【初三数学】天津市九年级数学上期末考试单元综合练习卷(含答案)
2021-2022学年天津市西青区九年级(上)期末数学试卷(含答案解析)

2021-2022学年天津市西青区九年级(上)期末数学试卷1.下列事件中,是随机事件的为( )A. 一个三角形的外角和是360∘B. 投掷一枚正六面体骰子,朝上一面的点数为5C. 在只装了红色卡片的袋子里,摸出一张白色卡片D. 明天太阳从西方升起2.一个不透明的袋子中装有9个小球,其中6个红球、3个绿球,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球.则摸出的小球是红球的概率是( )A. 23B. 12C. 13D. 193.下列图案中,可以看作中心对称图形的是( )A. B. C. D.4.下列各数是方程x2+3x−10=0的根的是( )A. 2和5B. −5和3C. 5和3D. −5和25.如图,⊙O为等边△ABC外接圆,点D是BC⏜上一点,连接AD,CD.若∠CAD=25∘,则∠ACD的度数为( )A. 85∘B. 90∘C. 95∘D. 100∘6.如图,OA是⊙O的半径,弦BC⊥OA,垂足为D.连接AC.若BC=4√2,AC=3,则⊙O的半径长为( )A. 9B. 8C. 92D. 37.如图,已知点A,B,C是⊙O上三点,半径OC=2,∠ABC=30∘,切线AP交OC延长线于点P,则AP长为( )A. 2B. 2√3C. 4D. 4√38.据某市交通部门统计,2018年底全市汽车拥有量为150万辆,而到2020年底,全市的汽车拥有量已达216万辆,求2018年底至2020年底该市汽车拥有量的年平均增长率,若设2018年底至2020年底该市汽车拥有量的年平均增长率为x,则可列方程为( )A. 150(1+2x)=216B. 150×2(1+x)=216C. 150(1+x)2=216D. 150+150×2x=2169.如图,⊙O内切于△ABC,若∠AOC=110∘,则∠B的度数为( )A. 40∘B. 60∘C. 80∘D. 100∘10.如图,Rt△ABC的斜边AB=13cm,一条直角边AC=5cm,以BC边所在直线为轴将这个三角形旋转一周,得到一个圆锥,则这个圆锥的全面积为( )A. 65πcm2B. 90πcm2C. 156πcm2D. 300πcm211.某种商品每件的进价为30元,在某时间段内若以每件x元出售,可卖出(100−x)件.若想获得最大利润,则定价x应为( )A. 35元B. 45元C. 55元D. 65元12.已知抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过点(−1,0),其对称轴为直线x=2,有下列结论:①c<0;②4a+b=0;③4a+c>2b;④若y>0,则−1<x<5;⑤关于x 的方程ax2+bx+c+1=0有两个不等的实数根;⑥若M(3,y1)与N(4,y2)是此抛物线上两点,则y1>y2.其中,正确结论的个数是( )A. 6B. 5C. 4D. 313.某瓷砖厂在相同条件下抽取部分瓷砖做耐磨试验,结果如下表所示:抽取瓷砖数n100300400600100020003000合格品数m9628238257094919062850合格品频率m0.9600.9400.9550.9500.9490.9530.950n则这个厂生产的瓷砖是合格品的概率估计值是______.(精确到0.01)14.若x1,x2是方程2x2+4x−3=0的两个根,则x1⋅x2的值为______.15.若二次函数y=2x2−x+k的图象与x轴有两个公共点,则k的取值范围是______.⏜的16.如图,六边形ABCDEF是半径为6的圆内接正六边形,则CD长为______.17.如图,已知△ABC内接于⊙O,BC是⊙O的直径,OD⊥AC于点D.半径OE⊥BC,连接BD,EA,且EA⊥BD点F.若BC=10,则OD=______.18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均在格点上,∠CAB=26∘,经过A,B,C三点的圆的半径为√5.(Ⅰ)线段AC的长等于______;(Ⅰ)请用无刻度的直尺,在如图所示的网格中,画出一个点M使其满足∠BMC=38∘,并简要说明点M的位置是如何找到的______(不要求证明).19.解下列方程.(Ⅰ)x(3x+2)=6(3x+2);(Ⅰ)3x2−2x−4=0.20.在平面直角坐标系中,二次函数y=−2x2+bx+c的图象经过点A(−2,4)和点B(1,−2). (Ⅰ)求这个二次函数的解析式及其图象的顶点坐标;(Ⅰ)平移该二次函数的图象,使其顶点恰好落在原点的位置上,请直接说出平移的方向和距离.21.如图,有一个可以自由转动的转盘被平均分成3个扇形,分别标有−1,−2,3三个数字.小王和小李各转动一次转盘为一次游戏,当每次转盘停止后,指针所指扇形内的数为各自所得的数,一次游戏结束得到一组数(指针指在分界线时取指针右侧扇形的数).(Ⅰ)小王转动一次转盘指针指向正数所在扇形的概率是______;(Ⅰ)请你用树状图或列表的方法求一次游戏结束后两数之和是正数的概率.22.已知AB是⊙O的直径,BD为⊙O的切线,切点为B.过⊙O上的点C作CD//AB,交BD 点D.连接AC,BC.(Ⅰ)如图①,若DC为⊙O的切线,切点为C.求∠BCD和∠DBC的大小;(Ⅰ)如图②,当CD与⊙O交于点E时,连接BE.若∠EBD=30∘,求∠BCD和∠DBC的大小.23.如图,若要建一个矩形场地,场地的一面靠墙,墙长10m,另三边用篱笆围成,篱笆总长20m,设垂直于墙的一边为x m,矩形场地的面积为Sm2.(Ⅰ)S与x的函数关系式为S=______,其中x的取值范围是______;(Ⅰ)若矩形场地的面积为42m2,求矩形场地的长与宽;(Ⅰ)当矩形场地的面积最大时,求矩形场地的长与宽,并求出矩形场地面积的最大值.24.在等腰直角三角形ABC中,∠BAC=90∘,AB=AC.点D,E分别为AB,AC中点,F是线段DE上一动点(不与点D,E重合),将线段AF绕点A逆时针方向旋转90∘得到线段AG,连接GC,FB.(Ⅰ)如图①,证明:△AFB≌△AGC.(Ⅰ)如图②,连接GF,GE,GF交AE于点H.①证明:在点F的运动过程中,总有∠FEG=90∘.②若AB=AC=8,当DF的长度为多少时,△AHG为等腰三角形?请直接写出DF的长度.x2+bx+4的对称轴是直线x=2,与x轴相25.如图,在平面直角坐标系中,抛物线y=−13交于A,B两点(点A在点B的左侧),与y轴交于点C.(Ⅰ)求b的值及B,C两点坐标;(Ⅰ)M是第一象限内抛物线上的一点,过点M作MN⊥x轴于点N,交BC于点D.①当线段MD的长取最大值时,求点M的坐标;②连接CM,当线段CM=CD时,求点M坐标.答案和解析1.【答案】B【解析】解:A、一个三角形的外角和是360∘,是必然事件,故A不符合题意;B、投掷一枚正六面体骰子,朝上一面的点数为5,是随机事件,故B符合题意;C、在只装了红色卡片的袋子里,摸出一张白色卡片,是不可能事件,故C不符合题意;D、明天太阳从西方升起,是必然事件,故D不符合题意;故选:B.根据随机事件,必然事件,不可能事件,三角形的外角性质判断即可.本题考查了随机事件,熟练掌握随机事件,必然事件,不可能事件的特点是解题的关键.2.【答案】A【解析】【分析】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.用红球的个数除以球的总个数即可得.【解答】解:∵袋子中一共有9个除颜色不同外其它均相同的小球,其中红球有6个,∴摸出的小球是红球的概率是69=23,故选:A.3.【答案】C【解析】【分析】此题考查了中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180度后两部分重合.根据中心对称图形的概念和各图特点即可解答.【解答】解:A、∵此图形旋转180∘后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;B、∵此图形旋转180∘后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;C、∵此图形旋转180∘后能与原图形重合,∴此图形是中心对称图形,故此选项正确;D、∵此图形旋转180∘后不能与原图形重合,∴此图形不是中心对称图形,故此选项错误;.故选:C.4.【答案】D【解析】解:方程x2+3x−10=0,分解因式得:(x−2)(x+5)=0,所以x−2=0或x+5=0,解得:x=2或x=−5.故选:D.利用因式分解法求出方程的解,即可作出判断.此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.5.【答案】C【解析】解:∵△ABC为等边三角形,∴∠BAC=∠ACB=60∘,∵∠BAD=∠BAC−∠CAD=60∘−25∘=35∘,∴∠BCD=∠BAD=35∘,∴∠ACD=∠ACB+∠BCD=60∘+35∘=95∘.故选:C.先根据等边三角形的性质得到∠BAC=∠ACB=60∘,则可计算出∠BAD=35∘,再根据圆周角定理得到∠BCD=∠BAD=35∘,然后计算∠ACB+∠BCD即可.本题考查了三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆.也考查了等边三角形的性质和圆周角定理.6.【答案】C【解析】【分析】连接AC,OC,由垂径定理可求解CD的长,∠ADC=∠ODC=90∘,利用勾股定理可求解AD的长,再根据勾股定理可求解OC的长即可求解.本题主要考查垂径定理,勾股定理,灵活利用勾股定理求解线段长是解题的关键.【解答】解:连接AC,OC,∵CD⊥OA,垂足为D,BC=4√2,BC=2√2,∴∠ADC=∠ODC=90∘,CD=12∵AC=3,∴AD=√AC2−CD2=√9−8=1,∵OA=OC,∴OD=OC−AD=OC−1,在Rt△OCD中,OC2=CD2+OD2,即OC2=(2√2)2+(OC−1)2,,解得OC=92即⊙O的半径长为9,2故选:C.7.【答案】B【解析】解:连接OA,由圆周角定理得:∠AOP=2∠ABC=60∘,∵AP为⊙O的切线,∴OA⊥AP,,在Rt△AOP中,tan∠AOP=APOA∴AP=OA⋅tan∠AOP=2√3,故选:B.连接OA,根据圆周角定理求出∠AOP,根据切线的性质得到OA⊥AP,根据正切的定义计算,得到答案.本题考查的是切线的性质、圆周角定理、特殊角的三角函数值,掌握圆的切线垂直于经过切点的半径是解题的关键.8.【答案】C【解析】解:设该市汽车拥有量的年平均增长率为x.根据题意,得150(1+x)2=216,故选:C.设年平均增长率x,根据等量关系“2020年底汽车拥有量=2018年底汽车拥有量×(1+年平均增长率)2”列出一元二次方程求得.本题考查了一元二次方程的实际应用--增长率问题,若设变化前的量为a,变化后的量为b,增长率为x,则经过两次变化后的数量关系为a(1±x)2=b(当增长时中间的“±”号选“+”,当降低时中间的“±”号选“-”).9.【答案】A【解析】解:∵⊙O内切于△ABC,∴AO,CO分别平分∠BAC,∠BCA,∠AOC=110∘,∴∠BAC+∠BCA=2(∠OAC+∠OCA)=2(180∘−∠AOC)=140∘,∴∠B=180∘−(∠BAC+∠BCA)=40∘.故选:A.根据⊙O内切于△ABC,可得AO,CO分别平分∠BAC,∠BCA,然后利用三角形内角和定理即可解决问题.本题考查了三角形的内切圆与内心,三角形内角和定理,掌握三角形内切圆与内心是解题关键.10.【答案】B【解析】解:圆锥的表面积=π×5×13+π×52=90π(cm2).故选:B.根据圆锥的全面积=侧面积+底面积计算.本题考查了圆锥的全面积公式的运用;掌握圆锥的全面积:S全=S底+S侧=πr2+πrl是解题的关键.11.【答案】D【解析】解:设最大利润为w元,则w=(x−30)(100−x)=−(x−65)2+1225,∵−1<0,0<x<100,∴当x=65时,二次函数有最大值1225,∴定价是65元时,利润最大.故选:D.本题是营销问题,基本等量关系:利润=每件利润×销售量,每件利润=每件售价-每件进价.再根据所列二次函数求最大值.本题考查了把实际问题转化为二次函数,再利用二次函数的性质进行实际应用.此题为数学建模题,借助二次函数解决实际问题.12.【答案】C【解析】解:根据题意对称轴为直线x=2,∴−b=2,2a∴b=−4a,即4a+b=0,故②正确;∵抛物线y=ax2+bx+c(a,b,c为常数,a<0)经过点(−1,0),∴a−b+c=0,∴c=b−a=−4a−a=−5a,∵a<0,∴c>0,故①错误;当x=−2时,y<0,∴4a−2b+c<0,∴4a+c<2b,故③错误;由对称得:抛物线与x轴交点为(−1,0),(5,0),∴y>0,则−1<x<5,故④正确;当y=−1时,关于x的方程ax2+bx+c=−1有两个不等的实数根,∴关于x的方程ax2+bx+c+1=0有两个不等的实数根;故⑤正确;∵a<0,4−2>3−2,∴y1>y2.故⑥正确.综上,正确的结论是②④⑤⑥.故选:C.根据对称轴为直线x=2可判断②正确;将(−1,0)代入y=ax2+bx+c中可判断①;根据a<0,抛物线图象经过点(−1,0),可知x=−2,y<0可判断③;根据图象可直接判断④和⑤;根据增减性可判断⑥.本题考查二次函数图象与系数的关系,增减性,对称轴,抛物线与x轴的交点,应数形结合、充分掌握二次函数各系数a、b、c的意义以及对图象的影响和对一元二次方程根个数的关系.13.【答案】0.95【解析】解:由合格品的频率都在0.95上下波动可得这个厂生产的瓷砖是合格品的概率估计值是0.95故答案为:0.95根据表格中实验的频率,然后根据频率即可估计概率.本题考查了利用频率估计概率的思想,解题关键是求出每一次事件的频率,然后即可估计概率解决问题.14.【答案】−32【解析】解:∵x1,x2是方程2x2+4x−3=0的两个根,∴x1⋅x2=−3 2.故答案为:−32.利用根与系数关系求出两根之积即可.此题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解本题的关键.15.【答案】k<18【解析】解:∵二次函数y=2x2−x+k的图象与x轴有两个公共点,∴(−1)2−4×2k>0,解得k<18,故答案为:k<18.根据二次函数y=2x2−x+k的图象与x轴有两个公共点,得b2−4ac>0,列不等式,解出即可.本题考查了抛物线与x轴的交点、二次函数的性质,熟练掌握抛物线与x轴的交点、二次函数的性质的综合应用,根得判别式的应用是解题关键.16.【答案】2π【解析】解:∵ABCDEF为正六边形,∴∠COB=360∘×16=60∘,∴△OBC是等边三角形,∴OB=OC=BC=2,弧BC的长为60π×6180=2π.故答案为:2π.连接OC、OB,求出圆心角∠AOB的度数,再利用弧长公式解答即可;本题考查了正多边形和圆的知识,解题的关键是能够求得扇形的圆心角,难度不大.17.【答案】√5【解析】解:∵BC是⊙O的直径,∴∠BAC=90∘,∵OE⊥BC,∴EB⏜=EC⏜,∴∠BAE=∠CAE=45∘,∵EA⊥BD,∴∠ABD=∠ADB,∴AB=AD,∵OD⊥AC,∴AD=CD,∴AC=2AB,OD为△ABC的中位线,在Rt△ABC中,∵AB2+AC2=BC2,∴AB2+4AB2=102,∴AB=2√5,∴OD=12AB=√5.故答案为:√5.根据圆周角定理得到∠BAC=90∘,再利用圆周角定理得到EB⏜=EC⏜,所以∠BAE=∠CAE=45∘,接着证明AB=AD,利用垂径定理得到AD=CD,所以AC=2AB,利用勾股定理得到AB2+4AB2=102,解得AB=2√5,从而得到OD的长度.本题考查了三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆.也考查了垂径定理.18.【答案】√13设圆心为O,连接OC,OB,取格点J,延长CJ交OB的延长线于点M,点M 即为所求【解析】解:(Ⅰ)如图,AC=√12+32=√10,故答案为:√10;(Ⅰ)如图,点M即为所求.故答案为:设圆心为O,连接OC,OB,取格点J,延长CJ交OB的延长线于点M,点M即为所求.(Ⅰ)利用勾股定理求解;(Ⅰ)设圆心为O,连接OC,OB,取格点J,延长CJ交OB的延长线于点M,点M即为所求.本题考查作图-复杂作图,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.19.【答案】解:(Ⅰ)x(3x+2)=6(3x+2),x(3x+2)−6(3x+2)=0,(3x+2)(x−6)=0,3x+2=0或x−6=0,所以x1=−23,x2=6;(Ⅰ)3x2−2x−4=0,∵Δ=(−2)2−4×3×(−4)=4+48=52,∴x=2±√522×3=2±2√136=1±√133,∴x1=1+√133,x2=1−√133.【解析】(Ⅰ)先移项,使方程的右边化为零,再利用提公因式法将方程的左边因式分解,得到两个关于x的一元一次方程,进一步求解即可;(Ⅰ)利用公式法解方程即可.本题考查了解一元二次方程-因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了公式法解一元二次方程.20.【答案】解:(Ⅰ)由题意得,{−2×4−2b +c =4−2×1+b +c =−2,解得:{b =−4c =4,所以,此二次函数的解析式为y =−2x 2−4x +4; ∵y =−2x 2−4x +4=−2(x +1)2+6, ∴顶点为(−1,6); (Ⅰ)∵顶点为(−1,6),∴抛物线向右平移1个单位,向下平移6个单位,使其顶点恰好落在原点的位置上.【解析】(Ⅰ)把点A 、B 的坐标代入函数解析式计算求出b 、c 的值,即可求得解析式,把解析式化成顶点式即可求得顶点坐标;(Ⅰ)根据顶点坐标即可得出平移的方向和距离.本题考查了了待定系数法求二次函数解析式,二次函数的性质,二次函数的图象与几何变换,熟练掌握待定系数法是解题的关键.21.【答案】13【解析】解:(1)转盘被平均分为3份,共有3种可能出现的结果,其中是正数的只有1种, 所以小王转动一次转盘指针指向正数所在扇形的概率是13, 故答案为:13;(2)用列表法表示所有可能出现的结果情况如下:共有9种可能出现的结果,其中两次之和为正数的有5种, 所以两数之和是正数的概率为59.(1)转盘被平均分为3份,共有3种可能出现的结果,其中是正数的只有1种,可求出答案; (2)用列表法表示所有可能出现的结果情况,进而求出相应的概率.本题考查列表法或树状图法求简单随机事件发生的概率,列举出所有可能出现的结果是正确解答的关键.22.【答案】解:(Ⅰ)∵AB是⊙O的直径,DB为⊙O的切线,切点为B,∴DB⊥AB,∴∠DBA=90∘,∵DC为⊙O的切线,切点为C,∴DC=DB,∵CD//AB,∴∠D+∠DBA=180∘,∴∠D=90∘,∴∠BCD=∠DBC=45∘;(Ⅰ)∵AB是⊙O的直径,DB为⊙O的切线,切点为B,∴DB⊥AB,∴∠DBA=90∘,∵CD//AB,∴∠D+∠DBA=180∘,∴∠D=90∘,∴∠DEB=∠EBA,∵∠EBD=30∘,∴∠DEB=60∘,∴∠EBA=60∘,∴∠ACE=120∘,∵AB是⊙O的直径,∴∠BCA=90∘,∴∠BCD=30∘,∴∠DBC=60∘.【解析】(Ⅰ)根据AB是⊙O的直径,DB为⊙O的切线,切点为B,可得DB⊥AB,根据DC为⊙O 的切线,切点为C,可得DC=DB,所以得三角形BDC是等腰直角三角形,进而求出∠BCD和∠DBC 的大小;(Ⅰ)根据AB是⊙O的直径,DB为⊙O的切线,切点为B,可得DB⊥AB,根据∠EBD=30∘,可得∠ABE=60∘,根据圆内接四边形对角互补可得∠ACE=120∘,根据AB是⊙O的直径,可得∠BCA=90∘,进而求得∠BCD和∠DBC的大小.本题考查了切线的性质、圆周角定理,解决本题的关键是掌握切线的判定与性质.23.【答案】−2x2+20x5≤x<10【解析】解:(1)∵AD=BC=x,∴AB=20−2x.又∵墙长10米,∴{20−2x≤102x<20,∴5≤x<10.∴S=x(20−2x)=−2x2+20x(5≤x<10).故答案为:−2x2+20x,5≤x<10;(2)当矩形场地的面积为42m2时,−2x2+20x=42,解得:x1=3(不合题意,舍去),x2=7,∴20−2x=6.答:矩形的长为7米,宽为6米;(3)∵S=−2x2+20x=−2(x−5)2+50,∴当x=5时,S最大是50,此时20−2x=10,答:当矩形场地的面积最大时,矩形场地的长是10m,宽是5m,矩形场地面积的最大值是50m2.(1)由AD=x,可得出AB=20−2x,由墙长10米,可得出关于x的一元一次不等式组,解之即可得出x的取值范围,再利用矩形的面积公式即可得出s关于x的函数关系式;(2)根据矩形场地的面积,可得出关于x的一元二次方程,解之即可得出结论;(3)把二次函数的解析式配方成顶点式,求出长与宽.本题考查了一元二次方程的应用、函数关系式以及函数自变量的取值范围,解题的关键是:(1)利用矩形的面积公式,找出s关于x的函数关系式;(2)找准等量关系,正确列出一元二次方程.24.【答案】(Ⅰ)证明:∵∠BAC=∠FAG=90∘,∴∠BAC−∠FAE=∠FAG−∠FAE,即∠BAF=∠CAG,在△AFB和△AGC中,{AB=AC∠BAF=∠CAG AF=AG,∴△AFB≌△AGC(SAS);(Ⅰ)①证明:∵点D是AB的中点,点E是AC的中点,∴AD=12AB,AE=12AC,∵AB=AC,∴AD=AE,∵∠DAE=90∘,∴△DAE是等腰直角三角形,同理(Ⅰ)得,△DAF≌△EAG,∴∠AEG=∠ADE=45∘,∴∠GEF=∠AEG+∠AED=45∘+45∘=90∘;②解:由题意得:AD=AE=4,∴DE=√2AD=4√2,如图1,当AH=GH时,∠HAG=∠AGF=45∘,AF=AG,∠FAG=90∘,∴∠FAE=∠GAE=45∘,∵AD=AE,∴DF=EF=12DE=2√2,如图2,当AG=GH时,∵∠AGF=∠D=45∘,∠GAF=∠DAE,∴△DAF∽△GAH,∴AD DF =AGAH=1,∴DF=AD=4,当AH=AG时,∠AHG=∠AGH=45∘,∴∠HAG=90∘,此时F点和E点重合,不符合题意,综上所述:DF=2√2或4时,△AGH是等腰三角形.【解析】(Ⅰ)由:∠BAC=∠FAG=90∘推出∠BAF=∠CAG,进一步命题得证;(Ⅰ)①证明△DAF≌△EAG,进一步可得结果;②分为AH=GH,此时AF⊥DE,进而求得结果;当AG=GH时,推出DF=AD,从而求得结果;当AH=AG时,点F的点E重合,不合题意.本题考查了等腰直角三角形判定和性质,全等三角形的判定和性质等知识,解决问题的关键是正确分类,找出条件.25.【答案】解:(Ⅰ)∵对称轴是直线x=2,故x=2=−b2a =−b2×(−13),解得b=43,故抛物线的表达式为y=−13x2+43x+4,令y=0,即−13x2+43x+4=0,解得x=−2或x=6,∴B(6,0),令x=0,得y=4,∴C(0,4);(Ⅰ)①设直线BC的表达式为y=mx+n,则{0=6m+nn=4,解得{m=−23n=4,故直线BC的表达式为y=−23x+4,设点M的坐标为(x,−13x2+43x+4),则点D的坐标为(x,−23x+4),∴MD=−13x2+43x+4−(−23x+4)=−13x2+2x=−13(x−3)2+3,∴当线段MD的长取最大值时,x=3,∴M(3,5);②由①知,直线BC的表达式为y=−23x+4,设点M的坐标为(x,−13x2+43x+4),则点D的坐标为(x,−23x+4),当线段CM=CD时,则点C在MD的中垂线上,即y C=12(y M+y D),即4=12[−13x2+43x+4+(−23x+4)],解得x =0(舍去)或2, 故点M 的坐标为(2,163).【解析】(Ⅰ)根据题意列方程求得b =43,于是得到抛物线的表达式为y =−13x 2+43x +4,解方程即可得到结论;(Ⅰ)①设直线BC 的表达式为y =mx +n ,解方程组得到直线BC 的表达式为y =−23x +4,设点M 的坐标为(x,−13x 2+43x +4),则点D 的坐标为(x,−23x +4),得到MD =−13x 2+43x +4−(−23x +4)=−13x 2+2x =−13(x −3)2+3,根据二次函数的性质即可得到结论;②由①知,直线BC 的表达式为y =−23x +4,设点M 的坐标为(x,−13x 2+43x +4),则点D 的坐标为(x,−23x +4),根据题意列方程即可得到结论.主要考查了二次函数综合题,待定系数法求函数的解析式,要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.。
