料的屈服强度比为0.6; 三。膨胀螺栓的公称屈服强度为400×0.6=240mpa 膨胀螺栓的性能等级是一个国际标准。无论材料和生产区域的不同,同一性能等级的膨胀螺栓性能是相同的,因此只能在设计中选择性能等级。 注意事项

1钻孔深度:特定结构中的最佳深度为比膨胀管长度深约5mm。只要大于或等于膨胀管的长度,留在地下的内部膨胀螺栓的长度等于或小于膨胀管的长度。 2当然,地面上对内部膨胀螺栓的要求越强越好,这也取决于你需要固定的物体的受力情况。混凝土(c13-15)的机械强度是砖的5倍。 三。当M6/8/10/12内膨胀螺栓正确安装在混凝土中后,最大静应力分别为120/170/320/510kg。 适用范围 目前主要用于欧美、中东、日韩等国外高端建筑领域,2013年进入国内市场。广泛应用于混凝土埋置工程中。如:建筑幕墙、室内装饰、空调、照明、广告牌、电视壁挂、卫浴(厨具)、水电、展示等相关行业和领域。 优势 1应用范围广。只要凸面部分的螺纹尺寸相同,就适用于任何类型的地脚螺栓头。 2选择施工方法。可按要求预置,也可在单个结构上钻孔(安装)

DKBA04800499+不锈钢拉爆膨胀螺栓技术要求-B

DKBA0.480.0499 结构外购件技术要求 DKBA0.480.0499 REV.B 不锈钢拉爆膨胀螺栓技术要求 主要起草人:许志敏 审核人:邓顺庆、周伟 会签人:张 斌、汪海清、徐艳丽 标准化审核人:洪霓玉 批准人:钟荣华 2010-08-15发布 2010-08-20实施 华 为 技 术 有 限 公 司 发布 HUAWEI TECHNOLOGIES CO., LTD. Page 1 of 10

修订记录 技术要求号 版本号更改说明 主要起草人 主要评审专家DKBA0.480.0499 A 新发布 邓顺庆 刘长林、郑玲、 赵华松、曾献科、 罗义诚、董堂京 莫彩文 DKBA0.480.0499 B 1、将锥端螺杆螺纹端5mm更改为光杆。 2、将标准平垫圈更改为非标平垫圈。 3、增加英文内容。 许志敏 邓顺庆、周伟、 肖春秀、赵国民、 钟荣华

1 目的和适用范围 1.1 目的 结构外购件技术要求是描述公司结构外购件的受控性文件,其作用为: z供应厂商进行产品设计、生产和检验的依据。 z品质部门验货、退货的依据。 z物料部门进行采购的依据。 z对供应厂商产品质量进行技术认证的依据。 z结构设计部门选用结构外购件的依据。 1.2 适用范围 本标准规定了华为技术有限公司产品所用不锈钢拉爆膨胀螺栓的技术要求。 本技术要求适用于不锈钢拉爆膨胀螺栓的选型、采购与检验。 2 引用的相关标准 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。 GB/T 3103.1 紧固件公差 螺栓、螺钉和螺母 GB/T 1804 一般公差 未注公差的线性和角度尺寸的公差 GB/T 2828 逐批检查计数抽样程序及抽样表(适应于连续批的检查) DKBA 2332 华为采购物料环保规范 DKBA04000100 不锈钢紧固件质量要求 3 项目编码与建模命名 3.1 项目编码 编码的分类代码:无 项目描述:无

膨胀螺栓规格表

规格如下: 6 * 60 6 * 65 6 * 80 6 * 100 8 * 60 8 * 70 8 * 80 8 * 100 8 * 120 8 * 150 10 * 80 10 * 90 10 * 100 10 * 120 10 * 150 10 * 180 10 * 200 12 * 80 12 * 90 12 * 100 12 * 110 12 * 120 12 * 150 12 * 180 12 * 200 14 * 100 14 * 120 14 * 150 14 * 180 14 * 200 16 * 120 16 * 150 16 * 180 16 * 200 16 * 250 18 * 150 18 * 180 18 * 200 20 * 150 20 * 180 20 * 200 20 * 250 22 * 150 22 * 180 22 * 200 22 * 250 24 * 150 24 * 200 24 * 250 24 * 300 根据品牌差异咯! 扩展数据:

膨胀螺栓是一种特殊的螺纹连接器,用于将管道支架/吊架/支架或设备固定在墙壁,地板和立柱上。碳钢螺栓的等级分为10多个等级,例如3.6、4.6、4.8、5.6、6.8、8.8、9.8、10.9、12.9等。 小数点前后的数字分别表示螺栓材料的标称抗拉强度和屈服比。例如,如果标记了8.8级螺栓,则材料的抗拉强度达到800MPa,屈服比为0.8,即屈服强度达到800x0.8 = 640mpa。 性能等级4.6的膨胀螺栓是指: 1.膨胀螺栓的标称抗拉强度为400MPa; 2,膨胀螺栓材料的屈服强度比为0.6; 3.膨胀螺栓的标称屈服强度为400×0.6 = 240mpa 膨胀螺栓性能等级的含义是国际标准。不论材料和产地的不同,相同性能等级的膨胀螺栓的性能是相同的,因此在设计中只能选择性能等级。 注意事项

