相似三角形的运用~~讲义、练习

合集下载

相似三角形的性质和应用讲义

相似三角形的性质和应用讲义

学生: 科目: 第 阶段第 次课 教师:课 题相似三角形的性质和应用教学目标1、经历相似三角形性质“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的探究过程.2、掌握“相似三角形对应高线、对应中线、对应角平分线之比等于相似比”“相似三角形的周长之比等于相似比”和“相似三角形的面积之比等于相似比的平方”的两个性质.3、会运用上述两个性质解决简单的几何问题.重点、难点1、本节教学的重点是关于相似三角形的周长和面积的两个性质及对应线段的性质.2、相似三角形的性质的证明,要用到相似三角形的判定及性质,过程比较复杂,是本节教学的难点.考点及考试要求1、相似三角形的对应角相等,对应边成比例.2、相似三角形的周长比等于相似比,面积比等于相似比的平方。

教学内容 知识框架1、相似三角形的对应角相等,对应边成比例.2、相似三角形对应高线、对应中线、对应角平分线之比等于相似比.3、相似三角形的周长比等于相似比;相似三角形的面积比等于相似比的平方.考点一:计算线段的长或线段之间的比典型例题1典型例题1、 已知:如图,在△ABC 中,∠ACB =90°,CD ⊥AB 于D ,AC =6,DB =5,求AD 的长.分析:由已知AC =6,DB =5,选用AB AD AC ⋅=2来解决,考虑△ACD ∽△ABC .解:在△ACD 和△ABC 中,∵∠A =∠A ,∠ADC =∠ACB =90°, ∴△ACD ∽△ABC . ∴ACAD AB AC =.∴AB AD AC ⋅=2. 设AD =x ,则AB =x +5,又AC =6,ABC DA B CDE∴)5(62+=x x . 03652=-+x x 解得:x =4(舍去负值) ∴AD =4.针对性练习针对练习: 如图,在等腰三角形ABC 中,AB=AC ,底边上的高AD=10cm ,腰AC 上的高BE=12cm .(1)求证:35=BD AB ;2典型例题2 已知:如图,△ABC 中,AB =AC ,BD ⊥AC 于D .求证: BC 2=2CD 〃AC .思考:欲证 BC 2=2CD 〃AC ,只需证BCACCD BC =2.但因为结论中有“2”,无法直接找到它们所在的相似三角形,该怎么办?证法一(构造2CD ):如图,在AC 截取DE =DC ,∵BD ⊥AC 于D ,∴BD 是线段CE 的垂直平分线, ∴BC=BE ,∴∠C=∠BEC , 又∵ AB =AC , ∴∠C=∠ABC .∴ △BCE ∽△ACB .∴BC AC CE BC =, ∴BCACCD BC =2 ∴BC 2=2CD 〃AC .针对练习:证法二(构造2AC ):证法三(构造BC 21):知识概括、方法总结与易错点分析1、 相似三角形对应边成比例;2、从结论出发找到边所在的三角形,再利用已知条件证明三角形相似。

精品 九年级数学下册 相似形-相似形性质 同步讲义同步练习题

精品 九年级数学下册 相似形-相似形性质 同步讲义同步练习题

相似形第02课 相似三角形的性质知识点:相似形性质: 相等、 成比例,相似三角形的对应边之比也叫(1)相似三角形 、 和 都等于相似比.(2)相似三角形周长的比等于 .(3)相似三角形面积的比等于 .重要方法:(1)相似三角形的相似比等于面积比的算术平方根.(2)相似三角形中的相似比和面积比的关系,应注意相似三角形这个前提,否则不成立.(3)对于同底等高的两个三角形的面积比等于射影定理:例1.如图,在△ABC 中,DE∥BC ,AC=4,AB=3,EC=1.求AD 和BD.例2.如图,在□ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,求CD 的长.例3.如图,AB 是斜靠在墙上的长梯,梯脚B 距墙脚1.6m,梯上点D 距墙1.4m,BD=0.55m ,求该梯子的长.BDAD CD AB BD BC ABAD AC ⋅=⋅=⋅=222例4.如图,D 、E 分别是AC,AB 上的点,∠ADE=∠B,AG ⊥BC 于点G,AF ⊥DE 于点F.若AD=3,AB=5,求:(1)AFAG ;(2)△ADE 与△ABC 的周长之比;(3)△ADE 与△ABC 的面积之比.例5.如图,一个矩形ABCD 的长AD=acm ,宽AB=bcm ,E,F 分别是AD,BC 的中点,连接E,F ,所得新矩形ABFE 与原矩形ABCD 相似,求a:b 的值.例6.如图,△ABC 是一锐角三角形,边BC=120,高AD=80,P 为AD 上一动点,过P 点作EF ∥BC,交AC 、AB 于E 、F 两点,过E 作EH ⊥BC 于H 点,过F 作FG ⊥BC 于G 点,得到矩形EFGH.设FG=x,矩形EFGH 面积为S 。