天津市滨海区2022年九年级上学期《数学》期末试题与参考答案

天津市滨海新区2022年九年级上学期《数学》期末试卷及答案一、选择题本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 一元二次方程化成一般形式后,它的二次项系数和一次项系数分别是()A. B. C. D. 【答案】A【详解】一元二次方程化成一般形式为:它的二次项系数和一次项系数分别是5,-4故选:A .2. 抛物线的开口方向、对称轴分别是( )A. 向上,轴B. 向上,轴C. 向下,轴D. 向下,轴【答案】B【详解】 ,所以抛物线开口向上,,所以对称轴为 ,对称轴为轴.故选:B .2514x x -=54-,45-,51-,1-4,2514x x -=25410x x --=∴213y x =x y x y 13a = 0b = 02bx a =-=y3. 下列语句描述的事件为随机事件的是()A. 通常加热到时,水沸腾B. 经过有交通信号灯的路口,遇到红灯C. 任意画一个三角形,其内角和是D. 从三张扑克牌J ,Q ,K 中取出一张是A【答案】B 【详解】A. 通常加热到时,水沸腾是必然事件,不符合题意;B. 经过有交通信号灯的路口,遇到红灯是随机事件,符合题意;C. 任意画一个三角形,其内角和是是不可能事件,不符合题意;D. 从三张扑克牌J ,Q ,K 中取出一张是A 是不可能事件,不符合题意.故选:B .4. 下列标志既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】C【详解】A .此图案是轴对称图形,不是中心对称图形,不符合题意;B .此图案仅是中心对称图形,不符合题意;C .此图案既是轴对称图形,又是中心对称图形,符合题意;D .此图案既不是轴对称图形,又不是中心对称图形,不符合题意;故选:C.100C ︒360︒100C ︒360︒5. 抛物线y=2(x+3)2+5的顶点坐标是( )A. (3,5)B. (﹣3,5)C. (3,﹣5)D. (﹣3,﹣5)【答案】B【详解】抛物线y=2(x+3)2+5的顶点坐标是(﹣3,5),故选B .6. 下列各点中与点关于原点对称的是()A. B. C. D. 【答案】B【详解】与点关于原点对称的点的坐标是:.故选:B .7. 不透明袋子中装有5个红球、3个绿球,这些球除了颜色外无其他差别,从袋子中随机摸出个球,摸出红球的概率是()A. B. C. D.【答案】D【详解】红球数量为5个,总的球数量为8个,∴从中随机摸出一球为红球的概率是.故选:D .(2,1)A -(2,1)(2,1)-(2,1)--(1,2)-(2,1)A -(2,1)-185833858588. 如图,在中,,,则的度数是( )A. B. C. D. 【答案】A【详解】在中,,故选:A .9. 如图,在中,,,则的度数是()A. B. C. D. 【答案】DO e »»=A B A C 75C ∠=︒A ∠30°40︒50︒60︒O e »»=A B A C 75C ∠=︒75B C ∴∠=∠=︒180A B C ∠+∠+∠=︒ 18030A B C ∴∠=︒-∠-∠=︒O e OA BC ⊥50AOC ∠=︒ADB ∠50︒30°20︒25︒【详解】连接OB,,,,故选:D .10. 如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A. 1米B. 2米C. 3米D. 4米【答案】C 【详解】设道路的宽为x,根据题意得20x+33x−x 2=20×33−510整理得x 2−53x+150=0解得x=50(舍去)或x=3所以道路宽为3米.故选C.OA BC ⊥ 50AOC ∠=︒50AOB ∴∠=︒1252ADB AOB ∴∠=∠=︒11. 如图,在△中,,,点是的内心,则的度数是( )A. B. C. D. 【答案】A 【详解】∵点是的内心,∴BO 平分,CO 平分,∴,,∴.故选A .12. 如图,二次函数的图象经过点,且与轴交点的横坐标为,其中,.下列结论:①,②,③中,正确的结论有()ABC 60ABC ∠=︒50∠=°ACB O ABC V BOC ∠125︒120︒130︒135︒O ABC V ABC ∠ACB ∠1230C CBO AB ∠=∠=︒1225B BCO AC ∠=∠=︒012518CBO BCO BOC ∠=︒-∠=∠-︒20y ax bx c a =++≠()(1,2)-x 12x x ,121x --<<201x <<420a b c -+<20a b -<284b a ac +>A. 0个B. 1个C. 2个D. 3个【答案】D【详解】根据题意得:当x=-2时,y <0,∴,故①正确;∵二次函数的图象与轴交点的横坐标为,其中,.开口向下,∴抛物线的对称轴,a <0,∴,∴,故②正确;∵二次函数的图象经过点,且对称轴在直线x=-1的右侧,∴抛物线的顶点的纵坐标大于2,∴,∵a<0,∴,∴,故③正确;∴正确的有①②③,共3个.故选:D420a b c -+<20y ax bx c a =++≠()x 12x x ,121x --<<201x <<12bx a =->-2b a >20a b -<20y ax bx c a =++≠()(1,2)-2424ac b a ->248ac b a -<284b a ac +>二、填空题本大题共6小题,每小题3分,共18分.13. 抛物线可以由抛物线先向左平移个单位,再向下平移___________个单位得到的.【答案】3【详解】抛物线向左平移2个单位,向下平移3个单位得到的函数图象的解析式为:.故答案为:3.14. 在数学考试中,单项选择题(每个题目只有4个备选答案)是试卷的重要组成部分,当你遇到完全不会做的选择题时,如果你随便选择一个答案,那么你答对的概率为_________.【答案】【详解】根据题意得:答对的概率为.故答案为:15. 关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.【答案】【详解】∵一元二次方程有两个不相等的实数根,∴∆,解得<2.故答案为:k<2.()223y x =+-2y x =22y x =()223y x =+-141414x 22230x x k ++-=k 2k <()224230k =-->k16. 中,,则的内切圆的半径长是_________.【答案】2【详解】设△ABC 的内切圆为⊙O,内切圆的半径为r ,∵AB=13,AC =5,BC =12,∴AB 2=AC 2+ BC 2,根据勾股定理的逆定理得△ABC 是直角三角形,∠C=90°,∴,根据三角形的面积公式可得:,∴15r=30,即r=2,故答案为:2.17. 当或()时,代数式的值相等,则时,代数式的值为_________.【答案】3【详解】由抛物线,∴抛物线的对称轴为直线x=2,∵当或()时,代数式的值相等,∴当或()时,抛物线的函数值相等,∴以a 、b 为横坐标的点关于直线x=2对称,∴,ABC V 13,5,12AB AC BC ===ABC V 1302ABC S AC BC =⋅=V 1115131215222ABC AOC AOB BOC S S S S r r r r =++=⨯+⨯+⨯=V V V V x a =x b =a b ¹243x x -+x a b =+243x x -+()224321y x x x =-+=--x a =x b =a b ¹243x x -+x a =x b =a b ¹243y x x =-+22a b +=∴a+b=4,∵,∴x=4,当x=4时,,即时,代数式的值为3.故答案为:318. 如图,为边长为的等边三角形,点分别为和的中点,点为内部一点,且,连接,将线段绕点按逆时针方向旋转得到,连接.(1)当三点共线时,线段的长度为_________;(2)在旋转过程中,线段的最小值为_________.【答案】①. ②. 1【详解】(1)是等边三角形,边长为,,为的中点,x a b =+244433y =-⨯+=x a b =+243x x -+ABC V 6DE ,AC BCF ABC V 2DF =BF BF B 60︒BG EG B F D 、、BFEG 2ABC ∆ 66AB AC ∴==D Q AC,,,,点、、三点共线,,,线段的长度为;(2)如图,作线段的中点,连接,作,连接,将线段绕点按逆时针方向旋转得到,连接,此时的值最小,是等边三角形,边长为,, ,点为的中点,点为的中点,点为的中点,,,,,,,132AD CD AC ∴===BD AC ⊥90ADB ∴∠=︒BD ∴=== B F D 2DF =2BF BD DF ∴=-=-∴BF 2-AB H DH 2DF =BF BF B 60︒BG EG EG ABC ∆ 66AB AC ∴==60ABC ∠=︒ D AC E BC H AB BD AC ∴⊥132BE BC ==132BH AB ==90ADB ∴∠=︒BH BE =132DH AB ∴==,,由旋转可知: ,,,,在和中,,,,在旋转过程中,线段的最小值为1.三、解答题本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程.19. (1)因式分解法解方程:;(2)配方法解方程:.【答案】(1);(2)【详解】(1),解:提公因式,得,于是得,.2DF = 321HF DH DF ∴=-=-=BF BG =60FBC ∠=︒60ABC FBG ∴∠=∠=︒HBF EBG ∴∠=∠BHF ∆BEG ∆BH BEHBF EBGBF BG=⎧⎪∠=∠⎨⎪=⎩()BHF BEG SAS ∴∆≅∆1HF EG ∴==∴EG 220x x -=21090x x ++=121=02x x =,12=9=1x x --,220x x -=2-10x x =()02-10x x ==或121=02x x =,(2),解:移项,得,配方,得,,由此可得,.20. 如图,在半径为的中,弦的长为.(1)求的度数;(2)求点到的距离.【答案】(1) (2)到的距离为【小问1详解】解:在,,∵,∴为等边三角形,∴;【小问2详解】过点 作于点,21090x x ++=210=9x x +﹣22210+5=-95x x ++25=16x +()54x +=±12=9=1x x --,4O e AB 4AOB ∠O AB 60AOB ∠=︒OAB O e 4OA OB ==4AB =OAB V 60AOB ∠=︒O OC AB ⊥C在,于点,∴,∵ ,∴,在中,,,∴,∴到的距离为21. 甲口袋中装有个相同的小球,它们分别写有数字和,乙口袋中装有个相同的小球,它们分别写有数字,和.从两个口袋中各随机取一个小球.请用画树状图或列表的方法求:(1)取出的个小球上的数字之和是奇数的概率是多少?(2)取出的个小球上的数字全是偶数的概率是多少?【答案】(1) (2)【小问1详解】解:根据题意,可以画出如下的树状图O e OC AB ⊥C 12AC AB =4AB =2AC =Rt OAC △4AO =2AC =OC ==O AB 2123345221216所有可能出现的结果共有种等可能结果,取出个小球上的数字之和是奇数有种,∴取出的个小球上的数字之和是奇数的概率是;【小问2详解】解:取出个小球上的数字全是偶数有种,∴取出的个小球上的数字全是偶数的概率是.【点睛】本题主要考查了利用树状图或列表法求概率,明确题意,准确画出树状图或列出表格是解题的关键.22. 已知:内接于,.(1)如图①,点在上,若,求和的大小;(2)如图②,点在外,是的直径,与⊙相切于点,若,求的大小.【答案】(1) (2)62323162=21216ABD △O e »»AB AD =C e O 60BCD ∠=︒ABD ∠ADB ∠C e O BD e O BC O B 50BCD ∠=︒CDA ∠30ABD ADB ∠=∠=︒85CDA ∠=︒【小问1详解】解:∵四边形内接于,,∴,∵,∴,∴;【小问2详解】解:∵与相切于点,∴,∴∵在中,,∴∵是的直径,∴,∵,∴,,∴.23. 某村种的水稻2018年平均每公顷产8000kg ,2020年平均每公顷产9680kg ,求该村水稻每公顷产量的年平均增长率.ABCD O e 60BCD ∠=︒180120BAD BCD ∠=︒-∠=︒»»=AB AD AB AD =1(180)302ABD ADB BAD ∠=∠=︒-∠=︒BC O e B BD BC ⊥90CBD ∠=︒Rt BCD ∆50BCD ∠=︒9040BDC BCD ∠=︒-∠=︒BD O e 90BAD ∠=︒»»=AB AD AB AD =190452ABD ADB ∴∠=∠=⨯︒=︒454085CDA ADB BDC ∠=∠+∠=︒+︒=︒解题方案:设该村水稻每公顷产量的年平均增长率为x .(1)用含的代数式表示:①2019年种的水稻平均每公顷的产量为_________kg ;②2020年种的水稻平均每公顷的产量为_________kg ;(2)根据题意,列出相应方程_________;(3)解这个方程,得_________;(4)检验:_________;(5)答:该村水稻每公顷产量的年平均增长率为_________%.【答案】(1),(2)(3)(4)当x =-2.1时,不合题意,故舍去(5)10【小问1详解】解:根据题意,①2019年种的水稻平均每公顷的产量为kg ;②2020年种的水稻平均每公顷的产量为kg ;故答案为:;;【小问2详解】解:由题意,可列出方程:;x ()80001x +()280001x +()2800019680x +=120.1 2.1x x ==-,()80001x +()280001x +()80001x +()280001x +()2800019680x +=故答案为:;【小问3详解】解:,解得:;故答案为:;【小问4详解】解:检验:当x =-2.1时,不合题意,故舍去;故答案为:当x =-2.1时,不合题意,故舍去;【小问5详解】解:该村水稻每公顷产量的年平均增长率为;故答案为:10;24. 四边形和四边形均为正方形,正方形绕点A 顺时针旋转.(1)正方形绕点A 顺时针旋转到如图①位置时,且三点在同一直线上,则和的数量关系是_________;和的位置关系是_________;(2)正方形绕点A 顺时针旋转到如图②位置时,且点落在线段上.①求证:;②若,求的长;的()2800019680x +=()2800019680x +=120.1 2.1x x ==-,120.1 2.1x x ==-,0.110%x ==ABCD AEFG AEFG AEFG D A E 、、DG BE DG BE AEFG F DG ABE ADG V V ≌10,2AB DF ==BF(3)如图③,若,,正方形绕点A 顺时针旋转过程中,取的中点,连接,记的面积为S ,求S 的取值范围(直接写出结果即可).【答案】(1),(2)①见解析;②(3)【小问1详解】根据题意,得:∵四边形和四边形均为正方形∴,,和中∴∴,如图,延长DG ,交BE 于点K∵10AB =6AG =AEFG DG M CM CDM V DG BE =DG BE ⊥14BF =1040S ≤≤90DAB BAE ∠=∠=︒ABCD AEFG AD AB =AG AE =90BAE ∠=︒DAG △BAE V 90AD ABDAB BAE AG AE=⎧⎪∠=∠=︒⎨⎪=⎩()DAG BAE SAS V V ≌DG BE =ADG ABE ∠=∠90BAE ∠=︒∴∴∴故答案为:,【小问2详解】①∵四边形和均为正方形,∴∴,即在和中∴;②∵∴,∵∴点三点在一条直线上设正方形边长为,则,在中,由勾股定理得,即,整理得:,解得:.90ABE AEB ∠+∠=︒()18090DKE ABE AEB ∠=︒-∠+∠=︒DG BE⊥DG BE =DG BE⊥ABCD AEFG =90AB AD AE AG BAD EAG ===,,∠∠BAD EAD EAG EAD ∠-∠=∠-∠BAE DAG∠=∠ABE △ADG V =AB ADBAE DAGAE AG=⎧⎪∠∠⎨⎪=⎩()ABE ADG SAS V V ≌ABE ADGV V ≌90AEB AGD ∠=∠=︒90AEF ∠=︒,,B E F AEFG x 2DG BE x ==+Rt ADG V 222AD AG DG =+()22210=2x x ++22480x x +-=()1268x x ==-,舍∴;【小问3详解】如图,过点G 作,交延长线于点Q ,过点M 作∴∵点为的中点∴为的中位线∴∵,,正方形形∴,∵∴∴当点G 在直线AB 左侧时,∴当点G 在直线AB 右侧时,∴8614BF BE EF =+=+=GQ DA ⊥DA MP DA ⊥//MP GQ M DG MP DQG V 12DP DQ =10AB =6AG =ABCDcos 6cos AQ AG GAQ GAQ =⨯∠=⨯∠10DA CD AB ===0GAQ ∠≥0cos 1GAQ ≤∠≤06AQ ≤≤10DQ DA AQ AQ=-=-410DQ ≤≤10DQ DA AQ AQ=+=+1016DQ ≤≤综上,∴∵ ∴.25. 在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,连接,点是第一象限的抛物线上一动点.(1)求抛物线的解析式;(2)过点作于点.①若,求点坐标;②过点作轴于点,交于点,连接,当的周长取得最大值时,抛物线上是否存在一点,使,如果存在,请求出点的坐标,如果不存在,请说明理由.【答案】(1)(2)①点D 的坐标为(2,3);②存在,点P 的坐标为,,【小问1详解】解:把两点代入抛物线则,416DQ ≤≤28DP ≤≤152S CD DP DP =⨯=1040S ≤≤23y ax bx =++x ()3,0A ()1,0B -y C AC D D DE AC ⊥E DE CE =D D DH x ⊥H AC F 、DC DA DEF V P PAC ACD S S =△△P 2y x 2x 3=-++315,24⎛⎫ ⎪⎝⎭()()3,01,0A B -,23y ax bx =++933030a b a b ++=⎧⎨-+=⎩解得.∴抛物线的解析式为;【小问2详解】解:①连接CD ,当x =0时,y =3,即OC =3,∵OC=OA =3,∠AOC=90°,∴△AOC 为等腰直角三角形,∠CAO=45°.∵DE⊥AC,DE =CE ,∴△CDE 为等腰直角三角形,∠DCE=45°,∴∠DCE=∠OAC=45°,即CD∥OA.∴点C 和D 的纵坐标都等于3.把y =3代入抛物线解析式得,,解得(舍去),,∴点D 的坐标为(2,3).12a b =-⎧⎨=⎩2y x 2x 3=-++2y x 2x 3=-++2233x x -++=10x =22x =②∵DF⊥x 轴,∴DH⊥OA,∵∠CAO=45°,∴∠AFH=45°,∵DE⊥AC,∠DFE=∠AFH=45°,∴△DEF 为等腰直角三角形,∴则△DEF 的周长等于.∵,∴直线AC 的解析式为y =-x +3.设点D 的坐标为,,则.∴当时,DF 取得最大值,此时△DEF 的周长取得最大值.点D 的坐标为.∵,∴点P 和D 到直线AC 的距离相等.容易得知点P 和D 重合时符合题意,此时P 的坐标为.作直线l 和k 都和直线AC 平行,且到直线AC 的距离都相等,则直线l 的解析式为DE EF DF=)1DE EF DF DF ++=+()()3,00,3A C ,()2,23m m m -++(),3F m m -+()22239233324DF m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭32m =315,24⎛⎫⎪⎝⎭PAC ACD S S =△△315,24⎛⎫⎪⎝⎭,直线k 的解析式为.联立直线与抛物线得,解得,则点P 的坐标为,.综上所述:符合题意得点P 的坐标为,,.214y x=-+34y x =-+34y x =-+2y x 2x 3=-++23922x ⎛⎫-= ⎪⎝⎭12x x ==315,24⎛⎫ ⎪⎝⎭。