膨胀螺栓标准

膨胀螺栓标准,膨胀螺栓国家标准,膨胀螺栓执行标准膨胀螺栓标准,膨胀螺栓国家标准JB/ZQ4763-2006 膨胀螺栓规格表

膨胀螺栓执行标准 一、膨胀螺丝之固定原理 膨胀螺丝之固定乃是利用挈形斜度来促使膨胀产生摩擦握裹力,达到锚定效果。 二、膨胀螺丝之埋进深度 一般膨胀螺丝之埋进深度以其固定用螺栓径之4倍为计算基准,当然埋进越深其所能承受之拉力、剪力也越大,但因厂家设计时需要考虑因素含材质及锚定等题目。 三、膨胀螺丝使用之参考依据 (一)混凝土之强度 (二)固定螺丝之强度(依材质计算之) (三)膨胀螺丝之强度(厂家设计) 四、膨胀螺丝的强度 膨胀螺丝的强度测试,以往均以油压器加压,在拉出膨胀螺丝的最大气力为其抗拉强度,这种测试方法的缺点就是未能测知螺丝离开水泥的变位情况,也就是说,我们无法知道膨胀本身材料的弹性应力是在几牛顿之内,因此新型的测试仪器,是把拉力与变位以坐标图画出,Y轴为拉力,X轴为变位(如图)当拉力上升时,变位随之增大,直到水泥破裂或膨胀螺丝,拔出或拉断。此一曲线的最高点,即为极限抗拉力,另外当拉力上升到某一点,如往除拉力后,变位仍能回到原处者,这一点正是膨胀螺丝本身材料的降伏点,也正是我们设计上所要的比例荷重。 常用膨胀螺丝的变位曲线,约可分为5钟。 1、化学锚栓,SB高拉力膨胀螺丝 2、NC型锤钉式.H型.DR型 3、SH型套管式SHF型 4、尼龙套 5、木塞 五、安全率之采用 一般安全采用方向有二: (一)极限强度法:此法乃是将膨胀打进混凝土内拉出,以其破坏点为基准,再以4-5倍之安全率为可用强度。此法于国外之采用已有数十年之历史。 (二)比例强度法:此法测试方法用(一),但重点为求出变形点(即为比例荷重),以此为采用基准,再考虑以安全率2倍为可用强度,因其可为路德线(Luder''s Line)观知“应力一应变”情形,故较为精确及便捷,但因其欲求出变点(比例荷重),较极限强度法复难,且须使用而较精准之仪器,故一般为研究上采用,此法亦符合ASTME488-88规定。 极限强度安全法之安全率,以目前国内大都采用4倍为主(依建筑技术规则之规定,吊装件重量四倍强度)但因考虑地震等因素,对

膨胀螺栓标准

膨胀螺栓标准 ,膨胀螺栓国家标准,膨胀螺栓执行标准膨胀螺栓标准,膨胀螺栓国家标准 JB/ZQ4763-2006 膨胀螺栓规格表 膨胀螺栓执行标准 一、膨胀螺丝之固定原理 膨胀螺丝之固定乃是利用挈形斜度来促使膨胀产生摩擦握裹力,达到锚定效果。 二、膨胀螺丝之埋进xx 一般膨胀螺丝之埋进深度以其固定用螺栓径之4倍为计算基准,当然埋进越深其所能承受之拉力、剪力也越大,但因厂家设计时需要考虑因素含材质及锚定等题目。 三、膨胀螺丝使用之参考依据 (一)混凝土之强度 (二)固定螺丝之强度(依材质计算之) (三)膨胀螺丝之强度(厂家设计) 四、膨胀螺丝的强度 膨胀螺丝的强度测试,以往均以油压器加压,在拉出膨胀螺丝的最大气力为其抗拉强度,这种测试方法的缺点就是未能测知螺丝离开水泥的变位情况,也就是说,我们无法知道膨胀本身材料的弹性应力是在几牛顿之内,因此新型的测试仪器,是把拉力与变位以坐标图画出,Y轴为拉力,X轴为变位(如图)当拉力上升时,变位随之增大,直到水泥破裂或膨胀螺丝,拔出或拉断。此一曲线的最高点,即为极限抗拉力,另外当拉力上升到某一点,如往除拉力后,变位仍能回到原处者,这一点正是膨胀螺丝本身材料的降伏点,也正是我们设计上所要的比例荷重。

常用膨胀螺丝的变位曲线,约可分为5xx。 1、化学锚栓,SB高拉力膨胀螺丝 2、NC型锤钉式.H型.DR型 3、SH型套管式SHF型 4、xx套 5、xx 五、安全率之采用 一般安全采用方向有二: (一)极限强度法: 此法乃是将膨胀打进混凝土内拉出,以其破坏点为基准,再以4-5倍之安全率为可用强度。此法于国外之采用已有数十年之历史。 (二)比例强度法: 此法测试方法用 (一),但重点为求出变形点(即为比例荷重),以此为采用基准,再考虑以安全率2倍为可用强度,因其可为路德线(Luder''s Line)观知“应力一应变”情形,故较为精确及便捷,但因其欲求出变点(比例荷重),较极限强度法复难,且须使用而较精准之仪器,故一般为研究上采用,此法亦符合 ASTME488-88规定。 极限强度安全法之安全率,以目前国内大都采用4倍为主(依建筑技术规则之规定,吊装件重量四倍强度)但因考虑地震等因素,对于较重要之工程或建物,需顾及其安全性、生命性等因素时,应考虑5倍以上。而动荷重因其加力于物体上之动力条件使材料产生棒内阻力(resiting force of bar)最大为逐渐返加外力之两倍,故动荷重之安全率考虑为8倍以上,若已考虑突发加力或震动力时,当可按一般之安全率考虑使用4-5倍,上述棒内应力系限定于比例限度之

相关文档
最新文档