(1)如图1,找出S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)如图2,当x 取何值时,矩形EFGH 面积S 有最大值?最大值是多少?同步练习:1.在△ABC 和△DEF 中,AB=2DE ,AC=2DF,∠A=∠D,如果△ABC 的周长是16,面积是12,那么△DEF 的周长、面积依次为( )A.8,3B.8,6C.4,3D.4,62.如图所示,下面四个选项中,与已知三角形成相似的是( )3.一个五边形的各边长分别为1,2,3,4,5,另一个和它相似的五边形的最大边的长为7,则后一个五边形的周长为( )A.27B.25C.21D.184.两个相似三角形的一组对应边的长分别是15和23,它们周长的差是40,则这两个三角形的周长分别为( ) A.75,115 B.60,100 C.85,125 D.45,855.一个五边形改成与它相似的五边形,如果面积扩大为原来的9倍,那么周长扩大为原来的( )A.9倍B.3倍C.81倍D.18倍6.已知△ABC ∽△A 1B 1C 1,相似比为2:3,△A 1B 1C 1∽A 2B 2C 2,相似比为5:4,则△ABC 与△A 2B 2C 2的相似比为( ) A.56 B.65 C.56或65 D.158 7.在坐标系中,已知A (-3,0),B (0,-4),C (0,1),过点C 作直线L 交x 轴于点D,使得以点D 、C 、O 为顶点的三角形与△AOB 相相似,这样的直线一共可以作出( )条.A.6B.3C.4D.58.如图,将放置于平面直角坐标系中的三角板AOB 绕O 点顺时针旋转900得△A /OB /.已知∠AOB=300,∠B=900,AB=1,则B /点的坐标为 ( ) A.)2323(, B.)2323(, C.)2321(, D.)2123(,第8题图 第9题图9.如图,在正△AABC 中,D ,E ,F 分别是BC ,AC ,AB 上的点,DE ⊥AC ,EF ⊥AB ,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于( )A.1:3B.2:3C.3:2D.3:3 10.如图,在Rt △ABC 中,∠ACB=900,BC=3,AC=4,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( ) A.32 B.76 C.256 D.2第10题图 第11题图 第12题图11.如图,在△ABC 中,AB=12,AC=10,BC=9,AD 是BC 边上的高.将△ABC 按如图所示的方式折叠,使点A 与点D 重合,折痕为EF,则△DEF 的周长为( )A.9.5B.10.5C.11D.15.512.如图,已知∠ABD=∠ACD ,图中相似三角形的对数是( )A.2B.3C.4D.513.如图,已知∠B=∠CAD ,BC=2AC,S △ABC =a,则△ABD 的面积为( )A.a 21B.a 41C.a 43D.a 32第13题图 第14题图14.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( ) A.16B.17C.18D.19 15.若235a b c ==(abc ≠0),则a b c a b c ++-+=_______ 16.填空:1)已知两个相似三角形的对应角平分线的比是1:4,则对应高的比为_____,面积的比为_____。

相似三角形详细讲义

相似三角形详细讲义

知识梳理相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于”.相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:①对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:用数学语言表述是:BC DE // ,ADE ∽ABC . 相似三角形的等价关系(1)反身性:对于任一ABC 有ABC ∽ABC .(2)对称性:若ABC ∽'''C B A ,则'''C B A ∽ABC .(3)传递性:若ABC ∽C B A '',且C B A ''∽C B A ,则ABC ∽C B A . 三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.(在遇到两个三角形的三边都知道的情况优先考虑,把边长分别从小到大排列,然后分别计算他们的比值是否相等来判断是否相似)6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

《相似三角形》最全讲义(完整版).docx

《相似三角形》最全讲义(完整版).docx

相似三角形基本知识知识点一:放缩与相似形1・图形的放大或缩小,称为图形的放缩运动。

2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。

注意:⑴相似图形强调图形形状相同,与它们的位•用、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括•立体图形相似的情况。

⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例一一全等形.3•相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。

a. b的长度分別是m、n,那么就说这两条线段a _ m的比是a: b = m: n (或〃n)2、比的前项,比的后项:两条线段的比a: b屮。

a叫做比的前项,b叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

兰_ £3、比例:两个比相等的式子叫做比例,如芦°a _ £4、比例外项:在比例“ d(或a: b=c: d)中a、d叫做比例外项。

a _ c5、比例内项:在比例〃〃(或a: b = c: d)中b、c叫做比例内项。

a _ c6、第四比例项:在比例〃d(或a: b=c: d)中,d叫a、b、c的第四比例项。

7、比例中项:如果比例中两个比例内项相等,即比例为U(或a:b=b:c时,我们把b 叫做a和d的比例中项。

&比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即(或a: b二c: d),那么,这四条线段叫做成比例线段,简称比例线b d 段。