九年级数学(上)期末考试试卷含答案

九年级数学(上)期末考试试卷一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣37.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是米.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.14.写出一个图象位于二、四象限的反比例函数的表达式,y=.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:,你的理由是:.三、解答题(本题共30分,每小题5分)17.计算:|.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.28.在平面直角坐标系xOy中,对于点P(x,y)和Q(x,y′),给出如下定义:如果y′=,那么称点Q为点P的“关联点”.例如:点(5,6)的“关联点”为点(5,6),点(﹣5,6)的“关联点”为点(﹣5,﹣6).(1)①点(2,1)的“关联点”为;②如果点A(3,﹣1),B(﹣1,3)的“关联点”中有一个在函数的图象上,那么这个点是(填“点A”或“点B”).(2)①如果点M*(﹣1,﹣2)是一次函数y=x+3图象上点M的“关联点”,那么点M的坐标为;②如果点N*(m+1,2)是一次函数y=x+3图象上点N的“关联点”,求点N的坐标.(3)如果点P在函数y=﹣x2+4(﹣2<x≤a)的图象上,其“关联点”Q的纵坐标y′的取值范围是﹣4<y′≤4,那么实数a的取值范围是.29.在菱形ABCD中,∠BAD=120°,射线AP位于该菱形外侧,点B关于直线AP的对称点为E,连接BE、DE,直线DE与直线AP交于F,连接BF,设∠PAB=α.(1)依题意补全图1;(2)如图1,如果0°<α<30°,判断∠ABF与∠ADF的数量关系,并证明;(3)如图2,如果30°<α<60°,写出判断线段DE,BF,DF之间数量关系的思路;(可以不写出证明过程)(4)如果60°<α<90°,直接写出线段DE,BF,DF之间的数量关系.参考答案与试题解析一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个是符合题意的.1.如果4a=5b(ab≠0),那么下列比例式变形正确的是()A. B. C. D.【考点】比例的性质.【分析】根据等式的性质:两边都除以同一个不为零的数(或整式),结果不变,可得答案.【解答】解:两边都除以ab,得=,故A正确;B、两边都除以20,得=,故B错误;C、两边都除以4b,得=,故C错误;D、两边都除以5a,得=,故D错误.故选:A.【点评】本题考查了比例的性质,利用两边都除以同一个不为零的数(或整式),结果不变是解题关键.2.在Rt△ABC中,如果∠C=90°,AB=10,BC=8,那么cosB的值是()A.B.C.D.【考点】锐角三角函数的定义.【分析】根据在直角三角形中,锐角的余弦为邻边比斜边,可得答案.【解答】解:cosB===,故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.3.已知⊙O的半径为5,点P到圆心O的距离为8,那么点P与⊙O的位置关系是()A.点P在⊙O上 B.点P在⊙O内 C.点P在⊙O 外D.无法确定【考点】点与圆的位置关系.【分析】根据点在圆上,则d=r;点在圆外,d>r;点在圆内,d<r(d即点到圆心的距离,r即圆的半径).【解答】解:∵OP=8>5,∴点P与⊙O的位置关系是点在圆外.故选:C.【点评】此题主要考查了点与圆的位置关系,注意:点和圆的位置关系与数量之间的等价关系是解决问题的关键.4.小明的妈妈让他在无法看到袋子里糖果的情形下从袋子里抽出一颗糖果.袋子里有三种颜色的糖果,它们的大小、形状、质量等都相同,其中所有糖果的数量统计如图所示.小明抽到红色糖果的概率为()A.B.C.D.【考点】概率公式;条形统计图.【专题】计算题.【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,然后根据概率公式求解.【解答】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,紫色糖果的个数为8,所以小明抽到红色糖果的概率==.故选B.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了条形统计图.5.如图,在△ABC中,D为AC边上一点,∠DBC=∠A,BC=,AC=3,则CD的长为()A.1 B.C.2 D.【考点】相似三角形的判定与性质.【分析】由条件可证明△CBD∽△CAB,可得到=,代入可求得CD.【解答】解:∵∠DBC=∠A,∠C=∠C,∴△CBD∽△CAB,∴=,即=,∴CD=2,故选C.【点评】本题主要考查相似三角形的判定和性质,掌握相似三角形的判定方法是解题的关键.6.将抛物线y=5x2先向左平移2个单位,再向上平移3个单位后得到新的抛物线,则新抛物线的表达式是()A.y=5(x+2)2+3 B.y=5(x﹣2)2+3 C.y=5(x﹣2)2﹣3 D.y=5(x+2)2﹣3【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=5x2的顶点坐标为(0,0),再利用点平移的规律得到点(0,0)平移后所得对应点的坐标,然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=5x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位,再向上平移3个单位后得到对应点的坐标为(﹣2,3),所以新抛物线的表达式是y=5(x+2)2+3.故选A.【点评】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.7.已知点A(1,m)与点B(3,n)都在反比例函数的图象上,那么m与n之间的关系是()A.m>n B.m<n C.m≥n D.m≤n【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数图象的增减性来比较m与n的大小.【解答】解:∵反比例函数中系数2>0,∴反比例函数的图象位于第一、三象限,且在每一象限内y随x的增大而减小.又∵点A(1,m)与点B(3,n)都位于第一象限,且1<3,∴m>n.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,解答该题时,也可以把点A、B的坐标分别代入函数解析式求得相应的m、n的值,然后比较它们的大小即可.8.如图,点A(6,3)、B(6,0)在直角坐标系内.以原点O为位似中心,相似比为,在第一象限内把线段AB缩小后得到线段CD,那么点C的坐标为()A.(3,1)B.(2,0)C.(3,3)D.(2,1)【考点】位似变换;坐标与图形性质.【分析】根据得A、B的坐标求出OB、AB的长,根据位似的概念得到比例式,计算求出OD、CD 的长,得到点C的坐标.【解答】解:∵A(6,3)、B(6,0),∴OB=6,AB=3,由题意得,△ODC∽△OBA,相似比为,∴==,∴OD=2,CD=1,∴点C的坐标为(2,1),故选:D.【点评】本题考查的是位似变换的概念和性质以及坐标与图形的性质,掌握位似的两个图形一定是相似形和相似三角形的性质是解题的关键.9.如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°【考点】圆周角定理;垂径定理.【专题】压轴题.【分析】利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.【解答】解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.【点评】此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.10.如图,点C是以点O为圆心、AB为直径的半圆上的一个动点(点C不与点A、B重合),如果AB=4,过点C作CD⊥AB于D,设弦AC的长为x,线段CD的长为y,那么在下列图象中,能表示y与x函数关系的图象大致是()A.B.C.D.【考点】动点问题的函数图象.【专题】计算题.【分析】连结BC,如图,根据圆周角定理得到∠ACB=90°,则利用勾股定理得到BC=,再利用面积法可得到y=,CD为半径时最大,即y的最大值为2,此时x=2,由于y与x函数关系的图象不是抛物线,也不是一次函数图象,则可判断A、C错误;利用y最大时,x=2可对B、D进行判断.【解答】解:连结BC,如图,∵AB为直径,∴∠ACB=90°,∴BC==,∵CD•AB=AC•BC,∴y=,∵y的最大值为2,此时x=2.故选B.【点评】本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用圆周角定理得到∠ACB=90°.二、填空题(本题共18分,每小题3分)11.如果两个相似三角形的相似比是1:3,那么这两个三角形面积的比是1:9.【考点】相似三角形的性质.【分析】根据相似三角形的面积比等于相似比的平方求出即可.【解答】解:∵两个相似三角形的相似比是1:3,又∵相似三角形的面积比等于相似比的平方,∴这两个三角形面积的比是1:9.故答案为:1:9.【点评】本题考查了相似三角形的性质,注意:相似三角形的面积比等于相似比的平方.12.颐和园是我国现存规模最大,保存最完整的古代皇家园林,它和承德避暑山庄、苏州拙政园、苏州留园并称为中国四大名园.该园有一个六角亭,如果它的地基是半径为2米的正六边形,那么这个地基的周长是12米.【考点】正多边形和圆.【分析】由正六边形的半径为2,则OA=OB=2米;由∠AOB=60°,得出△AOB是等边三角形,则AB=OA=OB=2米,即可得出结果.【解答】解:如图所示:∵正六边形的半径为2米,∴OA=0B=2米,∴正六边形的中心角∠AOB==60°,∴△AOB是等边三角形,∴AB=OA=OB,∴AB=2米,∴正六边形的周长为6×2=12(米);故答案为:12.【点评】本题考查了正六边形的性质、等边三角形的判定与性质;解决正多边形的问题,常常把多边形问题转化为等腰三角形或直角三角形来解决.13.图1中的三翼式旋转门在圆形的空间内旋转,旋转门的三片旋转翼把空间等分成三个部分,图2是旋转门的俯视图,显示了某一时刻旋转翼的位置,根据图2中的数据,可知的长是m.【考点】弧长的计算.【专题】应用题.【分析】首先根据题意,可得,然后根据圆的周长公式,求出直径是2m的圆的周长是多少;最后用直径是2m的圆的周长除以3,求出的长是多少即可.【解答】解:根据题意,可得,∴(m),即的长是m.故答案为:.【点评】此题主要考查了弧长的计算,以及圆的周长的计算方法,要熟练掌握,解答此题的关键是判断出,并求出直径是2m的圆的周长是多少.14.写出一个图象位于二、四象限的反比例函数的表达式,y=答案不唯一,如y=﹣x等.【考点】正比例函数的性质.【专题】开放型.【分析】根据正比例函数的系数与图象所过象限的关系,易得答案.【解答】解:根据正比例函数的性质,其图象位于第二、四象限,则其系数k<0;故只要给出k小于0的正比例函数即可;答案不唯一,如y=﹣x等.【点评】解题关键是掌握正比例函数的图象特点.15.“圆材埋壁”是我国古代著名数学著作《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何”此问题的实质就是解决下面的问题:“如图,CD 为⊙O的直径,弦AB⊥CD于点E,CE=1,AB=10,求CD的长”.根据题意可得CD的长为26.【考点】垂径定理的应用.【专题】压轴题.【分析】根据垂径定理和勾股定理求解.【解答】解:连接OA,AB⊥CD,由垂径定理知,点E是AB的中点,AE=AB=5,OE=OC﹣CE=OA﹣CE,设半径为r,由勾股定理得,OA2=AE2+OE2=AE2+(OA﹣CE)2,即r2=52+(r﹣1)2,解得:r=13,所以CD=2r=26,即圆的直径为26.【点评】本题利用了垂径定理和勾股定理求解.16.学习了反比例函数的相关内容后,张老师请同学们讨论这样的一个问题:“已知反比例函数,当x>1时,求y的取值范围?”同学们经过片刻的思考和交流后,小明同学举手回答说:“由于反比例函数的图象位于第四象限,因此y的取值范围是y<0.”你认为小明的回答是否正确:否,你的理由是:y<﹣2.【考点】反比例函数的性质.【分析】根据反比例函数图象所经过的象限和函数的增加性解答.【解答】解:否,理由如下:∵反比例函数,且x>1,∴反比例函数的图象位于第四象限,∴y<﹣2.故答案是:否;y<﹣2.【点评】本题考查了反比例函数的性质.注意在本题中,当x>0时,y<0.三、解答题(本题共30分,每小题5分)17.计算:|.【考点】实数的运算;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=×﹣+﹣1=﹣1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.(1)求证:△ABC∽△CBD;(2)如果AC=4,BC=3,求BD的长.【考点】相似三角形的判定与性质.【分析】(1)根据相似三角形的判定,由已知可证∠A=∠DCB,又因为∠ACB=∠BDC=90°,即证△ABC∽△CBD,(2)根据勾股定理得到AB=5,根据三角形的面积公式得到CD=,然后根据勾股定理即可得到结论.【解答】(1)证明:∵CD⊥AB,∴∠BDC=90°.∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠DCB+∠ACD=90°.∴∠A=∠DCB.又∵∠ACB=∠BDC=90°,∴△ABC∽△CBD;(2)解:∵∠ACB=90°,AC=4,BC=3,∴AB=5,∴CD=,∵CD⊥AB,∴BD===.【点评】本题考查了相似三角形的判定,解直角三角形,熟练掌握相似三角形的判定定理是解题的关键.19.已知二次函数y=x2﹣6x+5.(1)将y=x2﹣6x+5化成y=a(x﹣h)2+k的形式;(2)求该二次函数的图象的对称轴和顶点坐标;(3)当x取何值时,y随x的增大而减小.【考点】二次函数的三种形式;二次函数的性质.【分析】(1)运用配方法把一般式化为顶点式;(2)根据二次函数的性质解答即可;(3)根据二次函数的开口方向和对称轴解答即可.【解答】解:(1)y=x2﹣6x+5=(x﹣3)2﹣4;(2)二次函数的图象的对称轴是x=3,顶点坐标是(3,﹣4);(3)∵抛物线的开口向上,对称轴是x=3,∴当x≤3时,y随x的增大而减小.【点评】本题考查的是二次函数的三种形式和二次函数的性质,灵活运用配方法把一般式化为顶点式是解题的关键,注意二次函数的性质的应用.20.如图,在Rt△ABC中,∠ABC=90°,BC=1,AC=.(1)以点B为旋转中心,将△ABC沿逆时针方向旋转90°得到△A′BC′,请画出变换后的图形;(2)求点A和点A′之间的距离.【考点】作图-旋转变换.【专题】作图题.【分析】(1)在BA上截取BC′=BC,延长CB到A′使BA′=BA,然后连结A′C′,则△A′BC′满足条件;(2)先利用勾股定理计算出AB=2,再利用旋转的性质得BA=BA′,∠ABA′=90°,然后根据等腰直角三角形的性质计算AA′的长即可.【解答】解:(1)如图,△A′BC′为所作;(2)∵∠ABC=90°,B C=1,AC=,∴AB==2,∵△ABC沿逆时针方向旋转90°得到△A′BC′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=AB=2.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.21.如图,在平面直角坐标系xOy中,一次函数y=﹣2x的图象与反比例函数y=的图象交于点A (﹣1,n).(1)求反比例函数y=的解析式;(2)若P是坐标轴上一点,且满足PA=OA,直接写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】(1)先把A(﹣1,n)代入y=﹣2x求出n的值,确定A点坐标为(﹣1,2),然后把A(﹣1,2)代入y=可求出k的值,从而可确定反比例函数的解析式;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,则B点坐标为(﹣1,0),C点坐标为(0,2),由于PA=OA,然后利用等腰三角形的性质易确定满足条件的P点坐标.【解答】解:(1)把A(﹣1,n)代入y=﹣2x得n=﹣2×(﹣1)=2,∴A点坐标为(﹣1,2),把A(﹣1,2)代入y=得k=﹣1×2=﹣2,∴反比例函数的解析式为y=﹣;(2)过A作AB⊥x轴于点B,AC⊥y轴于点C,如图,∵点A的坐标为(﹣1,2),∴B点坐标为(﹣1,0),C点坐标为(0,2)∴当P在x轴上,其坐标为(﹣2,0);当P点在y轴上,其坐标为(0,4);∴点P的坐标为(﹣2,0)或(0,4).【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数图象与一次函数图象的交点坐标满足两函数的解析式.也考查了等腰三角形的性质.22.“永定楼”是门头沟区的地标性建筑,某中学九年级数学兴趣小组进行了测量它高度的社会实践活动.如图,他们在A点测得顶端D的仰角∠DAC=30°,向前走了46米到达B点后,在B点测得顶端D的仰角∠DBC=45°.求永定楼的高度CD.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意得出DC=BC,进而利用tan30°=求出答案.【解答】解:由题意可得:AB=46m,∠DBC=45°,则DC=BC,故tan30°===,解得:DC=23(+1).答:永定楼的高度CD为23(+1)m.【点评】此题主要考查了解直角三角形的应用,解题的关键是从题目中整理出直角三角形并正确的利用边角关系求解.四、解答题(本题共20分,每小题5分)23.已知二次函数y=mx2﹣(m+2)x+2(m≠0).(1)求证:此二次函数的图象与x轴总有交点;(2)如果此二次函数的图象与x轴两个交点的横坐标都是整数,求正整数m的值.【考点】抛物线与x轴的交点.【专题】证明题.【分析】(1)令y=0,使得二次函数变为一元二次方程,然后求出方程中△的值,即可证明结论;(2)令y=0,使得二次函数变为一元二次方程,然后对方程分解因式,又因此二次函数的图象与x 轴两个交点的横坐标都是整数,从而可以求得符合要求的正整数m的值.【解答】解:(1)证明:∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2(m≠0),△=[﹣(m+2)]2﹣4×m×2=m2+4m+4﹣8m=m2﹣4m+4=(m﹣2)2≥0∴0=mx2﹣(m+2)x+2(m≠0)有两个实数根,即二次函数y=mx2﹣(m+2)x+2(m≠0)的图象与x轴总有交点;(2)∵二次函数y=mx2﹣(m+2)x+2(m≠0),∴当y=0时,0=mx2﹣(m+2)x+2=(mx﹣2)(x﹣1),∴,又∵此二次函数的图象与x轴两个交点的横坐标都是整数,∴正整数m的值是:1或2,即正整数m的值是1或2.【点评】本题考查抛物线与x轴的交点,解题的关键是建立二次函数与一元二次方程之间的关系,然后找出所求问题需要的条件.24.如图,在四边形ABCD中,AB∥CD,过点C作CE∥AD交AB于E,连接AC、DE,AC与DE交于点F.(1)求证:四边形AECD为平行四边形;(2)如果EF=2,∠FCD=30°,∠FDC=45°,求DC的长.【考点】平行四边形的判定与性质.【分析】(1)由平行四边形的定义即可得出四边形AECD为平行四边形;(2)作FM⊥CD于M,由平行四边形的性质得出DF=EF=2,由已知条件得出△DFM是等腰直角三角形,DM=FM=DF=2,由含30°角的直角三角形的性质和勾股定理得出CF=2FM=4,CM=2,得出DC=DM+CM=2+2即可.【解答】(1)证明:∵AB∥CD,CE∥AD,∴四边形AECD为平行四边形;(2)解:作FM⊥CD于M,如图所示:则∠FND=∠FMC=90°,∵四边形AECD为平行四边形,∴D F=EF=2,∵∠FCD=30°,∠FDC=45°,∴△DFM是等腰直角三角形,∴DM=FM=DF=2,CF=2FM=4,∴CM=2,∴DC=DM+CM=2+2.【点评】本题考查了平行四边形的判定与性质、等腰直角三角形的判定与性质、含30°角的直角三角形的性质、勾股定理;熟练掌握平行四边形的判定与性质,通过作辅助线构造直角三角形是解决问题(2)的关键.25.已知二次函数y1=x2+2x+m﹣5.(1)如果该二次函数的图象与x轴有两个交点,求m的取值范围;(2)如果该二次函数的图象与x轴交于A、B两点,与y轴交于点C,且点B的坐标为(1,0),求它的表达式和点C的坐标;(3)如果一次函数y2=px+q的图象经过点A、C,请根据图象直接写出y2<y1时,x的取值范围.【考点】抛物线与x轴的交点;二次函数与不等式(组).【分析】(1)由二次函数的图象与x轴有两个交点得出判别式△>0,得出不等式,解不等式即可;(2)二次函数y1=x2+2x+m﹣5的图象经过把点B坐标代入二次函数解析式求出m的值,即可得出结果;点B(1,0);(3)由图象可知:当y2<y1时,比较两个函数图象的位置,即可得出结果.【解答】解:(1)∵二次函数y1=x2+2x+m﹣5的图象与x轴有两个交点,∴△>0,∴22﹣4(m﹣5)>0,解得:m<6;(2)∵二次函数y1=x2+2x+m﹣5的图象经过点(1,0),∴1+2+m﹣5=0,解得:m=2,∴它的表达式是y1=x2+2x﹣3,∵当x=0时,y=﹣3,∴C(0,﹣3);(3)由图象可知:当y2<y1时,x的取值范围是x<﹣3或x>0.【点评】本题考查了二次函数图象上点的坐标特征、抛物线与x轴的交点;由题意求出二次函数的解析式是解决问题的关键.26.如图,⊙O为△ABC的外接圆,BC为⊙O的直径,BA平分∠CBF,过点A作AD⊥BF,垂足为D.(1)求证:AD为⊙O的切线;(2)若BD=1,tan∠BAD=,求⊙O的直径.【考点】切线的判定.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)根据三角函数的知识可求出AD,从而根据勾股定理求出AB的长,根据三角函数的知识即可得出⊙O的直径.【解答】(1)证明:连接OA;∵BC为⊙O的直径,BA平分∠CBF,AD⊥BF,∴∠ADB=∠BAC=90°,∠DBA=∠CBA;∵∠OAC=∠OCA,∴∠DAO=∠DAB+∠BAO=∠BAO+∠OAC=90°,∴DA为⊙O的切线.(2)解:∵BD=1,tan∠BAD=,∴AD=2,∴AB==,∴cos∠DBA=;∵∠DBA=∠CBA,∴BC===5.∴⊙O的直径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.五、解答题(本题共22分,第27题7分,第28题8分,第29题7分)27.在平面直角坐标系xOy中,抛物线经过点A(0,2)和B(1,).(1)求该抛物线的表达式;(2)已知点C与点A关于此抛物线的对称轴对称,点D在抛物线上,且点D的横坐标为4,求点C与点D的坐标;(3)在(2)的条件下,将抛物线在点A,D之间的部分(含点A,D)记为图象G,如果图象G 向下平移t(t>0)个单位后与直线BC只有一个公共点,求t的取值范围.【考点】二次函数图象与几何变换;待定系数法求二次函数解析式.【专题】计算题.【分析】(1)把A点和B点坐标代入得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)利用配方法得到y=(x﹣1)2+,则抛物线的对称轴为直线x=1,利用点C与点A关于直线x=1对称得到C点坐标为(2,2);然后利用二次函数图象上点的坐标特征求D点坐标;(3)画出抛物线,如图,先利用待定系数法求出直线BC的解析式为y=x+1,再利用平移的性质得到图象G向下平移1个单位时,点A在直线BC上;图象G向下平移3个单位时,点D在直线BC上,由于图象G向下平移t(t>0)个单位后与直线BC只有一个公共点,所以1<t≤3.【解答】解:(1)把A(0,2)和B(1,)代入得,解得,所以抛物线解析式为y=x2﹣x+2;(2)∵y=x2﹣x+2=(x﹣1)2+,∴抛物线的对称轴为直线x=1,∵点C与点A关于此抛物线的对称轴对称,∴C点坐标为(2,2);当x=4时,y=x2﹣x+2=8﹣4+2=6,∴D点坐标为(4,6);(3)如图,。
天津市第一中学数学九年级上册期末试卷(含答案)

天津市第一中学数学九年级上册期末试卷(含答案)一、选择题1.下列方程中,是关于x 的一元二次方程的为( ) A .2210x x+= B .220x x --=C .2320x xy -=D .240y -=2.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O的位置关系是( ) A .点P 在O 上B .点P 在O 外C .点P 在O 内 D .无法确定3.如图,已知一组平行线a ∥b ∥c ,被直线m 、n 所截,交点分别为A 、B 、C 和D 、E 、F ,且AB =1.5,BC =2,DE =1.8,则EF =( )A .4.4B .4C .3.4D .2.44.已知圆锥的底面半径为3cm ,母线为5cm ,则圆锥的侧面积是 ( ) A .30πcm 2B .15πcm 2C .152πcm 2 D .10πcm 25.在九年级体育中考中,某班参加仰卧起坐测试的一组女生(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( ) A .42 B .45 C .46 D .48 6.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( )A .5B .2C .5或2D .27-17.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.8.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =-- 9.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2B .2C .−4D .410.在六张卡片上分别写有13,π,1.5,5,0,2六个数,从中任意抽取一张,卡片上的数为无理数的概率是( )A .16B .13C .12D .5611.方程2x x =的解是( ) A .x=0 B .x=1C .x=0或x=1D .x=0或x=-112.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm13.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④14.2的相反数是( ) A .12-B .12C .2D .2-15.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 二、填空题16.如图,点A 、B 、C 是⊙O 上的点,且∠ACB =40°,阴影部分的面积为2π,则此扇形的半径为______.17.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.18.已知扇形半径为5cm ,圆心角为60°,则该扇形的弧长为________cm .19.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.20.二次函数y=x 2−4x+5的图象的顶点坐标为 .21.一个不透明的布袋中装有3个白球和5个红球,它们除了颜色不同外,其余均相同,从中随机摸出一个球,摸到红球的概率是______.22.如图,五边形 ABCDE 是⊙O 的内接正五边形, AF 是⊙O 的直径,则∠ BDF 的度数是___________°.23.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 24.已知关于x 的方程230x mx m ++=的一个根为-2,则方程另一个根为__________. 25.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.26.在Rt △ABC 中,两直角边的长分别为6和8,则这个三角形的外接圆半径长为_____. 27.将一枚标有数字1、2、3、4、5、6的均匀正方体骰子抛掷一次,则向上一面数字为奇数的概率等于_____.28.如图,已知PA ,PB 是⊙O 的两条切线,A ,B 为切点.C 是⊙O 上一个动点.且不与A ,B 重合.若∠PAC =α,∠ABC =β,则α与β的关系是_______.29.如图,将二次函数y =12(x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.30.如图,在四边形ABCD 中,∠BAD =∠BCD =90°,AB +AD =8cm .当BD 取得最小值时,AC 的最大值为_____cm .三、解答题31.已知二次函数218y x bx c =++(b 、c 为常数)的图像经过点()0,1-和点()4,1A . (1)求b 、c 的值;(2)如图1,点()10,C m 在抛物线上,点M 是y 轴上的一个动点,过点M 平行于x 轴的直线l 平分AMC ∠,求点M 的坐标;(3)如图2,在(2)的条件下,点P 是抛物线上的一动点,以P 为圆心、PM 为半径的圆与x 轴相交于E 、F 两点,若PEF ∆的面积为26,请直接写出点P 的坐标. 32.如图,在平面直角坐标系中,一次函数13y x =-的图像与x 轴交于点A .二次函数22y x bx c =-++的图像经过点A ,与y 轴交于点C ,与一次函数13y x =-的图像交于另一点()2,B m -.(1)求二次函数的表达式;(2)当12y y >时,直接写出x 的取值范围;(3)平移AOC ∆,使点A 的对应点D 落在二次函数第四象限的图像上,点C 的对应点E 落在直线AB 上,求此时点D 的坐标.33.(1)(学习心得)于彤同学在学习完“圆”这一章内容后,感觉到一些几何问题如果添加辅助圆,运用圆的知识解决,可以使问题变得非常容易.例如:如图1,在ABC 中,,90AB AC BAC ∠==,D 是ABC 外一点,且AD AC =,求BDC ∠的度数.若以点A为圆心,AB 为半径作辅助A ,则C 、D 必在A 上,BAC ∠是A 的圆心角,而BDC ∠是圆周角,从而可容易得到BDC ∠=________.(2)(问题解决)如图2,在四边形ABCD 中,90BAD BCD ∠=∠=,25BDC ∠=,求BAC∠的度数.(3)(问题拓展)如图3,,E F是正方形ABCD的边AD上两个动点,满足AE DF=.连接交于点,连接CF交BD于点G,连接BE交于点H,若正方形的边长为2,则线段DH长度的最小值是_______.34.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日12月19日12月20日12月21日最高气温(℃)106789最低气温(℃)10﹣10335.(1)如图①,AB为⊙O的直径,点P在⊙O上,过点P作PQ⊥AB,垂足为点Q.说明△APQ∽△ABP;(2)如图②,⊙O的半径为7,点P在⊙O上,点Q在⊙O内,且PQ=4,过点Q作PQ 的垂线交⊙O于点A、B.设PA=x,PB=y,求y与x的函数表达式.四、压轴题36.点P 为图形M 上任意一点,过点P 作PQ ⊥直线,l 垂足为Q ,记PQ 的长度为d . 定义一:若d 存在最大值,则称其为“图形M 到直线l 的限距离”,记作()max ,D M l ; 定义二:若d 存在最小值,则称其为“图形M 到直线l 的基距离”,记作()min ,D M l ; (1)已知直线1:2l y x =--,平面内反比例函数2y x=在第一象限内的图象记作,H 则()1,min D H l = .(2)已知直线2:33l y x =+,点()1,0A -,点()()1,0,,0B T t 是x 轴上一个动点,T 3C 在T 上,若()max 243,63,D ABC l ≤≤求此时t 的取值范围,(3)已知直线21211k k y x k k --=+--恒过定点1111,8484P a b c a b c ⎛⎫⎪⎝+-+⎭+,点(),D a b 恒在直线3l 上,点(),28E m m +是平面上一动点,记以点E 为顶点,原点为对角线交点的正方形为图形,K ()min 3,0D K l =,若请直接写出m 的取值范围.37.【问题学习】小芸在小组学习时问小娟这样一个问题:已知α为锐角,且sinα=13 ,求sin2α的值.小娟是这样给小芸讲解的:构造如图1所示的图形,在⊙O 中,AB 是直径,点C 在⊙O 上,所以∠ACB=90°,作CD ⊥AB 于D .设∠BAC=α,则sinα=13BC AB =,可设BC=x ,则AB=3x ,…. 【问题解决】(1)请按照小娟的思路,利用图1求出sin2α的值;(写出完整的解答过程)(2)如图2,已知点M ,N ,P 为⊙O 上的三点,且∠P=β,sinβ=35 ,求sin2β的值.38.如图,已知在矩形ABCD 中,AB =2,BC =23.点P ,Q 分别是BC ,AD 边上的一个动点,连结BQ ,以P 为圆心,PB 长为半径的⊙P 交线段BQ 于点E ,连结PD . (1)若DQ =3且四边形BPDQ 是平行四边形时,求出⊙P 的弦BE 的长;(2)在点P ,Q 运动的过程中,当四边形BPDQ 是菱形时,求出⊙P 的弦BE 的长,并计算此时菱形与圆重叠部分的面积.39.抛物线G :2y ax c =+与x 轴交于A 、B 两点,与y 交于C (0,-1),且AB =4OC .(1)直接写出抛物线G 的解析式: ;(2)如图1,点D (-1,m )在抛物线G 上,点P 是抛物线G 上一个动点,且在直线OD 的下方,过点P 作x 轴的平行线交直线OD 于点Q ,当线段PQ 取最大值时,求点P 的坐标;(3)如图2,点M 在y 轴左侧的抛物线G 上,将点M 先向右平移4个单位后再向下平移,使得到的对应点N 也落在y 轴左侧的抛物线G 上,若S △CMN =2,求点M 的坐标.40.如图1,已知菱形ABCD 的边长为3A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为33),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】根据一元二次方程的定义,一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理.如果能整理为ax 2+bx +c =0(a ≠0)的形式,则这个方程就为一元二次方程. 【详解】 解:A.2210x x+=,是分式方程, B.220x x --=,正确,C.2320x xy -=,是二元二次方程,D.240y -=,是关于y 的一元二次方程, 故选B 【点睛】此题主要考查了一元二次方程的定义,关键是掌握一元二次方程必须同时满足三个条件:①整式方程,即等号两边都是整式;方程中如果有分母,那么分母中无未知数; ②只含有一个未知数; ③未知数的最高次数是2.2.B解析:B 【解析】 【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断. 【详解】解:∵()8,6P -,∴10= , ∵O 的直径为10,∴r=5, ∵OP>5, ∴点P 在O 外.故选:B. 【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断.3.D解析:D 【解析】 【分析】直接利用平行线分线段成比例定理对各选项进行判断即可. 【详解】 解:∵a ∥b ∥c , ∴AB DEBC EF=, ∵AB =1.5,BC =2,DE =1.8,∴1.5 1.82EF = , ∴EF=2.4 故选:D . 【点睛】本题考查了平行线分线段成比例,掌握三条平行线截两条直线,所得的对应线段成比例是关键.4.B解析:B 【解析】试题解析:∵底面半径为3cm , ∴底面周长6πcm∴圆锥的侧面积是12×6π×5=15π(cm2),故选B.5.C解析:C【解析】【分析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48∴中位数为4646462+=.故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.6.D解析:D【解析】【分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,10AC== ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴1111686810 2222r r r ,∴r=2.第二情况:当BC 为斜边时, 如图,设⊙O 是Rt △ABC 的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD ⊥BC, OE ⊥AC,OF ⊥AB,且OD=OE=OF=r,在Rt △ABC 中,AB =6,BC =8,由勾股定理得,2227ACBC AB , ∵=++ABC AOC BOC AOB SS S S , ∴11112222AB AC AB OF BC OD AC OE , ∴111162768272222r r r , ∴r=71- .故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.7.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A 、B 、D 三项,再根据抛物线的顶点和开口即可判断C 项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意.故选:D.【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.8.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 9.B解析:B【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0,解得k=2.故选B .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.B解析:B【解析】【分析】无限不循环小数叫无理数,无理数通常有以下三种形式:一是开方开不尽的数,二是圆周率π,三是构造的一些不循环的数,如1.010010001……(两个1之间0的个数一次多一个).然后用无理数的个数除以所有书的个数,即可求出从中任意抽取一张,卡片上的数为无理数的概率.【详解】∵这组数中无理数有π共2个, ∴卡片上的数为无理数的概率是21=63.故选B.【点睛】本题考查了无理数的定义及概率的计算.解析:C【解析】【分析】根据因式分解法,可得答案.【详解】解:2x x,方程整理,得,x2-x=0因式分解得,x(x-1)=0,于是,得,x=0或x-1=0,解得x1=0,x2=1,故选:C.【点睛】本题考查了解一元二次方程,因式分解法是解题关键.12.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.13.B解析:B【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,90GDP ADO ∴∠+∠=︒,OA OD =,ADO OAD ∴∠=∠,90APF OAD ∠+∠=︒,GPD APF ∠=∠,GPD GDP ∴∠=∠,GD GP ∴=,故②正确.③正确.AB CE ⊥,∴AE AC =,AC CD =,∴CD AE =,CAD ACE ∴∠=∠,PC PA ∴=, AB 是直径,90ACQ ∴∠=︒,90ACP QCP ∴∠+∠=︒,90CAP CQP ∠+∠=︒,PCQ PQC ∴∠=∠,PC PQ PA ∴==,90ACQ ∠=︒,∴点P 是ACQ ∆的外心.故③正确.④正确.连接BD.∠=∠=︒,PAF BADAFP ADB90∠=∠,∴∆∆∽,APF ABD∴AP AF=,AB AD∴⋅=⋅,AP AD AF AB∠=∠=︒,AFC ACBCAF BAC∠=∠,90∽,∴∆∆ACF ABC可得2=,AC AF AB∠=∠,∠=∠,CAQ ABCACQ ACB∽,可得2CAQ CBA∴∆∆=⋅,AC CQ CB∴⋅=⋅.故④正确,AP AD CQ CB故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.14.D解析:D【解析】【分析】根据相反数的概念解答即可.【详解】2的相反数是-2,故选D.15.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.二、填空题16.3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴解析:3【解析】【分析】根据圆周角定理可求出∠AOB的度数,设扇形半径为x,从而列出关于x的方程,求出答案.【详解】由题意可知:∠AOB=2∠ACB=2×40°=80°,设扇形半径为x,故阴影部分的面积为πx2×80360=29×πx2=2π,故解得:x1=3,x2=-3(不合题意,舍去),故答案为3.本题主要考查了圆周角定理以及扇形的面积求解,解本题的要点在于根据题意列出关于x 的方程,从而得到答案.17.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=22+=厘米,3534∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.18.【解析】【分析】直接利用弧长公式进行计算.