(注意:在求线段比时,线段单位要统单位不统一应先化成同一单位)(2)比例性质—――o ad = he1•基本性质:b d(两外项的积等于两内项积)a cb d _ "> 2•反比性质: b d ac (把比的前项、后项交换)3. 更比性质(交换比例的内项或外项):- = 交换内项) c df ?=£,佼换外项)h d b a- = -.(R ]时交换内外项) c a4•合比性质:f = £二字=申(分子加(减)分母,分母不变) b a b a注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间5•等比性质:(分子分母分别相加,比值不变•)=• • • = — (/? + 〃 + f H n 0),那么 n 注意:(1)此性质的证明运用了“设k 法”,这种方法是有关比例计算,变形中一种常用方法.(2) 应用等比性质吋,要考虑到分母是否为零.(3) 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成 立・知识点三:黄金分割1)定义:在线段AB 上,点C 把线段4B 分成两条线段AC 和BC (AC>BC ),如果些=匹,AB AC即AC 2=AB X BC,那么称线段AB 被点C 黄金分割,点C 叫做线段AB 的黄金分割 点,AC 与AB 的比叫做黄金比。

相似三角形的应用及位似(讲义及答案).

相似三角形的应用及位似(讲义及答案).

相似三角形的应用及位似(讲义)➢课前预习一、读一读,想一想太阳光线可以看成平行光线.早在约公元前600 年前,就有人利用平行光线去解决实际生活当中的问题了.他就是泰勒斯——古希腊第一位享有世界声誉,有“科学之父”和“希腊数学的鼻祖”美称的伟大学者.泰勒斯已经观察金字塔很久了:底部是正方形,四个侧面都是相同的等腰三角形.要测量出底部正方形的边长并不困难,但仅仅知道这一点还无法解决问题.他苦苦思索着.当他看到金字塔在阳光下的影子时,他突然想到办法了.这一天,阳光的角度很合适,把所有东西都拖出一条长长的影子.泰勒斯仔细地观察着影子的变化,找出金字塔底面正方形的一边的中点(这个点到边的两端的距离相等),并作了标记.然后他笔直地站立在沙地上,并请人不断测量他的影子的长度.当影子的长度和他的身高相等时,他立即跑过去测量金字塔影子的顶点到做标记的中点的距离.他稍做计算,就得出了这座金字塔的高度.当他算出金字塔高度时,围观的人十分惊讶,纷纷问他是怎样算出金字塔的高度的.泰勒斯一边在沙地上画图示意,一边解释说:“当我笔直地站立在沙地上时,我和我的影子构成了一个直角三角形.当我的影子和我的身高相等时,就构成了一个等腰直角三角形.而这时金字塔的高(金字塔顶点到底面正方形中心的连线)和金字塔影子的顶点到底面正方形中心的连线也构成了一个等腰直角三角形.所以这个巨大的直角三角形的两条直角边也相等.”他停顿了一下,又说:“刚才金字塔的影子的顶点与我做标记的中心的连线,恰好与这个中点所在的边垂直,这时就很容易计算出金字塔影子的顶点与底面正方形中心的距离了.它等于底面正方形边长的一半加上我刚才测量的距离,算出来的数值也就是金字塔的高度了.想一想:为什么金字塔的高(金字塔顶点到底面正方形中心的连线)和金字塔影子的顶点到底面正方形中心的连线也构成了一个等腰直角三角形呢?➢知识点睛1.测量旗杆高度的方法:①利用阳光下的影子②利用标杆③利用镜子的反射(太阳光是平行光)(同位角相等)(借助反射角、入射角相等)2.影子上墙:、、是影子上墙时的三种常见处理方式,它们的实质是构造三角形相似.△DEH∽△ABC △DHG∽△ABC △HEF∽△ABC3.位似:①如果两个相似多边形任意一组对应顶点所在直线都经过,且有,那么这样的两个多边形叫做,叫做.k 就是这两个相似多边形的相似比.②位似图形不仅相似,而且具有特殊的位置关系;利用位似,可以将一个图形.③在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k(k≠0),所对应的图形与原图形位似,位似中心是,它们的相似比为.➢精讲精练1.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前.其中有首歌谣:今有竿不知其长,量得影长一丈五尺.立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1 丈=10 尺,1 尺=10 寸),则竹竿的长为()A.五丈B.四丈五尺C.一丈D.五尺2.如图,若标杆高度CD=3 m,标杆与旗杆的水平距离BD=15 m,人的眼睛与地面的高度EF=1.6 m,人与标杆CD 的水平距离DF=2 m,则旗杆的高度AB= .3.如图,把一面很小的镜子放在离树底(B)8.4 m 的点E 处,然后沿着直线BE 后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4 m,观察者目高CD=1.6 m,则树的高度AB= .4.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q 和S,使点P,Q,S 在一条直线上,且直线PS 与河垂直,在过点S 且与PS 垂直的直线a 上选择适当的点T,PT 与过点Q 且与PS 垂直的直线b 的交点为R.若QS=60 m,ST=120 m,QR=80 m,则河的宽度PQ 为.5.《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,DEFG 是一座边长为200 步(“步”是古代的长度单位)的正方形小城,东门H位于GD 的中点,南门K 位于ED的中点,出东门15 步的A 处有一树木,求出南门多少步恰好看到位于A 处的树木(即点D 在直线AC 上)?请你计算KC 的长为步.6.