【详解】解:由题意得:=,故答案是:本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 解析:53π 【解析】【分析】直接利用弧长公式180n R l π=进行计算. 【详解】解:由题意得:605180l π==53π, 故答案是:53π 【点睛】本题考查了弧长公式,考查了计算能力,熟练掌握弧长公式是关键. 19.115°【解析】【分析】根据过C 点的切线与AB 的延长线交于P 点,∠P=40°,可以求得∠OCP 和∠OBC 的度数,又根据圆内接四边形对角互补,可以求得∠D 的度数,本题得以解决.【详解】解:连解析:115°【解析】【分析】根据过C 点的切线与AB 的延长线交于P 点,∠P=40°,可以求得∠OCP 和∠OBC 的度数,又根据圆内接四边形对角互补,可以求得∠D 的度数,本题得以解决.【详解】解:连接OC ,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB ,∴∠OCB=∠OBC=65°,∵四边形ABCD 是圆内接四边形,∴∠D+∠ABC=180°,∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.20.(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数配方得则顶点坐标为(2,1)考点:二次函数的图象和性质.解析:(2,1)【解析】【分析】将二次函数解析式化为顶点式,即可得到顶点坐标.【详解】将二次函数245y x x =-+配方得22()1y x =-+则顶点坐标为(2,1)考点:二次函数的图象和性质. 21.【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红 解析:58【解析】【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,共5个,从中随机摸出一个,则摸到红球的概率是55 538= +故答案为: 58.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.22.54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=1解析:54【解析】【分析】连接AD,根据圆周角定理得到∠ADF=90°,根据五边形的内角和得到∠ABC=∠C=108°,求得∠ABD=72°,由圆周角定理得到∠F=∠ABD=72°,求得∠FAD=18°,于是得到结论.【详解】连接AD,∵AF是⊙O的直径,∴∠ADF=90°,∵五边形ABCDE是⊙O的内接正五边形,∴∠ABC=∠C=108°,∴∠ABD=72°,∴∠F=∠ABD=72°,∴∠FAD=18°,∴∠CDF=∠DAF=18°,∴∠BDF=36°+18°=54°,故答案为54.【点睛】本题考查正多边形与圆,圆周角定理等知识,解题的关键灵活运用所学知识解决问题.23.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.24.6【解析】【分析】将方程的根-2代入原方程求出m的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:,解方程得:.故答案为:6解析:6【解析】【分析】将方程的根-2代入原方程求出m的值,再解方程即可求解.【详解】解:把x=-2代入原方程得出,4-2m+3m=0,解得m=-4;故原方程为:24120x x --=,解方程得:122,6x x =-=.故答案为:6.【点睛】本题考查的知识点是解一元二次方程,根据方程的一个解求出方程中参数的值是解此题的关键.25.3【解析】【分析】由题意连接OA ,根据切线的性质得出OA⊥PA,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,即可求解.【详解】解:连接OA ,∵PA 切⊙O 于点A ,∴OA解析:3【解析】【分析】由题意连接OA ,根据切线的性质得出OA ⊥PA ,由已知条件可得△OAP 是等腰直角三角形,进而可求出OA 的长,即可求解.【详解】解:连接OA ,∵PA 切⊙O 于点A ,∴OA ⊥PA ,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.26.5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这解析:5【解析】【分析】根据直角三角形外接圆的直径是斜边的长进行求解即可.【详解】由勾股定理得:AB=2268=10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10;∴这个三角形的外接圆半径长为5,故答案为5.【点睛】本题考查了90度的圆周角所对的弦是直径,熟练掌握是解题的关键.27..【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5,∴朝上的数字为奇数的概率是=;故答案为:.【点睛】 解析:12. 【解析】【分析】根据概率公式计算概率即可.【详解】∵在正方体骰子中,朝上的数字共有6种,为奇数的情况有3种,分别是:1,3,5, ∴朝上的数字为奇数的概率是36=12; 故答案为:12. 【点睛】此题考查的是求概率问题,掌握概率公式是解决此题的关键. 28.或【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点解析:αβ=或180αβ+︒=【解析】【分析】分点C 在优弧AB 上和劣弧AB 上两种情况讨论,根据切线的性质得到∠OAC 的度数,再根据圆周角定理得到∠AOC 的度数,再利用三角形内角和定理得出α与β的关系.【详解】解:当点C 在优弧AB 上时,如图,连接OA 、OB 、OC ,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC=α-90°=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(α-90°)+2β=180°,∴180αβ+︒=;当点C 在劣弧AB 上时,如图,∵PA 是⊙O 的切线,∴∠PAO=90°,∴∠OAC= 90°-α=∠OCA ,∵∠AOC=2∠ABC=2β,∴2(90°-α)+2β=180°,∴αβ=.综上:α与β的关系是180αβ+︒=或αβ=. 故答案为:αβ=或180αβ+︒=. 【点睛】本题考查了切线的性质,圆周角定理,三角形内角和定理,等腰三角形的性质,利用圆周角定理是解题的关键,同时注意分类讨论.29.y=0.5(x-2)+5【解析】解:∵函数y=(x ﹣2)2+1的图象过点A (1,m ),B (4,n ),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A (1,1),B (4,3),过A 作AC 解析:y=0.5(x-2)2+5【解析】解:∵函数y =12(x ﹣2)2+1的图象过点A (1,m ),B (4,n ),∴m =12(1﹣2)2+1=112,n =12(4﹣2)2+1=3,∴A (1,112),B (4,3),过A 作AC ∥x 轴,交B ′B 的延长线于点C ,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.30.【解析】【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD 为直径的圆上.解析:42【解析】【分析】设AB=x,则AD=8﹣x,由勾股定理可得BD2=x2+(8﹣x)2,由二次函数的性质可求出AB=AD=4时,BD的值最小,根据条件可知A,B,C,D四点在以BD为直径的圆上.则AC为直径时最长,则最大值为42.【详解】解:设AB=x,则AD=8﹣x,∵∠BAD=∠BCD=90°,∴BD2=x2+(8﹣x)2=2(x﹣4)2+32.∴当x=4时,BD取得最小值为42.∵A,B,C,D四点在以BD为直径的圆上.如图,∴AC为直径时取得最大值.AC 的最大值为42. 故答案为:42. 【点睛】本题考查了四边形的对角线问题,掌握勾股定理和圆内接四边形的性质是解题的关键.三、解答题31.(1)0b =,1c =-;(2)()0,4M ;(3)()4,1P 或()4,1-或()0,1-【解析】【分析】(1)直接把两点的坐标代入二次函数解析式,得出关于b ,c 的二元一次方程组求解即可(2) 过点C 作CD l ⊥,过点A 作AE l ⊥.证明△CMD 相似于△AME ,再根据对应线段成比例求解即可(3)根据题意设点P 的纵坐标为y ,首先根据三角形面积得出EF 与y 的关系,再利用勾股定理得出EF 与y 的关系,从而得出y 的值,再代入抛物线解析式求出x 的值,得出点坐标.【详解】解:(1)把()4,1A 和()0,1-代入218y x bx c =++得:1241b c c =++⎧⎨-=⎩解方程组得出:01b c =⎧⎨=-⎩所以,0b =,1c =-(2)由已知条件得出C 点坐标为2310,2C ⎛⎫ ⎪⎝⎭,设()0,M n .过点C 作CD l ⊥,过点A 作AE l ⊥.两个直角三角形的三个角对应相等,∴CMD AME ∆∆∽∴CD MD AE ME= ∴2310214n n -=-∵解得:4n =∴()0,4M(3)设点P 的纵坐标为y,由题意得出,12EF y ⨯⨯=EF = ∵MP 与PE 都为圆的半径,∴MP=PE∴()2228y 84()2EF y y ++-=+ 整理得出,∴EF =∵EF = ∴y=±1, ∴当y=1时有,21118x =-,解得,x 4=±; ∴当y=-1时有,21118x -=-,此时,x=0 ∴综上所述得出P 的坐标为:()4,1P 或()4,1-或()0,1-【点睛】本题是一道关于二次函数的综合题目,考查的知识点有二元一次方程组的求解、相似三角形的性质等,巧妙利用数形结合是解题的关键.32.(1)2y x 2x 3=-++;(2)2x <-或3x >;(3)()4,5D -.【解析】【分析】(1)先求出A,B 的坐标,再代入二次函数即可求解;(2)根据函数图像即可求解;(3)先求出C 点坐标,再根据平移的性质得到3EF FD ==,设点(),3E a a -,则()3,6D a a +-,把D 点代入二次函数即可求解.【详解】解:(1)令0y =,得3x =,∴()3,0A .把()2,B m -代入3y x =-,解得()2,5B --. 把()3,0A ,()2,5B --代入2y x bx c =-++, 得093542b c b c =-++⎧⎨-=--+⎩,∴23b c =⎧⎨=⎩, ∴二次函数的表达式为2y x 2x 3=-++.(2)由图像可知,当12y y >时,2x <-或3x >.。
2022-2023学年天津市海河中学九年级上学期期末考试数学试卷含详解

初三年级数学学科期末考试一、选择题(本大题共12小题,共36.0分.在每小题列出的选项中,选出符合题目的一项)1.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A. B.C. D.2.用配方法解方程2420x x ++=,下列配方正确的是()A.()222x -= B.()222x += C.()222x -=- D.()226x -=3.已知O 的半径为2cm ,点P 到圆心O 的距离为3cm ,则点P 和O 的位置关系为()A.点P 在圆外B.点P 在圆上C.点P 在圆内D.不能确定4.如图,AB 是O 的弦,OC AB ⊥于点H ,若60AOC ∠=︒,2OH =,则弦AB 的长为()A.4B.C. D.5.男篮世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,设该小组有x 支球队,则可列方程为()A.()16x x -= B.()16x x += C.()1162x x -= D.()1162x x +=6.若()14,A y -,()23,B y -,()31,C y 为二次函数245y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是()A.123y y y <<B.213y y y << C.312y y y << D.132y y y <<7.如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是() A.AC AD = B.AB EB ⊥ C.BC DE=D.A EBC∠=∠8.如图,边长为3的正六边形ABCDEF 内接于O ,则扇形OAB (图中阴影部分)的面积为()A.πB.32π C.3π D.94π9.如图,AB 是O 的切线,B 为切点,AO 与O 交于点C ,若35BAO ∠=︒,则OCB ∠的度数为()A .42.5︒B.55.5︒C.62.5︒D.75︒10.已知一个圆锥的底面半径是5cm ,侧面积是285cm π,则圆锥的母线长是()A.6.5cmB.13cmC.17cmD.26cm11.如图,四边形ABCD 是O 的内接四边形,O 的半径为5,125B ∠=︒,则AOC ∠的度数()A.60︒B.70︒C.90︒D.110︒12.二次函数2y ax bx c =++的图象如图所示,有如下结论:①0abc <;②20a b +=;③320b c -<;④2am bm a b +≥+(m 为实数).其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题(本大题共6小题,共18.0分)13.点P (﹣1,2)关于原点的对称点的坐标为____.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.15.将抛物线22y x =-向左平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是________.16.已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是___.17.如图,O 是ABC 的内切圆,若58A ∠=︒,则BOC ∠=________.18.如图,在Rt OAB V 中,90,8,10AOB OA AB ∠=︒==,O 的半径为4,点P 是AB上的一动点,过点P 作O 的一条切线PQ ,Q 为切点,则PQ 的最小值为________.三、计算题(本大题共2小题,共12.0分)19.解下列方程:(1)2230x x --=(2)2(3)7(3)x x x -=-20.如图,已知:AB 是O 的直径,点C 在O 上,CD 是O 的切线,AD CD ⊥于点D ,E 是AB 延长线上的一点,CE 交O 于点F ,连接OC ,AC ,若105DAO ∠=︒,30E ∠=︒.(1)求OCE ∠的度数;(2)若O 的半径为,求线段EF 的长.四、解答题(本大题共5小题,共40.0分.解答应写出文字说明,证明过程或演算步骤)21.2021年10月16日,神舟十三号载人飞船成功发射,这是中国空间站关键技术验证阶段第六次飞行,也是该阶段最后一次飞行任务.为了让同学们了解更多的航天知识,某校举办航天知识讲座,需要两名引导员,学校决定从A 、B 、C 、D 四名志愿者中,通过抽签的方式确定两人.抽签规则如下:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“选中A 志愿者”是______事件(填“随机”“不可能”或“必然”);(2)求同时选中A 、B 两名志愿者的概率.22.已知AB 是O 的直径,C 为O 上一点,连接BC ,过点O 作OD BC ⊥于D ,交 BC于点E ,连接AE ,交BC 于F .(1)如图1,求证:2BAC E ∠∠=.(2)如图2,连接OF ,若1OF AB DF ⊥,=,求AE 的长.23.如图,D ,E ,F 是Rt ABC △三边上的点,且四边形CDEF 为矩形,6BC =,30A ∠=︒.(1)求AB 的长;(2)设AE x =,则DE =________,EF =________(用含x 的表达式表示);(3)求矩形CDEF 的面积的最大值.24.在平面直角坐标系中,点()4,0A ,点()0,4B 分别是坐标轴上的点,连接AB .把ABO 绕点B 逆时针旋转得A BO ''△.点A ,O 旋转后的对应点为A ',O '.记旋转角为α.(1)如图①,当点O '落在AB 边上时,求α的值和点O '的坐标;(2)如图②,当60α=︒时,求AA '的长和点O '的坐标;(3)连接AO ',直接写出在旋转过程中AO A ''△面积的最大值.25.已知点A (2,-3)是二次函数2(21)2y x m x m =+--图象上的点.(1)求二次函数图象的顶点坐标:(2)当14x -≤≤时,求函数的最大值与最小值的差:(3)当3t x t +≤≤时,若函数的最大值与最小值的差为4,求t 的值.初三年级数学学科期末考试一、选择题(本大题共12小题,共36.0分.在每小题列出的选项中,选出符合题目的一项)1.下列图形是我国国产品牌汽车的标识,这些汽车标识中,是中心对称图形的是()A. B.C. D.D【分析】根据把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析.【详解】A 、不是中心对称图形,故此选项错误;B 、不是中心对称图形,故此选项错误;C 、不是中心对称图形,故此选项错误;D 、是中心对称图形,故此选项正确;故选:D .【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.2.用配方法解方程2420x x ++=,下列配方正确的是()A.()222x -= B.()222x += C.()222x -=- D.()226x -=B【分析】先把常数项移到方程右侧,再把方程两边加上4,然后把方程左边写成完全平方的形式即可.【详解】解:2420x x ++=,242x x +=-,24424x x ++=-+,()222x +=.故选:B .【点睛】本题考查了解一元二次方程-配方法:掌握用配方法解一元二次方程的步骤是解决问题的关键.3.已知O 的半径为2cm ,点P 到圆心O 的距离为3cm ,则点P 和O 的位置关系为()A.点P 在圆外B.点P 在圆上C.点P 在圆内D.不能确定A【分析】根据点与圆的位置关系进行判断.【详解】解:∵⊙O 的半径为2cm ,点P 到圆心O 的距离为3cm ,即3cm OP =,∴点P 在O 外,故选:A .【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种,设O 的半径为r ,点P 到圆心的距离OP d =,则有:若点P 在圆外,则d r >;若点P 在圆上,则d r =;若点P 在圆内,则d r <,反之也成立.4.如图,AB 是O 的弦,OC AB ⊥于点H ,若60AOC ∠=︒,2OH =,则弦AB 的长为()A.4B.C. D.D【分析】根据含30度角的直角三角形的性质,勾股定理可得AH ==AH BH =,即可得出答案.【详解】解:∵OC AB ⊥,∴AH BH =,∵60AOC ∠=︒,2OH =,∴30OAH =︒∠,∴4OA =,∴AH ===,∴2AB AH ==,故选:D .【点睛】本题考查了根据垂径定理求值,含30度角的直角三角形的性质,勾股定理,难度不大.5.男篮世界杯小组赛,每两队之间进行一场比赛,小组赛共进行了6场比赛,设该小组有x 支球队,则可列方程为()A.()16x x -=B.()16x x += C.()1162x x -= D.()1162x x +=C【分析】设该小组有x 支球队,则每个队参加(1)x -场比赛,则共有1(1)2x x -场比赛,从而可以列出一个一元二次方程.【详解】解:设该小组有x 支球队,则共有1(1)2x x -场比赛,由题意得:1(1)62x x -=,故选:C .【点睛】此题考查了一元二次方程的应用,关要求我们掌握单循环制比赛的特点:如果有n 支球队参加,那么就有1(1)2n n -场比赛,此类虽然不难求出x 的值,但要注意舍去不合题意的解.6.若()14,A y -,()23,B y -,()31,C y 为二次函数245y x x =+-的图象上的三点,则1y ,2y ,3y 的大小关系是()A.123y y y <<B.213y y y << C.312y y y << D.132y y y <<B【分析】把三个点的横坐标代入函数解析式,求出对应函数值,比较大小即可.【详解】解:把()14,A y -,()23,B y -,()31,C y 分别代入245y x x =+-得,1164(4)55y =+⨯--=-;294(3)58y =+⨯--=-;314150y =+⨯-=;则1y ,2y ,3y 的大小关系是213y y y <<,故选:B .【点睛】本题考查了二次函数比较函数值大小,准确求出二次函数对应函数值是解题关键.7.如图,将ABC ∆绕点C 顺时针旋转得到DEC ∆,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE .下列结论一定正确的是()A.AC AD= B.AB EB ⊥ C.BC DE = D.A EBC∠=∠D【分析】利用旋转的性质得AC=CD ,BC=EC ,∠ACD=∠BCE ,所以选项A 、C 不一定正确再根据等腰三角形的性质即可得出A EBC ∠=∠,所以选项D 正确;再根据∠EBC =∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 判断选项B 不一定正确即可.【详解】解:∵ABC ∆绕点C 顺时针旋转得到DEC ∆,∴AC=CD ,BC=EC ,∠ACD=∠BCE ,∴∠A=∠CDA=180ACD 2∠︒-;∠EBC=∠BEC=180BCE2∠︒-,∴选项A 、C 不一定正确,∴∠A =∠EBC ,∴选项D 正确.∵∠EBC=∠EBC+∠ABC=∠A+∠ABC=0180-∠ACB 不一定等于090,∴选项B 不一定正确;故选D .【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰三角形的性质.8.如图,边长为3的正六边形ABCDEF 内接于O ,则扇形OAB (图中阴影部分)的面积为()A.πB.32π C.3π D.94πB【分析】根据已知条件可得出AOB 60∠=︒,圆的半径为3,再根据扇形的面积公式2S 360r απ=(α为圆心角的度数)求解即可.【详解】解: 正六边形ABCDEF 内接于O ,60AOB ∴∠︒=,OA OB =,AOB ∴ 是等边三角形,OA OB AB ∴===3,∴扇形AOB 的面积260333602ππ⨯==,故选:B .【点睛】本题考查的知识点求扇形的面积,熟记面积公式并通过题目找出圆心角的度数与圆的半径是解题的关键9.如图,AB 是O 的切线,B 为切点,AO 与O 交于点C ,若35BAO ∠=︒,则OCB ∠的度数为()A.42.5︒B.55.5︒C.62.5︒D.75︒C【分析】首先根据切线的性质,可得90OAB ∠=︒,即可求得O ∠的度数,再根据等腰三角形的性质及三角形内角和定理,即可求得OCB ∠的度数.【详解】解:AB 是O 的切线,B 为切点,90OBA ∴∠=︒,35BAO ∠=︒ ,90903555O BAO ∴∠=︒-∠=︒-︒=︒,OB OC = ,()()111801805562.522OBC OCB O ∴∠=∠=︒-∠=︒-︒=︒,故选:C .【点睛】本题考查了切线的性质,直角三角形的性质,等边对等角及三角形内角和定理;熟练掌握切线的性质是解决问题的关键.10.已知一个圆锥的底面半径是5cm ,侧面积是285cm π,则圆锥的母线长是()A.6.5cmB.13cmC.17cmD.26cmC【分析】根据圆锥侧面积公式S rl π=,其中r 为圆锥的底面半径,l 为圆锥的母线长,将数据直接代入求出即可.【详解】解:∵圆锥的底面半径是5cm ,侧面积为285cm π,圆锥侧面积公式S rl π=,∴585l ππ=,解得:()17cm l =,故选:C .【点睛】此题主要考查了圆锥侧面积公式的有关计算,解决问题的关键是正确记忆圆锥的侧面积公式,以及各字母所代表的意义.11.如图,四边形ABCD 是O 的内接四边形,O 的半径为5,125B ∠=︒,则AOC ∠的度数()A.60︒B.70︒C.90︒D.110︒D【分析】连接OA 、OC ,根据“圆内接四边形对角互补”可求得D ∠的度数,根据圆周角定理即可求得AOC ∠.【详解】解:连接OA 、OC ,∵四边形ABCD 是O 的内接四边形,125B ∠=︒,∴18012555D ∠=︒-︒=︒,∴2110AOC D ∠=∠=︒,故选D【点睛】本题考查的是圆周角定理的应用,熟练的掌握“圆的内接四边形的对角互补”及圆周角定理是关键.12.二次函数2y ax bx c =++的图象如图所示,有如下结论:①0abc <;②20a b +=;③320b c -<;④2am bm a b +≥+(m 为实数).其中正确结论的个数是()A.1个B.2个C.3个D.4个C【分析】由抛物线的对称轴的位置判断a b ,的符号,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定20a b +=;当=1x -时,y a b c =-+;然后由图象顶点坐标得出2am bm a b +≥+.【详解】解:①∵对称轴在y 轴右侧,∴a 、b 异号,∴0ab <,∵0c <,∴0abc >,故①错误;②∵对称轴12bx a=-=,∴20a b +=;故②正确;③∵20a b +=,∴12a b =-,∵当=1x -时,0y a b c =-+>,∴102b bc --+>,∴320b c -<,故③正确;④根据图象知,当1x =时,y 有最小值;当m 为实数时,有2am bm c a b c ++≥++所以2am bm a b +≥+(m 为实数).故④正确.本题正确的结论有:②③④,3个;故选:C .【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定抛物线的开口方向,当0a >时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即0ab >),对称轴在y 轴左;当a 与b 异号时(即0ab <),对称轴在y 轴右.(简称:左同右异)③常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于()0,c .二、填空题(本大题共6小题,共18.0分)13.点P (﹣1,2)关于原点的对称点的坐标为____.(1,-2)【分析】直接利用关于原点对称点的性质,横坐标、纵坐标都互为相反数,进而得出答案.【详解】解:点P (﹣1,2)关于原点的对称点的坐标为(1,-2).故答案为:(1,-2).【点睛】此题主要考查了关于原点对称点的性质,正确掌握横纵坐标的符号关系是解题关键.14.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是_____.37【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:∵袋子中共有7个球,其中红球有3个,∴从袋子中随机取出1个球,它是红球的概率是37,故答案为37.【点睛】本题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n .15.将抛物线22y x =-向左平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是________.()211y x =++【分析】根据二次函数“左加右减、上加下减”的平移规律即可得答案.【详解】解:∵将抛物线22y x =-向左平移1个单位长度,再向上平移3个单位长度后,∴平移后的抛物线解析式是()22(1)2311y x x =+-+=++,故答案为:()211y x =++.【点睛】本题主要考查了二次函数图象的平移,熟练掌握平移的规律:“左加右减,上加下减”,并用规律求函数解析式.16.已知关于x 的方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是___.13a >-且0a ≠【分析】由方程有两个不相等的实数根,则运用一元二次方程2230ax x +-=(a≠0)的根的判别式是240b ac ->即可进行解答【详解】由关于x 的方程2230ax x +-=有两个不相等的实数根得2Δ44430b ac a =-=+⨯>,解得13a >-则13a >-且0a ≠故答案为13a >-且0a ≠【点睛】本题重点考查了一元二次方程根的判别式,在一元二次方程2230ax x +-=(a ≠0)中,(1)当△>0时,方程有两个不相等的实数根;(2)当△=0时,方程有两个相等的实数根;(3)当△<0时,方程没有实数根.17.如图,O 是ABC 的内切圆,若58A ∠=︒,则BOC ∠=________.119︒##119度【分析】根据O 是ABC 的内切圆,得出12OBC ABC ∠=∠,12OCB ACB ∠=∠,进而得出122ABC ACB ∠+∠=︒,即可得出答案.【详解】解:∵O 是ABC 的内切圆,∴12OBC ABC ∠=∠,12OCB ACB ∠=∠,∵58A ∠=︒,∴180122ABC ACB A ∠+∠=︒-∠=︒,∴()()11801802BOC OBC OCB ABC ACB ∠=︒-∠+∠=︒-∠+∠11801221192=︒-⨯︒=︒故答案为:119︒.【点睛】本题考查三角形的内切圆的性质与三角形内角和定理,此题难度不大.18.如图,在Rt OAB V 中,90,8,10AOB OA AB ∠=︒==,O 的半径为4,点P 是AB 上的一动点,过点P 作O 的一条切线PQ ,Q 为切点,则PQ 的最小值为________.5连接OP ,OQ ,由PQ 为圆O 的切线,利用切线的性质得到OQ 与PQ 垂直,利用勾股定理列出关系式,由OP 最小时,PQ 最短,根据垂线段最短得到OP 垂直于AB 时最短,利用面积法求出此时OP 的值,再利用勾股定理即可求出PQ 的最小值.【详解】解:连接OP ,OQ ,∵PQ 与圆O 相切,∴∠PQO =90°,∵OQ 不变,∴当OP 最小时,PQ 最小,此时OP 与AB 垂直,∵OA =8,AB =10,∴OB =6,∴OP =OA OB AB⨯=245,∴PQ 4115,故答案为:5.【点睛】此题考查了切线的性质,勾股定理的应用,熟练掌握切线的性质是解本题的关键,注意:圆的切线垂直于过切点的半径.三、计算题(本大题共2小题,共12.0分)19.解下列方程:(1)2230x x --=(2)2(3)7(3)x x x -=-(1)123,1x x ==-(2)172x =-,23x =【分析】(1)先求解24160,b ac =-= >再利用求根公式解方程即可;(2)把原方程化为()()23730,x x x -+-=再利用因式分解的方法解方程即可.【小问1详解】1,2,3a b c ==-=- 解:则24160,b ac =-= >4216,22b x a -±±∴==123,1x x ∴==-【小问2详解】解:()()23730x x x ---=,∴()()23730,x x x -+-=∴()()2730x x +-=解得172x =-,23x =【点睛】本题考查的是一元二次方程的解法,掌握“利用公式法与因式分解法解一元二次方程”是解本题的关键.20.如图,已知:AB 是O 的直径,点C 在O 上,CD 是O 的切线,AD CD ⊥于点D ,E 是AB 延长线上的一点,CE 交O 于点F ,连接OC ,AC ,若105DAO ∠=︒,30E ∠=︒.(1)求OCE ∠的度数;(2)若O 的半径为,求线段EF 的长.(1)45︒(2)2【分析】(1)根据切线的性质得出OC CD ⊥,从而得出AD OC ∥,由平行线的性质可得:105EOC DAO ∠=∠=︒,根据三角形内角和定理即可得出答案;(2)作OG CE ⊥于点G ,根据垂径定理可得FG CG =,根据30度角直角三角形即可求出GE =,进而可得EF 的长.【小问1详解】证明:∵CD 是O 的切线,∴OC CD ⊥,∵AD CD ⊥,∴AD OC ∥,∵105DAO ∠=︒,∴105EOC DAO ∠=∠=︒,∵30E ∠=︒,∴1801053045OCE ∠=︒-︒-︒=︒;【小问2详解】解:如图,作OG CE ⊥于点G ,根据垂径定理,得FG CG =,∵OC =,45OCE ∠=︒.∴2CG OG ==,∴2FG =,在R t OGE △中,∵30E ∠=︒,∴4OE =,∴GE =,∴2EF GE FG =-=-.【点睛】本题考查了切线的性质,勾股定理,垂径定理,解决本题的关键是综合掌握以上知识.四、解答题(本大题共5小题,共40.0分.解答应写出文字说明,证明过程或演算步骤)21.2021年10月16日,神舟十三号载人飞船成功发射,这是中国空间站关键技术验证阶段第六次飞行,也是该阶段最后一次飞行任务.为了让同学们了解更多的航天知识,某校举办航天知识讲座,需要两名引导员,学校决定从A 、B 、C 、D 四名志愿者中,通过抽签的方式确定两人.抽签规则如下:将四名志愿者的名字分别写在四张完全相同且不透明卡片的正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下名字,再从剩余的三张卡片中随机抽取第二张,记下名字.(1)“选中A 志愿者”是______事件(填“随机”“不可能”或“必然”);(2)求同时选中A 、B 两名志愿者的概率.(1)随机;(2)16.【分析】(1)根据随机事件、不可能事件及必然事件的概念求解即可;(2)画树状图,共有12种等可能的结果,其中A ,B 两名志愿者同时被选中的结果有2种,再由概率公式求解即可.【小问1详解】解: 卡片背面朝上,洗匀后放在桌面上,从中随机抽取一张卡片,∴“A 志愿者被选中”是随机事件,故答案为:随机;【小问2详解】解:画树状图如下:共有12种等可能的结果,其中A 、B 两名志愿者同时被选中的结果有2种,∴P (A 、B 两名志愿者同时被选中)21126=.【点睛】此题考查的是树状图法求概率以及随机事件的概念,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件;解题时要注意区分题目是放回试验还是不放回试验是解题的关键.22.已知AB 是O 的直径,C 为O 上一点,连接BC ,过点O 作OD BC ⊥于D ,交 BC于点E ,连接AE ,交BC 于F .(1)如图1,求证:2BAC E ∠∠=.(2)如图2,连接OF ,若1OF AB DF ⊥,=,求AE 的长.(1)见解析(2)6【分析】(1)先证OE AC ∥,推出CAF AEO ∠=∠,由OA OE =推出OAE E ∠=∠即可证明结论;(2)先证30B EAO E ∠=∠=∠=︒,求出EF AF 、,最后根据AE AF EF =+求解即可.【小问1详解】证明:如图1∵AB 是直径,∴90ACB ∠=︒,∵OE BC ⊥,∴90ODB ACB ∠=∠=︒,∴OE AC ∥,∴CAF AEO ∠=∠,∵OA OE =,∴AEO OAE ∠=∠,∴2BAC E ∠=∠.【小问2详解】解:如图2:∵OF AB OA OB ⊥=,,∴FA FB=∴FAB FBA ∠=∠,∵CAF EAB ∠=∠,∴2CAB ABC∠=∠∵90ACB ∠=︒∴90CAB B ∠+∠=︒,∴30B EAO E ∠=∠=∠=︒,∴120AOE ∠=︒∴30FOE E ∠=∠=︒∴FO EF =,∵FD OE ⊥,∴2224EF OF DF AF OF =====,,∴426AE AF EF =+=+=.【点睛】本题主要考查了圆周角定理、解直角三角形等知识,灵活运用特殊三角形的性质是解答本题的挂机.23.如图,D ,E ,F 是Rt ABC △三边上的点,且四边形CDEF 为矩形,6BC =,30A ∠=︒.(1)求AB 的长;(2)设AE x =,则DE =________,EF =________(用含x 的表达式表示);(3)求矩形CDEF 的面积的最大值.(1)12(2)12x ,2x(3)【分析】(1)直接利用直角三角形中,30︒角所对的直角边等于斜边的一半进行求解即可;(2)根据矩形的性质得到90ADE ∠=︒,EF DC =,然后利用勾股定理进行求解即可;(3)利用矩形的面积公式列出式子,再进行配方求解即可【小问1详解】解: 在Rt ABC △中,90C ∠=︒,6BC =,30A ∠=︒,22612AB BC ∴==⨯=;【小问2详解】解: 在Rt ABC △中,90C ∠=︒,6BC =,12AB =,AC ∴=,四边形CDEF 为矩形,90ADE ∴∠=︒,EF DC =,30A ∠=︒ ,1122DE AE x ∴==,2AD x ∴===,2EF DC AC AD ∴==-=,故答案为:12x ,2x -;【小问3详解】解: 四边形CDEF 为矩形,12DE x =,32EF x =,CDEF S DE EF ∴=⋅矩形1322x x ⎛⎫=⋅ ⎪ ⎪⎝⎭24x =-+()21236364x x =--+-()2364x =--+∴当6x =时,矩形CDEF 的面积最大,最大值为.【点睛】本题主要考查的是列代数式,二次函数的最值,矩形的性质,含30度角的直角三角形,勾股定理的有关知识,正确列出代数式是解决本题的关键.24.在平面直角坐标系中,点()4,0A ,点()0,4B 分别是坐标轴上的点,连接AB .把ABO 绕点B 逆时针旋转得A BO ''△.点A ,O 旋转后的对应点为A ',O '.记旋转角为α.(1)如图①,当点O '落在AB 边上时,求α的值和点O '的坐标;(2)如图②,当60α=︒时,求AA '的长和点O '的坐标;(3)连接AO ',直接写出在旋转过程中AO A ''△面积的最大值.(1)45α=︒,(-;(2)()2O ',AA '=;(3)面积最大时,8AA O S ''=+ 【分析】(1)先判断ABO 是等腰直角三角形,当点O '落在边AB 上时,45α=︒,如图,过O '作O K OB '⊥于K ,则BO K ' 是等腰直角三角形,利用勾股定理可得点O '的横坐标,纵坐标;(2)根据勾股定理求出AB ,如图,过点O '作O H OB '⊥于点H ,再利用含30︒的直角三角形的性质与勾股定理,可得点A '的坐标;再说明ABA '△为等边三角形,可得AA '的长;(3)先判断AO A ''△面积的最大值时,A BO ''△的位置,再求出面积即可.【小问1详解】解:∵点()4,0A ,点()0,4B ,∴4OA OB ==,ABO 是等腰直角三角形,∴AB ==45ABO ∠=︒.当点O '落在边AB 上时,45α=︒,如图,过O '作O K OB '⊥于K ,则BO K ' 是等腰直角三角形,∴BK O K '=,而4O B OB '==,∴28O K '=,则O K BK '==∴4OK =-,∴点O '的坐标是(-.【小问2详解】如图,过点O '作O H OB '⊥于点H ,在Rt O BH ' 中,∵4O B '=,60OBO '∠=︒,∴30HO B '∠=︒,∴122BH O B '==,O H '==∴422OH =-=,∴()2O ';当60α=︒时,∴60ABA '∠=︒,而AB A B '=,∴ABA '△为等边三角形,∴AA A B AB ''===【小问3详解】如图,以A O ''为底,当高最大时,A O A '' 的面积最大,即当A O B '' 旋转到如图所示的位置时,高最大.则4AO AB BO ''=+=,∴此时(1144822AA O S A O AO '''''==⨯+=+【点睛】本题主要考查了旋转的性质,等边三角形的性质和判定,坐标与图形,二次根式的化简,勾股定理等,判断A O B '' 的位置是求A O A '' 的面积最大的关键.25.已知点A (2,-3)是二次函数2(21)2y x m x m =+--图象上的点.(1)求二次函数图象的顶点坐标:(2)当14x -≤≤时,求函数的最大值与最小值的差:(3)当3t x t +≤≤时,若函数的最大值与最小值的差为4,求t 的值.(1)(3,-4)(2)当-1≤x ≤4时,函数的最大值与最小值的差为16(3)t =1或2【分析】(1)把点A 代入解析式中,解得52m =-,再利用配方法化成顶点式解析式即可解得顶点坐标;(2)分别解得当-1≤x ≤4时,函数的最大值与最小值,再求差;(3)当t ≤x ≤t +3时,对t 进行分类讨论,①当t +3<3时,即t <0,y 随着x 的增大而减小;②当0≤t <3时,顶点的横坐标在取值范围内;③当t >3时,y 随着x 的增大而增大,分别解得函数对应的最大值,再由函数的最大值与最小值的差为4,列方程,解方程即可解答.【小问1详解】解:∵已知A (2,-3)是二次函数()2212y x m x m =+--图象上的点∴44223m m +--=-解得52m =-∴此二次函数的解析式为:2265(3)4y x x x =-+=--∴顶点坐标为(3,-4);【小问2详解】∵顶点坐标为(3,-4),∴当x =3时,y 最小值=-4,当x =-1时,y 最大值=12∴当-1≤x ≤4时,函数的最大值与最小值的差为16;【小问3详解】当t ≤x ≤t +3时,对t 进行分类讨论,①当t +3<3时,即t <0,y 随着x 的增大而减小,当x =t 时,y 最大值=t 2-6t +5当x =t +3时,y 最小值=(t +3)2-6(t +3)+5=t 2-4,t 2-6t +5-(t 2-4)=4﹣t 2+4﹣(﹣t 2+6t ﹣5)=﹣6t +9=4,解得56t =(不合题意,舍去),②当0≤t <3时,顶点的横坐标在取值范围内,∴y 最小值=-4,i)当0≤t≤32时,在x=t时,y最大值=t2-6t+5,∴t2-6t+5-(-4)=4,解得t1=1,t2=5(不合题意,舍去);ii)当32<t<3时,在x=t+3时,y最大值=t2-4,∴t2-4-(-4)=4,∴解得t1=2,t2=-2(不合题意,舍去),③当t>3时,y随着x的增大而增大,当x=t时,y最小值=t2-6t+5,当x=t+3时,y最大值=t2-4,∴t2-4-(t2-6t+5)=4解得136t (不合题意,舍去),综上所述,t=1或2.【点睛】本题考查二次函数的图象与性质、待定系数法求二次函数解析式、将一般式解析式转化为顶点式解析式、解一元二次方程等知识,是重要考点,掌握相关知识是解题关键.。
2020-2021天津市九年级数学上期末试题带答案

6.下列判断中正确的是( )
A.长度相等的弧是等弧
B.平分弦的直线也必平分弦所对的两条弧
C.弦的垂直平分线必平分弦所对的两条弧
D.平分一条弧的直线必平分这条弧所对的弦
7.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是()
请解决下列问题:
(1)写出一个“勾系一元二次方程”;
(2)求证:关于x的“勾系一元二次方程” ,必有实数根;
(3)若x1是“勾系一元二次方程” 的一个根,且四边形ACDE的周长是6 ,求ABC的面积.