周末小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB 与河岸垂直,并在B 点竖起标杆BC,再在AB 的延长线上选择点D,竖起标杆DE,使得点E 与点C,A 共线.已知:CB⊥AD,ED⊥ AD,测得BC=1 m,DE=1.5 m,BD=8.5 m,测量示意图如图所示.请根据相关测量信息,求河宽AB.7.某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM 上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM 上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D 时,看到“望月阁”顶端点A 在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5 米,CD=2 米,然后,在阳光下,他们用测影长的方法进行了第二次测量,方法如下:如图,小亮从D 点沿DM 方向走了16 米,到达“望月阁”影子的末端F 点处,此时,测得小亮身高FG 的影长FH=2.5 米,FG=1.65 米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB 的长度.8.数学兴趣小组想测量一棵树的高度.在阳光下,一名同学测得一根长为1 米的竹竿的影长为0.8 米,同时另一名同学测量一棵树的高度时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),这部分影长为1.2 米,落在地面上的影长为2.4 米,则树高为.9.小阳发现电线杆AB 的影子落在土坡的坡面CD 和地面BC 上,量得CD=8 米,BC=20 米,CD 与地面成30°角,且此时测得1 米杆的影长为2 米,则电线杆的高度为()A.9 米B.28 米C.(7 +3) 米D.(14 + 2 3) 米10.如图,在斜坡的顶部有一铁塔AB,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.若铁塔底座宽CD=12 m,塔影长DE=18 m,小明和小华的身高都是1.6 m,同一时刻小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m 和1 m,则塔高AB 为()A.24 m B.22 m C.20 m D.18 m1.如图,若以O 为原点构造平面直角坐标系,其中A 点坐标为(6,-1),B 点坐标为(5,3),C 点坐标为(3,-2),以O 为位似中心,将△ABC 缩小为原来的12,则缩小后的△ABC 的三个顶点坐标是多少?12.如图,已知△ABC 在平面直角坐标系中,点A 的坐标为(0,3),若以点C 为位似中心,在平面直角坐标系内画出△A′B′C,使得△A′B′C与△ABC 位似,且相似比为2:1,则点B′的坐标为.13. 在平面直角坐标系中,点 P (m ,n )是线段 AB 上一点,以原点O 为位似中心把△AOB 放大到原来的两倍,则点 P 的对应点的坐标为( ) A .(2m ,2n )B .(2m ,2n )或(-2m ,-2n )C .( 1 m , 1 n )D .( 1 m , 1 n )或( - 1 m ,- 1 n )2 22 2 2 214. 如图,线段 CD 两个端点的坐标分别为 C (-1,-2),D (-2,-1), 以原点 O 为位似中心,在第一象限内将线段 CD 扩大为原来的 2 倍,得到线段 AB ,则线段 AB 的中点 E 的坐标为.【参考答案】➢课前预习一、由于太阳光是平行线,因此同一时刻,太阳光与地面所成夹角相等,结合直角,构成了两个等腰直角三角形.➢知识点睛一、相似三角形的实际应用2.推墙法;抬高地面法;砍树法3.①P,P′;同一点O;OP′=k·OP(k≠0);位似多边形;点O;位似中心②放大或缩小③原点;|k|➢精讲精练1. B2. 13.5 m3. 5.6 m4. 120 m5. 2 000 36.河宽AB 为17 m.7.“望月阁”的高AB 的长度为99 米.8. 4.2 米9. D10.A11. A1(3,-1),B1(5,3),C1(3,-1)或A2(-3,1),B2( -5,2 2 2 2 2 2-3),C2( -3,1) 2 212. (4,6)或(0,-2)13. B14. (3,3)。

相似三角形中考复习(知识点+题型分类练习)教案资料

相似三角形中考复习(知识点+题型分类练习)教案资料

相似三角形知识概述1. 平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。

2. 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。

3. 相似三角形的定义对应边成比例、对应角相等的两个三角形叫做相似三角形.4. 相似三角形的基本性质①相似三角形的对应边成比例、对应角相等.②相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

③相似三角形的周长比等于相似比④面积比等于相似比的平方温馨提示:①全等三角形一定是相似三角形,其相似比k=1 •所以全等三角形是相似三角形的特例•其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性. 例如△ ABB A A B' C'的对应边的比,即相似比为k,则△ A B' C's^ ABC的相似比. <,当且仅当它们全等时,才有k=k' =1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.5. 相似三角形的判定定理①平行于三角形一边的直线和其他两边或其延长线相交,所得的三角形与原三角形相似;②三边对应成比例的两个三角形相似;③两角对应相等的两个三角形相似;④两边对应成比例且夹角相等的两个三角形相似。