24.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.
(1)求2013年至2015年该地区投入教育经费的年平均增长率;
19.袋中装有6个黑球和n个白球,经过若干次试验,发现“若从袋中任摸出一个球,恰是黑球的概率为 ”,则这个袋中白球大约有_____个.
20.飞机着陆后滑行的距离s(单位:m)关于滑行的时间t(单位:s)的函数解析式是s=60t﹣1.5t2,飞机着陆后滑行_____米才能停下来.
三、解答题
21.某水果商场经销一种高档水果,原价每千克50元.
故选B.
二、填空题
13.5【解析】【分析】连接OD根据垂径定理求出DE根据勾股定理求出OD即可【详解】解:连接OD∵CD⊥AB于点E∴DE=CE=CD=×8=4∠OED=90°由勾股定理得:OD=即⊙O的半径为5故答案为:
解析:5
【解析】
【分析】
连接OD,根据垂径定理求出DE,根据勾股定理求出OD即可.
【解析】
【分析】
列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:
天津市2020-2021学年人教版九年级期末数学上册试卷 含解析
九年级(上)期末数学试卷一.选择题(共12小题)1.已知⊙O的半径为6cm,点P到圆心O的距离为6cm,则点P和⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.3.半径为3的圆中,30°的圆心角所对的弧的长度为()A.2πB.πC.πD.π4.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A.B.C.D.5.如图,△ABC与△DEF是位似图形,相似比为2:3,已知AB=3,则DE的长为()A.B.C.D.6.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,则∠ACO的度数为()A.30°B.45°C.55°D.60°7.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.8.直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则k的值为()A.0 B.2 C.6 D.109.如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,则下列结论错误的是()A.CD•AC=AB•BC B.AC2=AD•ABC.BC2=BD•AB D.AC•BC=AB•CD10.顺次连接边长为6cm的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A.cm2B.36cm2C.18cm2D.cm211.如图,将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE,这时点B,C,D恰好在同一直线上,下列结论一定正确的是()A.AB=ED B.EA⊥BCC.∠B=90°﹣D.∠EAC=90°+12.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.二.填空题(共6小题)13.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是.14.如图所示,写出一个能判定△ABC∽△DAC的条件.15.如图,在△ABC中,DE∥BC,且DE把△ABC分成面积相等的两部分.若AD=4,则DB 的长为.16.已知:如图,PA,PB,DC分别切⊙O于A,B,E点,若PA=l0cm,则△PCD的周长为.17.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如表,则m的值为.x﹣2 ﹣1 0 1 2 3 4y7 2 ﹣1 ﹣2 m 2 718.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为.三.解答题(共7小题)19.解方程:x2﹣7x﹣30=0.20.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.21.在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.22.如图①,E是平行四边形ABCD的边AD上的一点,且=,CE交BD于点F.(Ⅰ)若BF=15,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,AB=8,能否求出AP的长?若能,求出AP的长;若不能,说明理由.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.24.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)求证:△ABE∽△DCA;(2)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.25.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.参考答案与试题解析一.选择题(共12小题)1.已知⊙O的半径为6cm,点P到圆心O的距离为6cm,则点P和⊙O的位置关系是()A.点P在圆内B.点P在圆上C.点P在圆外D.不能确定【分析】根据点与圆的位置关系进行判断.【解答】解:∵⊙O的半径为6cm,P到圆心O的距离为6cm,即OP=6,∴点P在⊙O上.故选:B.2.下列图形中,可以看作是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故本选项不合题意;B、是中心对称图形,故本选项符合题意;C、不中心对称图形,故本选项不合题意;D、不中心对称图形,故本选项不合题意.故选:B.3.半径为3的圆中,30°的圆心角所对的弧的长度为()A.2πB.πC.πD.π【分析】根据弧长公式l=,计算即可.【解答】解:弧长==,故选:D.4.同时掷两个质地均匀的骰子,观察向上一面的点数,两个骰子的点数相同的概率是()A.B.C.D.【分析】利用列表法展示所以36种等可能的结果数,找出向上一面的两个骰子的点数相同的占6种,然后根据概率公式进行计算.【解答】解:列表如下:共有6×6=36种等可能的结果数,其中向上一面的两个骰子的点数相同的占6种,所以向上一面的两个骰子的点数相同的概率==.故选:D.5.如图,△ABC与△DEF是位似图形,相似比为2:3,已知AB=3,则DE的长为()A.B.C.D.【分析】根据位似变换的定义、相似三角形的性质列式计算即可.【解答】解:∵△ABC与△DEF是位似图形,相似比为2:3,∴△ABC∽△DEF,∴=,即=,解得,DE=,故选:B.6.如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为的中点,若∠BAD=20°,则∠ACO的度数为()A.30°B.45°C.55°D.60°【分析】根据垂径定理的推论,即可求得:OC⊥AD,由∠BAD=20°,即可求得∠AOC的度数,又由OC=OA,即可求得∠ACO的度数【解答】解:∵AB为⊙O的直径,C为的中点,∴OC⊥AD,∵∠BAD=20°,∴∠AOC=90°﹣∠BAD=70°,∵OA=OC,∴∠ACO=∠CAO===55°,故选:C.7.如图所示,小正方形的边长均为1,则下列选项中阴影部分的三角形与△ABC相似的是()A.B.C.D.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB==,AC=2,BC==,∴BC:AC:AB=1::,A、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;B、三边之比:2:3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::2,图中的三角形(阴影部分)与△ABC不相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选:A.8.直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则k的值为()A.0 B.2 C.6 D.10【分析】直线y=﹣4x+1与抛物线y=x2+2x+k只有一个交点,则把y=﹣4x+1代入二次函数的解析式,得到的关于x的方程中,判别式△=0,据此即可求解.【解答】解:根据题意得:x2+2x+k=﹣4x+1,即x2+6x+(k﹣1)=0,则△=36﹣4(k﹣1)=0,解得:k=10.故选:D.9.如图,已知在Rt△ABC中,∠ACB=90°,CD⊥AB于D,则下列结论错误的是()A.CD•AC=AB•BC B.AC2=AD•ABC.BC2=BD•AB D.AC•BC=AB•CD【分析】根据三角形的面积公式判断A、D,根据射影定理判断B、C.【解答】解:由三角形的面积公式可知,CD•AB=AC•BC,A错误,符合题意,D正确,不符合题意;∵Rt△ABC中,∠ACB=90°,CD⊥AB,∴AC2=AD•AB,BC2=BD•AB,B、C正确,不符合题意;故选:A.10.顺次连接边长为6cm的正六边形的不相邻的三边的中点,又形成一个新的正三角形,则这个新的正三角形的面积等于()A.cm2B.36cm2C.18cm2D.cm2【分析】作AP⊥GH于P,BQ⊥GH于Q,由正六边形和等边三角形的性质求出GH=PG+PQ+QH =9cm,由等边三角形的面积公式即可得出答案.【解答】解:如图所示:作AP⊥GH于P,BQ⊥GH于Q,如图所示:∵△GHM是等边三角形,∴∠MGH=∠GHM=60°,∵六边形ABCDEF是正六边形,∴∠BAF=∠ABC=120°,正六边形ABCDEF是轴对称图形,∵G、H、M分别为AF、BC、DE的中点,△GHM是等边三角形,∴AG=BH=3cm,∠MGH=∠GHM=60°,∠AGH=∠FGM=60°,∴∠BAF+∠AGH=180°,∴AB∥GH,∵作AP⊥GH于P,BQ⊥GH于Q,∴PQ=AB=6cm,∠PAG=90°﹣60°=30°,∴PG=AG=cm,同理:QH=cm,∴GH=PG+PQ+QH=9cm,∴△GHM的面积=GH2=cm2;故选:A.11.如图,将△ABC绕点A逆时针旋转,旋转角为α(0°<α<180°),得到△ADE,这时点B,C,D恰好在同一直线上,下列结论一定正确的是()A.AB=ED B.EA⊥BCC.∠B=90°﹣D.∠EAC=90°+【分析】由旋转的性质可得AB=AD,∠BAD=α,由等腰三角形的性质可求解.【解答】解:∵将△ABC绕点A逆时针旋转,旋转角为α,∴AB=AD,∠BAD=α,∴∠B==90°﹣,故选:C.12.如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A.B.C.D.【分析】根据题意和函数图象可以写出各段对应的函数解析式,从而可以判断哪个选项中的图象符合题意,本题得以解决.【解答】解:当0≤t≤2时,S==,即S与t是二次函数关系,有最小值(0,0),开口向上,当2<t≤4时,S=﹣=,即S与t是二次函数关系,开口向下,由上可得,选项C符合题意,故选:C.二.填空题(共6小题)13.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“6”的概率是.【分析】让点数为6的扑克牌的张数除以没有大小王的扑克牌总张数即为所求的概率.【解答】解:∵没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,∴随机抽取一张点数为8的扑克,其概率是,故答案为.14.如图所示,写出一个能判定△ABC∽△DAC的条件AC2=DC•BC(答案不唯一).【分析】已知有公共角∠C,由相似三角形的判定方法可得出答案.【解答】解:已知△ABC和△DCA中,∠ACD=∠BAC;如果△ABC∽△DAC,需满足的条件有:①∠DAC=∠B或∠ADC=∠BAC;②AC2=DC•BC;故答案为:AC2=DC•BC(答案不唯一).15.如图,在△ABC中,DE∥BC,且DE把△ABC分成面积相等的两部分.若AD=4,则DB 的长为4.【分析】由平行于BC的直线DE把△ABC分成面积相等的两部分,可知△ADE与△ABC相似,且面积比为,则相似比为,的值为,可求出AB的长,则DB的长可求出.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵DE把△ABC分成面积相等的两部分,∴S△ADE=S四边形DBCE,∴=,∴=,∵AD=4,∴AB=4.∴DB=AB﹣AD=4﹣4.故答案为:4﹣4.16.已知:如图,PA,PB,DC分别切⊙O于A,B,E点,若PA=l0cm,则△PCD的周长为20cm.【分析】根据切线长定理由PA、PB分别切⊙O于A、B得到PB=PA=10cm,由于DC与⊙O相切于E,再根据切线长定理得到CA=CE,DE=DB,然后三角形周长的定义得到△PDC 的周长=PD+DC+PC=PD+DB+CA+PC,然后用等线段代换后得到三角形PDC的周长等于PA+PB.【解答】解:∵PA、PB分别切⊙O于A、B,∴PB=PA=10cm,∵CA与CE为⊙的切线,∴CA=CE,同理得到DE=DB,∴△PDC的周长=PD+DC+PC=PD+DB+CA+PC∴△PDC的周长=PA+PB=20cm,故答案为20cm.17.二次函数y=x2+bx+c中,函数y与自变量x的部分对应值如表,则m的值为﹣1 .x﹣2 ﹣1 0 1 2 3 4y7 2 ﹣1 ﹣2 m 2 7【分析】二次函数的图象具有对称性,从函数值来看,函数值相等的点就是抛物线的对称点,由此可推出抛物线的对称轴,根据对称性求m的值.【解答】解:根据图表可以得到,点(﹣2,7)与(4,7)是对称点,点(﹣1,2)与(3,2)是对称点,∴函数的对称轴是:x=1,∴横坐标是2的点与(0,﹣1)是对称点,∴m=﹣1.18.如图,在边长为1的正方形ABCD中,将射线AC绕点A按顺时针方向旋转α度(0<α≤360°),得到射线AE,点M是点D关于射线AE的对称点,则线段CM长度的最小值为﹣1 .【分析】由轴对称的性质可知AM=AD,故此点M在以A圆心,以AD为半径的圆上,故此当点A、M、C在一条直线上时,CM有最小值.【解答】解:如图所示:连接AM.∵四边形ABCD为正方形,∴AC===.∵点D与点M关于AE对称,∴AM=AD=1.∴点M在以A为圆心,以AD长为半径的圆上.如图所示,当点A、M、C在一条直线上时,CM有最小值.∴CM的最小值=AC﹣AM′=﹣1,故答案为:﹣1.三.解答题(共7小题)19.解方程:x2﹣7x﹣30=0.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣7x﹣30=0,(x﹣10)(x+3)=0,x﹣10=0,x+3=0,x1=10,x2=﹣3.20.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸取一个小球.利用树形图或列表求下列事件的概率:(1)两次取出的小球的标号相同;(2)两次取出的小球标号的和等于4.【分析】(1)先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号相同的占4种,然后根据概率的概念计算即可;(2)由(1)可知有16种等可能的结果数,其中两次取出的小球标号的和等于4的有3种,进而可求出其概率.【解答】解:(1)如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号相同的有4种,所有两次摸出的小球标号相同的概率为=;(2)因为两次取出的小球标号的和等于4的有3种,所以其概率为.21.在△ABC中,∠C=90°,以边AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;(2)如图②,若点F为的中点,⊙O的半径为2,求AB的长.【分析】(1)连接OD,由在△ABC中,∠C=90°,BC是切线,易得OD∥AC,即可求得∠CAD=∠BAD,继而求得答案;(2)首先连接OE,OD,由(1)得:OD∥AC,由点F为的中点,易得△AOF是等边三角形,继而求得答案.【解答】解:(1)连接OD,∵OA为半径的圆与BC相切于点D,∴OD⊥BC,∴∠ODB=90°,∵在△ABC中,∠C=90°,∴∠ODB=∠C,∴OD∥AC,∴∠CAD=∠ADO=25°,∵OA=OD,∴∠OAD=∠ODA=25°,∴∠BOD=2∠OAD=50°,∴∠B=90°﹣∠BOD=40°;(2)连接OF,OD,由(1)得:OD∥AC,∴∠AFO=∠FOD,∵OA=OF,点F为的中点,∴∠A=∠AFO,∠AOF=∠FOD,∴∠A=∠AFO=∠AOF=60°,∴∠B=90°﹣∠A=30°,∵OA=OD=2,∴OB=2OD=4,∴AB=OA+OB=6.22.如图①,E是平行四边形ABCD的边AD上的一点,且=,CE交BD于点F.(Ⅰ)若BF=15,求DF的长;(Ⅱ)如图②,若延长BA和CE交于点P,AB=8,能否求出AP的长?若能,求出AP的长;若不能,说明理由.【分析】(Ⅰ)由DE∥BC,可得,由此即可解决问题;(Ⅱ)由PB∥DC,可得,可得PA的长.【解答】解:(Ⅰ)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵,∴,又∵BF=15,∴,∴;(Ⅱ)解:能.∵四边形ABCD是平行四边形,∴PB∥DC,AB=DC=8,∴,∴,∴PA=.23.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.【分析】(1)设AB=xm,则BC=(100﹣2x)m,列方程求解即可;(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.