温馨提示:(1)判定三角形相似的几条思路:①条件中若有平行,可采用判定定理1;②条件中若有一对角相等(包括隐含的公共角或对顶角),可再找一对角相等或找夹边对应成比例;③条件中若有两边对应成比例,可找夹角相等;但是,在选择利用判定定理2时,一对对应角相等必—须是成比例两边的夹角对应相等.④条件中若有等腰关系,可找顶角相等或底角相等,也可找腰和底对应成比例。

(2)在综合题中,注意相似知识的灵活运用,并熟练掌握线段代换、等比代换、等量代换技巧的应用,培养综合运用知识的能力。

(3)运用相似的知识解决一些实际问题,要能够在理解题意的基础上,把它转化为纯数学知识的问题,要注意培养当数学建模的思想。

相似三角形详细讲义(最新整理)

用数学语言表述是:
(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.
MC

AC,ADE=∠DE于点5,求:;
ADE 与△
3:2=AD 相交于点,若BD O COD ∆接矩形的一边在斜边上,且矩形的DEFG
FC
2
cm
10=DEFG S 矩形3和4,它的内接正方形有情况中正方形的大小。

AC和BC的延长线交于
的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的
7m
A.1.25m B.10m C.20m D.8m
(2008•金华)如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( )A.6米B.8米C.18米D.24米
课堂练习
练习题
1、如图1,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,则AD=______.
2.如图2,AD∥EF∥BC,则图的相似三角形共有_____对.
3.如图3,正方形ABCD中,E是AD的中点,BM⊥CE,AB=6,CE=3,则BM=______.
5
4.ΔABC的三边长为,,2,ΔA'B'C'的两边为1和,若ΔABC∽ΔA'B'C',则ΔA'B'C'的笫三边长为
2105
,AB=8,AD=6,EF垂直平分DBC,BC=,S。

九上(教师)相似三角形讲义

第 1 讲 相似图形与成比例线段【学习目标】1、从生活中形状相同的图形的实例中认识图形的相似 ,理解相似图形概念。

2、了解成比例线段的概念,会确定线段的比。

【学习重点】 相似图形的概念与成比例线段的概念。

【学习难点】 成比例线段概念。

【学习过程】知识点一:比例线段 定义:对于四条线段 a 、b 、c 、d ,如果其中 两条线段的比(即它们长度的比)与另外两条线段的比相等 ,如果 简称比例线段。

a cb d,那么就说这四条线段 a 、b 、c 、d 叫做成比例线段,例:如四条线段的长度分别是 4cm 、8cm 、3cm 、6cm 判断这四条线段是否成比例?解: 4 3 8 6这四条线段是成比例线段练习一:AB CD ACAC 1、如图所示: (1)求线段比 BC 、 DE 、 BE 、CD(2)试指出图中成比例线段2、线段 a 、b 、c 、d 的长度分别是 30mm 、2cm 、0.8cm 、12mm 判断这四条线段是否成比例?3、线段 a 、b 、c 、d 的长度分别是2 、3 、2、 6 判断这四条线段是否成比例?4、已知 A 、B 两地的实际距离是 250m 若画在图上的距离是 5cm ,则图上距离与实际距离的比是 ___________ 5、已知线段 a= 1 2、 b = 23 、c= 23 、若a cb x b y ,则 x =_________若y 0 yc,则y =__________6、下列四组线段中,不成比例的是()A a=3 b=6 c=2 d=4B a=1 b= 2 c= 3 d= 6C a=4 b=6 c=5 d=10D a= 2 b= 3 c=2 d= 6知识点二:比例线段的性质比例性质是根据等式的性质得到的,推理过程如下:(1)基本性质:如果a cb d,那么ad bc (两边同乘bd ,bd 0 )在abcd 0的情况下,还有以下几种变形 b da c 、a bc d、c da b(2)合比性质:如果a cb d ,那么a b c db d(3)等比性质:如果a c e mb d f nb d f n0,那么a c e m ab d f n b例2 填空:如果ab23,则a =2b3、2a=3b、a bb=53、a bb=13练习二:1、已知ab35,求a ba b2、若a b c2 3 4,则a2b 3ca=_________3、已知mx ny ,则下列各式中不正确的是()A m xn yBm ny xCy mx nDx yn m4、已知5x 7y0 ,则xy=_______5、已知x y z3 4 5,求x y zx y z=________2暑假讲义九年级数学 相似三角形第 2 讲平行线分线段成比例【学习目标】1. 理解掌握平行线分线段成比例定理,会用符号“∽”表示相似三角形, 如△ ABC ∽△ A B C ;2. 知道相似多边形的主要特征3. 会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行相关的计算。

相似三角形的应用(重点题专项讲练)(人教版)(原卷版)

相似三角形的应用【典例1】如图,身高1.5米的李强站在A处,路灯底部O到A的距离为20米,此时李强的影长AD=5米,李强沿AO所在直线行走12米到达B处.(1)请在图中画出表示路灯高的线段和李强在B处时影长的线段;(2)请求出路灯的高度和李强在B处的影长.【思路点拨】(1)利用中心投影的性质画出图形即可;(2)设HO=x米,由证得△AED∽△OHD得ADDO =AEHO求出HO的值,再证明△FBC∽△HOC得到BCCO=BFHO,从而求解.【解题过程】解:(1)如图HO,BC即为所求(2)由题意知:BF=AE=1.5米,OA=20米,AB=12米,∴BO=OA−AB=20−12=8米设HO=x米∴∠HOA=∠EAD=90°又∴∠D=∠D∴△AED∽△OHD∴AD DO =AEHO即1.5x =525解得,x=7.5∴∠FBC=∠HOD=90°又∴∠FCB=∠FCO∴△FBC∽△HOC∴BC CO =BFHO即BC8+BC =1.57.5解得BC=2答:路灯高度为7.5米,BC长2米1.(2022·浙江绍兴·模拟预测)如图,身高1.2m的小淇晚上在路灯(AH)下散步,DE为他到达D处时的影子.继续向前走8m到达点N,影子为FN.若测得EF=10m,则路灯AH的高度为()A.6m B.7m C.8m D.9m2.(2022·河北·石家庄二十三中九年级阶段练习)如图,花丛中有一路灯杆AB.在灯光下,小明在D点处的影长DE=3米,沿BD方向行走到达G点,DG=5米,这时小明的影长GH=5米.如果小明的身高为1.7米,则路灯杆AB的高度(精确到1米)为()A.5米B.6米C.7米D.8米3.(2022·河北·大名县束馆镇束馆中学三模)一种燕尾夹如图1所示,图2是在闭合状态时的示意图,图3是在打开状态时的示意图(数据如图,单位:mm),则从闭合到打开B,D之间的距离减少了()A.25 mm B.20mm C.15 mm D.8mm4.(2022·全国·九年级专题练习)有一等腰三角形纸片ABC,AB=AC,裁剪方式及相关数据如图所示,则得到的甲、乙、丙、丁四张纸片中,面积最大的是()A.甲B.乙C.丙D.丁5.(2022·江苏无锡·九年级期中)一块直角三角形木板,它的一条直角边AC长为1cm,面积为1cm2,甲、乙两人分别按图∴、∴把它加工成一个正方形桌面,则∴、∴中正方形的面积较大的是()A.∴B.∴C.一样大D.无法判断6.(2022·全国·九年级单元测试)如图,大楼ABCD(可以看作不透明的长方体)的四周都是空旷的水平地面.地面上有甲、乙两人,他们现在分别位于点M和点N处,M、N均在AD的中垂线上,且M、N到大楼的距离分别为60米和20√3米,又已知AB长40米,AD长120米,由于大楼遮挡着,所以乙不能看到甲.若乙沿着大楼的外面地带行走,直到看到甲(甲保持不动),则他行走的最短距离长为________米.7.(2022·全国·九年级专题练习)图1是一种手机托架,使用该手机托架示意图如图3所示,底部放置手机处宽AB=1.2厘米,托架斜面长BD=6厘米,它有C到F共4个档位调节角度,相邻两个档位间的距离为0.8厘米,档位C到B的距离为2.4厘米.将某型号手机置于托架上(图2),手机屏幕长AG是15厘米,O 是支点且OB=OE=2.5厘米(支架的厚度忽略不计).当支架调到E档时,点G离水平面的距离GH为__________cm.8.(2022·浙江金华·一模)将一本高为17cm(即EF=17cm)的词典放入高(AB)为16cm的收纳盒中(如图1).恰好能盖上盒盖时,测得底部F离收纳盒最左端B处8cm,若此时将词典无滑动向右倒,书角H的对应点H′恰为CD中点.(1)收纳盒的长BC=_______;(2)现将若干本同样的词典放入此有盖的收纳盒中,如图2放置,则最多有________本书可与边BC有公共点.9.(2022·浙江杭州·九年级专题练习)如图,某种吊车由固定机架和三根连杆组成.已知连杆AB=12米,CD=10米,CE=9米,其支点A,D的距离为5米,支点B,C的距离为3米,点A,D到地面l的垂直高度分别为4米和8米.当EC和CD共线时(如图1),点E到地面l的距离为__________米;改变连杆之间的夹角使CE与l平行(如图2),此时点E到地面l的高度为___________米.10.(2022·浙江·翠苑中学九年级期中)如图,阳光下,小亮的身高如图中线段AB所示,他在地面上的影子如图中线段BC所示,线段DE表示旗杆的高,线段FG表示一堵高墙(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子的示意图;(2)如果小亮的身高AB=1.5m,他的影子BC=2.4m,旗杆的高DE=15m,旗杆与高墙的距离EG=16m,请求出旗杆的影子落在墙上的长度.11.(2022·河南·泌阳县光亚学校九年级阶段练习)延时课上,老师布置任务如下:让王林(AB)站在B点处去观测10m外的位于D点处的一棵大树(CD),所用工具为一个平面镜P和必要的长度测量工具(B、P、D在一直线上).已知王林身高1.6m,大树高6.4m,请问如何放置平面镜P才能观测到大树的顶端?12.(2022·辽宁·沈阳市第二十三中学九年级期中)如图,在水平桌面上的两个“E”,当点P1,P2,O在一条直线上时,在点O处用∴号“E”(大“E”)测得的视力与用∴号“E”(小“E”)测得的视力效果相同.(1)△P1D1O与△P2D2O相似吗?请说明理由.(2)图中b1,b2,l1,l2满足的数量关系为___________.(3)若b1=3.2cm,b2=2cm,∴号“E”的测量距离l1=8m,要使得测得的视力相同,则∴号“E”的测量距离l2为___________m.13.(2022·陕西·西安市西航一中九年级期中)如图,小明欲测量一座古塔的高度,他拿出一根杆CD竖直插在地面上,然后自己退后,使眼睛通过杆的顶端C刚好看到塔顶A,若小明的眼睛E离地面1.5米,杆顶端C离地面2.4米,小明到杆的距离DF=2米,杆到塔底的距离DB=32米,E、C、H在同一直线上且EH⊥AB 于H,交CD于点G,求这座古塔的高度.14.(2022·陕西·西安工业大学附中九年级期中)为了加快城市发展,保障市民出行方便,某市在流经该市的河流上架起一座桥,连通南北,铺就城市繁荣之路.小明和小颖想通过自己所学的数学知识计算该桥AF 的长.如图,该桥两侧河岸平行,他们在河的对岸选定一个目标作为点A,再在河岸的这一边选出点B和点C,分别在AB、AC的延长线上取点D、E,使得DE∥BC.经测量,BC=120米,DE=210米,且点E 到河岸BC的距离为60米.已知AF∴BC于点F,请你根据提供的数据,帮助他们计算桥AF的长度.15.(2022·广东·佛山市南海区南海实验中学九年级期中)九年级二班的兴趣小组想去测量学校升旗杆的高度,如图所示,小逸同学眼睛A与标杆顶点F、升旗杆顶端E在同一直线上,已知小逸眼睛距地面AB的长为1.7m,标杆FC的长为3.2m,测得BC的长为2m,CD的长为4m,求升旗杆的高ED.16.(2022·山西省运城市运康中学校九年级阶段练习)小明想用镜子测量一棵松树AB的高度,但因树旁有一条河,不能测量镜子与树之间的距离,于是他两次利用镜子,如图所示,第一次他把镜子放在C点,人在F点时正好在镜子中看到树尖A的像;第二次把镜子放在D点,人在H点正好看到树尖A的像.已知小明的眼睛到地面的距离EF=GH=1.7m,量得CD=12m,CF=1.8m,DH=3.8m.已知点B、C、F、D、H在一条直线上,AB⊥BH,EF⊥BH,GH⊥BH,请你求出松树AB的高.17.(2022·全国·九年级单元测试)某天晚上,小明看到人民广场的人行横道两侧都有路灯,想起老师数学课上学习身高与影长的相关知识,于是自己也想实际探究一下.为了探究自己在两路灯下的影长和在两路灯之间的位置关系,小明在网上从有关部门查得左侧路灯(AB)的高度为4.8米,右侧路灯(CD)的高度为6.4米,两路灯之间的距离(BD)为12米,已知小明的身高(EF)为1.6米,然后小明在两路灯之间的线段上行走(如图所示),测量相关数据.(1)若小明站在人行横道的中央(点F是BD的中点)时,小明测得自己在两路灯下的影长FP=米,FQ=米;(2)小明在移动过程中,发现在某一点时,两路灯产生的影长相等(FP=FQ),请问时小明站在什么位置,为什么?18.(2022·全国·九年级专题练习)阅读以下文字并解答问题:在“测量物体的高度”活动中,某数学兴趣小组的3名同学选择了测量学校里的三棵树的高度,在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如1图).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如2图),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小明:测得丙树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如3图).身高是1.6米的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2米.(1)在横线上直接填写甲树的高度为______米,乙树的高度为________米﹔(2)请求出丙树的高度.1112。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
C
B

A


相似三角形运用
班级________姓名___________
【基础练习】:
1.如图所示,若点C是AB的黄金分割点,AB=1,则AC=___ ,BC=_____ ;
2.如图,在等腰三角形ABC中,∠A=36°,BD、CE分别是∠ABC、∠ACB的角平分线,BD、CE相
交于点O,则图中的黄金三角形有______个。
3
.某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,
如图(1)所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,
那么旗杆AC的高度为 ____
4.如图,上体育课,甲、乙两名同学分别站在C、D的位置时,乙的影子恰好在甲的影子里
边,已知甲,乙同学相距1米.甲身高1.8米,乙身高1.5米,则甲的影长是 米.

【典型例题】:
例1.(1)如图,以A为位似中心,将四边形ABCD放大为原来的2倍.
(2)以O为位似中心,将四边形ABCD按位似比1:2缩小。

例2.(1)如图的五角星中,ACAB与BCAC的关系是( )
A、相等 B、ACAB>BCAC C、ACAB(2)如图所示的五角星中,AD=BC,且C、D两点都是AB的黄金分割点,AB=1,
则CD=_________.
例3.小明把手臂水平向前伸直,手持长为a的小尺竖直,瞄准小尺的两端E、F,不断调整
站立的位置,使站在点D处正好看到旗杆的底部和顶部,如果小明的手臂长为l=40cm,小
尺的长a=20cm,点D到旗杆底部的距离AD=40m,求旗杆的高度。

C
DC
B

A

O
E
D

B
C

A

D
A
B

O
- 2 -

h
S
A
CBB'O
C
'

A
'

例4.为了测量路灯(OS)的高度,把一根长1.5米的竹竿(AB)竖直立在水平地面上,测得竹
竿的影子(BC)长为1米,然后拿竹竿向远离路灯方向走了4米(BB‘),再把竹竿竖立在地面
上, 测得竹竿的影长(B‘C‘)为1.8米,求路灯离地面的高度.

【课堂练习】:
1.如图,测量小玻璃管口径的量具ABC,AB的长为10cm,AC被分为60等份.如果小玻璃管口
DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是 cm。
2
.如图,某同学身高AB=1.60m,他从路灯杆底部的点D直行4m到点B,此时其影长PB
=2m,求路灯杆CD的高度。

3.如图,在12×12的正方形网格中,△TAB 的顶点坐标分别为T(1,1)、A(2,3)、B
(4,2).
(1)以点T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1在位似中心的同侧将△TAB
放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的
坐标;
(2)在(1)中,若C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标.

4.如图,ABC△与ABC△是位似图形,且位似比是1:2,
若AB=2cm,则AB cm,并在图中画出位似中心O.

D
C
A
B
P

视线
视线
盲区
视点

T
O

B

A

x

y


A
B
C

A
B

C


- 3 -

【中午练习】:(15分钟)
1.点D、E分别在AC、BC上,如果测得CD=20m,CE=40m,AD=100m,BE=20m,DE=45m,求A、
B两地间的距离。

2.以长为2的线段AB为边作正方形ABCD,取AB的中点P,连结PD,在BA的延长线上
取点F,使PF=PD,以AF为边作正方形AMEF,点M在AD上,如右图
(1)求AM、DM的长. (2)求证:AM2=AD·DM.
(3)根据(2)的结论你能找出图中的黄金分割点吗?

3.如图,零件的外径为16cm,要求它的壁厚x,需要先求出内径AB,现用一个交叉钳(AD
与BC相等)去量,若测得OA:OD=OB:OC=3:1,CD=5cm,你能求零件的壁厚x吗?

4.如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长
DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明得身高为1.6m,求路
灯杆AB的高度。

E
C
G
B
F
D

A
B
D
C

E
- 4 -
【课后思考】:
1.在“捉迷藏”的游戏中,你认为躲藏者藏在何处?_________,才不容易被寻找者发现.
2.陈可建和江悄悄到淮安人民大会堂观看电影。
(1)坐在二层的陈可建能看到江悄悄吗?为什么?_______________________________。
(2)江悄悄坐在什么位置时,陈可建才能看到她?________________________________。

2.如图,电视节目主持人在主持节目时,站在舞台的黄金
分割点处最自然得体,若舞台AB长为20m,试计算主持人
应走到离A点至少多少m处是比较得体的位置?(精确到0.1m)

3.利用镜面反射可以计算旗杆的高度,如图,一名同学(用AB表示),站在阳光下,通过镜子C恰
好看到旗杆ED的顶端,已知这名同学的身高是1.60米,他到影子的距离是2米,镜子到旗杆的
距离是8米,求旗杆的高.

4.我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物
测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该
建筑物遮住。若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算
出敌方建筑物的高度吗?请说出你的思路。

5.阳光通过窗口照到教室内,竖直的窗框AB在地面上留下2m长的影子ED(如图),已知窗
框的影子到窗框下墙角的距离EC是4m,窗口底边离地面的距离BC是1.2m,试求窗框AB
的高度。

E
D
CB

A

相关文档
最新文档