【解答】解:(1)设AB=xm,则BC=(100﹣2x)m,由题意得:x(100﹣2x)=450解得:x1=5,x2=45当x=5时,100﹣2x=90>20,不合题意舍去;当x=45时,100﹣2x=10<20答:AD的长为10m;(2)设AB=xm,则S=x(100﹣x)=﹣(x﹣50)2+1250,(0<x≤70)∴x=50时,S的最大值是1250.答:当x=50时,矩形菜园ABCD面积的最大值为1250.24.在同一平面内,将两个全等的等腰直角三角形ABC和AFG摆放在一起,A为公共顶点,∠BAC=∠AGF=90°,若△ABC固定不动,△AFG绕点A旋转,AF、AG与边BC的交点分别为D、E(点D不与点B重合,点E不与点C重合).(1)求证:△ABE∽△DCA;(2)在旋转过程中,试判断等式BD2+CE2=DE2是否始终成立,若成立,请证明;若不成立,请说明理由.【分析】(1)由图形得∠BAE=∠BAD+45°,由外角定理,得∠CDA=∠BAD+45°,可得∠BAE=∠CDA,根据∠B=∠C=45°,证明两个三角形相似;(2)将△ACE绕点A顺时针旋转90°至△ABH位置,证明△EAD≌△HAD转化DE、EC,使所求线段集中在Rt△BHD中利用勾股定理解决.【解答】(1)证明:∵∠BAE=∠BAD+45°,∠CDA=∠BAD+45°,∴∠BAE=∠CDA,又∠B=∠C=45°,∴△ABE∽△DCA;(2)解:成立.如图,将△ACE绕点A顺时针旋转90°至△ABH位置,则CE=BH,AE=AH,∠ABH=∠C=45°,旋转角∠EAH=90°.连接HD,在△EAD和△HAD中,,∴△EAD≌△HAD(SAS).∴DH=DE.又∠HBD=∠ABH+∠ABD=90°,∴BD2+BH2=HD2,即BD2+CE2=DE2.25.在平面直角坐标系中,将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到如图所示的抛物线,该抛物线与x轴交于点A、B(点A在点B的左侧),OA=1,经过点A的一次函数y=kx+b(k≠0)的图象与y轴正半轴交于点C,且与抛物线的另一个交点为D,△ABD的面积为5.(1)求抛物线和一次函数的解析式;(2)抛物线上的动点E在一次函数的图象下方,求△ACE面积的最大值,并求出此时点E的坐标;(3)若点P为x轴上任意一点,在(2)的结论下,求PE+PA的最小值.【分析】(1)先写出平移后的抛物线解析式,经过点A(﹣1,0),可求得a的值,由△ABD的面积为5可求出点D的纵坐标,代入抛物线解析式求出横坐标,由A、D的坐标可求出一次函数解析式;(2)作EM∥y轴交AD于M,如图,利用三角形面积公式,由S△ACE=S△AME﹣S△CME构建二次函数,利用二次函数的性质即可解决问题;(3)作E关于x轴的对称点F,过点F作FH⊥AE于点H,交x轴于点P,则∠BAE=∠HAP=∠HFE,利用锐角三角函数的定义可得出EP+AP=FP+HP,此时FH最小,求出最小值即可.【解答】解:(1)将二次函数y=ax2(a>0)的图象向右平移1个单位,再向下平移2个单位,得到的抛物线解析式为y=a(x﹣1)2﹣2,∵OA=1,∴点A的坐标为(﹣1,0),代入抛物线的解析式得,4a﹣2=0,∴,∴抛物线的解析式为y=,即y=.令y=0,解得x1=﹣1,x2=3,∴B(3,0),∴AB=OA+OB=4,∵△ABD的面积为5,∴=5,∴y D=,代入抛物线解析式得,,解得x1=﹣2,x2=4,∴D(4,),设直线AD的解析式为y=kx+b,∴,解得:,∴直线AD的解析式为y=.(2)过点E作EM∥y轴交AD于M,如图,设E(a,),则M(a,),∴=,∴S△ACE=S△AME﹣S△CME===,=,∴当a=时,△ACE的面积有最大值,最大值是,此时E点坐标为().(3)作E关于x轴的对称点F,连接EF交x轴于点G,过点F作FH⊥AE于点H,交x 轴于点P,∵E(),OA=1,∴AG=1+=,EG=,∴,∵∠AGE=∠AHP=90°∴sin,∴,∵E、F关于x轴对称,∴PE=PF,∴PE+AP=FP+HP=FH,此时FH最小,∵EF=,∠AEG=∠HEF,∴=,∴.∴PE+PA的最小值是3.。
【5套打包】天津市初三九年级数学上(人教版)第24章圆测试卷(含答案)
人教版九年级上册第24 章数学圆单元测试卷 ( 含答案 )(2)一、选择题1.已知⊙O的直径CD=10 cm, AB是⊙ O的弦, AB⊥ CD,垂足为 M,且 AB=8 cm,则的长为 ()ACA. 25cm B. 45cmC. 25cm 或 4 5cm D.23cm或 43cm2.在△ABC中,若O为BC边的中点,则必有2222AB+ AC=2AO+2BO建立.依照以上结论,解决以下问题:如图1,在矩形DEFG中,已知DE= 4,EF= 3,点P在以DE为直径的半圆上运动,则22) PF+ PG的最小值为(A. 1019C. 34D.10 B.2图1图23.如图 2,在△ABC中,AB= 5,AC= 3,BC= 4,将△ABC绕点A逆时针旋转40°获得︵()△ADE,点 B 经过的路径为 BD,则图中暗影部分的面积为142533A.9πC.8π - 3 D.33+π3π -6B.4.如图 3,在平面直角坐标系xOy中,已知 A(4,0), B(0,3), C(4,3),I 是△ ABC的心里,将△ ABC绕原点逆时针旋转90°后,点I的对应点I′的坐标为 ()图 3A.( -2,3)B.( - 3,2)C.(3 ,- 2)D.(2 ,- 3)5.在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P 在直线y=3x+2 3 上运动,过点P 作该圆的一条切线,切点为A,则 PA的最小值为() A. 3B. 2 C.3 D. 26.如图 4,在矩形中,G 是的中点,过,,三点的⊙O与边,分别ABCD BC A D G AB CD交于点 E,F,给出以下说法:(1) AC与BD的交点是⊙O的圆心; (2) AF与DE的交点是⊙O的圆心; (3)与⊙O 相切,此中正确说法的个数是 ()BC图 4A.0B.1C.2D.3二、填空题7.如图 5,AB是⊙O的弦,点C在过点B的切线上,且OC⊥OA,OC交AB于点P,已知∠OAB=22°,则∠ OCB=________°.图 5图 68.如图 6,在平面直角坐标系中,点 A 的坐标是(20,0),点 B 的坐标是(16,0),点 C,D在以 OA为直径的半圆 M上,且四边形OCDB是平行四边形,则点 C的坐标为________.9.如图 7,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P 为圆心,长为半径作⊙. 当⊙P与正方形的边相切时,BP的长为 ________ .PM P ABCD图7图810.如图 8,在矩形ABCD中,AB= 5,BC= 4,以CD为直径作⊙O. 将矩形ABCD绕点C旋转,使所得矩形 A′ B′ CD′的边 A′ B′与⊙ O相切,切点为 E,边 CD′与⊙ O订交于点 F,则 CF的长为________.三.解答题11.如图 9,AB为⊙O的直径,点C在⊙ O外,∠ ABC的均分线与⊙ O交于点 D,∠ C=90° .(1)CD与⊙ O有如何的地点关系?请说明原因;︵(2)若∠ CDB=60°, AB=6,求 AD的长.图 912.如图 10,在△ABC中,AB=AC,以AB为直径的半圆交AC于点 D,交 BC于点 E,延长 AE至点 F,使 EF= AE,连结 FB, FC.(1)求证:四边形 ABFC是菱形;(2)若 AD=7, BE=2,求半圆和菱形 ABFC的面积.图 1013.如图 11,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE 为半径作半圆,交AO于点 F.(1) 求证:AC是半圆O的切线;(2)若 F 是 AO的中点, OE=3,求图中暗影部分的面积;(3) 在 (2) 的条件下,P 是边上的动点,当+PF取最小值时,直接写出的长.BC PE BP图 1114.如图 12,在△ABC中,AD是边BC上的中线,∠BAD=∠ CAD, CE∥ AD, CE交 BA的延伸线于点E, BC=8, AD=3.(1)求 CE的长;(2)求证:△ ABC为等腰三角形;(3)求△ ABC的外接圆圆心 P 与内切圆圆心 Q之间的距离.图 12答案1. [ 分析 ]C如图,连结AC, AO.∵⊙ O的直径 CD=10 cm, AB⊥ CD, AB=8 cm,1 1∴AM=2AB=2×8=4 cm, OD= OC=5 cm.当点 C地点如图①所示时,∵OA=5 cm, AM=4 cm,CD⊥ AB,∴ OM=2222,OA- AM= 5 - 4= 3(cm)∴CM=OC+ OM=5+3=8(cm),∴ AC=22225(cm) ;AM+ CM= 4 + 8= 4人教版数学九年级上册第24 章《圆》培优检测题(含祥细答案)一.选择题1.已知⊙O的半径OA长为,若OB=,则能够获得的正确图形可能是()A.B.C.D.2.如图,PA是⊙O的切线,切点为A, PO的延伸线交⊙ O于点 B,若∠ P=40°,则∠ B 的度数为()A. 20°B. 25°C. 40°D.50°3.若扇形的圆心角为90°,半径为6,则该扇形的弧长为()A.πB. 2πC. 3πD.6π4.如图,取两根等宽的纸条折叠穿插,拉紧,可得边长为 2 的正六边形.则本来的纸带宽为()A. 1B.C.D.25.如图:已知是⊙的直径,点C 在⊙上,点D在半径上(不与点,重合).若AB O O OA O A ∠=60°,∠= 70°,∠的度数是()COA CDO ACDA. 60°B. 50°C. 30°D.10°6.关于以以下图形有以下结论,此中正确的选项是()A.如图①,AC是弦B.如图①,直径AB与构成半圆C.如图②,线段CD是△ ABC边 AB上的高D.如图②,线段AE是△ ABC边 AC上的高7.如图,BC为⊙O的直径,AB=OB.则∠C的度数为()A. 30°B. 45°C. 60°D.90°8.如图,⊙O的直径为10cm,弦AB为8cm,P是弦AB 上一点且不与点A、 B 重合.若OP的长为整数,则切合条件的点P 有()A.2个B.3个C.4 个D.5 个9.如图,点P、 M、 N分别是边长为 2 的正六边形中不相邻三条边的中点,则△PMN的周长为()A. 6B. 6C. 6D.910.如图,△ABC是半径为1 的⊙O的内接正三角形,则圆的内接矩形BCDE的面积为()A. 3B.C.D.11.如图,四边形ABCD是菱形,⊙O经过点A、 C、D,与BC订交于点E,连结AC、AE.若∠ D=80°,则∠EAC的度数为()A. 20°B. 25°C. 30°D.35°12.如图,抛物线y=x2﹣4与 x 轴交于 A、B 两点, P 是以点 C(0,3)为圆心,2为半径的圆上的动点,Q是线段 PA的中点,连结OQ.则线段 OQ的最大值是()A. 3B.C.D.4二.填空题13.在⊙O 中,为直径,过点O作⊥于点,交⊙O于点,连结,若=,AC OD AB E D BC ABED=,则 BC=.14.如图,△ABC的周长为 16,⊙O与BC相切于点D,与AC的延伸线相切于点E,与 AB的延伸线相切于点,则AF 的长为.F15.如图,矩形ABCD中, AB=3,BC=2,E 为 BC的中点, AF=1,以 EF为直径的半圆与DE 交于点 G,则劣弧的长为.16.在正六边形ABCDEF中,若边长为3,则正六边形ABCDEF的边心距为.17.如图,已知⊙O为四边形 ABCD的外接圆, O为圆心,若∠ BCD=120°, AB= AD=2,则⊙ O的半径长为.18.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连结DE,过点 D作 DF⊥ AC于点 F.若 AB=6,∠ CDF=15°,则暗影部分的面积是.三.解答题19.如图,AB为⊙O的直径,C为⊙O上一点,D为的中点.过点D作直线 AC的垂线,垂足为 E,连结 OD.(1)求证:∠A=∠DOB;(2)DE与⊙O有如何的地点关系?请说明原因.20.如图,BC是半⊙O的直径,A是⊙O上一点,过点的切线交CB的延伸线于点P,过点 B 的切线交 CA的延伸线于点E, AP与 BE订交于点 F.( 1)求证:BF=EF;( 2)若AF=,半⊙ O的半径为2,求PA的长度.21.如图,在⊙O中,B是⊙O上的一点,∠ABC=120°,弦 AC=2,弦BM均分∠ ABC交A C于点 D,连结 MA, MC.(1)求⊙O半径的长;(2)求证:AB+BC=BM.22.如图,AB是⊙O的直径,D是弦AC延伸线上一点,且AB= BD, DB的延伸线交⊙O于点E,过点C作CF⊥ BD,垂足为点F.( 1)CF与⊙O有如何的地点关系?请说明原因;( 2)若BF+CF=6,⊙ O的半径为5,求BE的长度.23.如图,四边形ABCD是正方形,以边AB为直径作⊙O,点 E 在BC边上,连结AE交⊙ O于点F,连结BF并延伸交CD于点G.( 1)求证:△ABE≌△BCG;( 2)若∠AEB=55°,OA= 3,求劣弧的长.(结果保存π)24.如图,以△ABC的边 BC为直径作⊙ O,点 A 在⊙ O上,点 D 在线段 BC的延伸线上, AD = AB,∠ D=30°.(1)求证:直线AD是⊙O的切线;(2)若直径BC= 4,求图中暗影部分的面积.25.以下图,⊙O是等腰三角形ABC的外接圆, AB= AC,延伸 BC至点 D,使 CD=AC,连接 AD交⊙ O于点 E,连结 BE、 CE,BE交 AC于点F.( 1)求证:CE=AE;( 2)填空:①当∠ABC=时,四边形AOCE是菱形;②若AE=,AB=,则DE的长为.26.如图,已知AB为⊙ O的直径, C为⊙ O上异于 A、 B的一点,过 C点的切线于 BA的延伸线交于 D点, E 为 CD上一点,连 EA并延伸交⊙ O于 H, F 为 EH上一点,且 EF=CE, CF 交延伸线交⊙ O于 G.( 1)求证:弧AG=弧 GH;( 2)若E 为的中点,sim∠=,= 2,求⊙O的半径.DC CDO AH参照答案一.选择题1.解:∵⊙O的半径OA长为,若OB=,∴OA<OB,∴点 B在圆外,应选: A.2.解:连结OA,如图,∵PA是⊙O的切线,∴ OA⊥AP,∴∠ PAO=90°,∵∠ P=40°,∴∠ AOP=50°,∵OA=OB,∴∠ B=∠ OAB,∵∠ AOP=∠ B+∠ OAB,∴∠ B=∠ AOP=× 50°=25°.应选: B.3.解:该扇形的弧长==3π.应选: C.4.解:边长为 2 的正六边形由 6 个边长为 2 的等边三角形构成,此中等边三角形的高为原来的纸带宽度,因此本来的纸带宽度=×2=.应选: C.5.解:∵OA=OC,∠COA= 60°,∴△ ACO为等边三角形,∴∠ CAD=60°,又∵∠ CDO=70°,∴∠ ACD=∠ CDO﹣∠ CAD=10°.应选: D.6.解:A、AC不是弦,故错误;B、半圆是弧,不包含弧所对的弦,故错误;C、线段 CD是△ ABC边 AB上的高,正确;D、线段 AE不是△ ABC边 AC上的高,故错误,应选: C.7.解:∵BC为⊙O的直径,∴∠ BAC=90°,∵AB=OB,∴ BC=2AB,∴ sin C==,∴∠ C=30°.应选: A.8.解:连结OA,作 OC⊥ AB于 C,则 AC=AB=4,由勾股定理得, OC== 3,则 3≤OP< 5,OP=3有一种状况, OP=4有两种状况,则切合条件的点P有3个,应选: B.9.解:分别过正六边形的极点A, B 作 AE⊥ MN于 E, BF⊥MN于 F,则∠ EAM=∠ NBF=30°, EF= AB=2,∵AM=BN=2= 1,∴ EM=FN=1=,∴MN=+ +2=3,∴△ PMN的周长3×3=9,应选: D.10.解:连结BD,以下图:∵△ ABC是等边三角形,∴∠ BAC=60°,∴∠ BDC=∠ BAC=60°,∵四边形 BCDE是矩形,∴∠ BCD=90°,∴BD是⊙ O的直径,∠ CBD=90°﹣60°=30°,∴BD=2, CD= BD=1,∴BC==,∴矩形 BCDE的面积= BC?CD=× 1=;应选: C.11.【解答】解:∵四边形ABCD是菱形,∠ D=80°,∴ ∠ ACB=∠ DCB=(180°﹣∠ D)=50°,∵四边形 AECD是圆内接四边形,∴∠ AEB=∠ D=80°,∴∠ EAC=∠ AEB﹣∠ ACE=30°,应选: C.12.解:连结BP,如图,当y =0 时,x2﹣ 4= 0,解得x1=4,x2=﹣ 4,则(﹣ 4, 0),( 4, 0),A B∵Q是线段 PA的中点,∴ OQ为△ ABP的中位线,∴ OQ= BP,当 BP最大时, OQ最大,而 BP过圆心 C时, PB最大,如图,点P 运动到 P′地点时, BP最大,∵ BC==5,∴BP′=5+2=7,∴线段 OQ的最大值是.应选: C.二.填空题(共 6 小题)13.解:∵OD⊥AB,∴AE=EB= AB=,设 OA=OD= r ,222在 Rt △AOE中,∵AO=OE+AE,222∴ r =()+(r﹣),∴r =,∴OE=﹣=,∵ OA=OC, AE=EB,∴BC=2OE=,故答案为.14.解:∵AB、AC的延伸线与圆分别相切于点F、 E,∴AF=AE,∵圆 O与 BC相切于点 D,∴CE=CD, BF=BD,∴BC=DC+BD= CE+BF,∵△ AB C的周长等于16,∴AB+AC+BC=16,∴AB+AC+CE+BF=16,∴AF+AE=16,∴AF=8.故答案为: 8.15.解:连结OG, DF,∵BC=2, E 为 BC的中点,∴ BE=EC=1,∵AB=3, AF=1,∴BF=2,由勾股定理得,DF==,EF==,∴DF=EF,在 Rt △DAF和 Rt△FBE中,,∴Rt △DAF≌ Rt△FBE(HL)∴∠ADF=∠BFE,∵∠ ADF+∠ AFD=90°,∴∠ BFE+∠ AFD=90°,即∠ DFE=90°,∵FD=FE,∴∠ FED=45°,∵OG=OE,∴∠ GOE=90°,∴劣弧的长==π,故答案为:π.16.解:如图,设正六边形ABCDEF的中心为 O,连结 OA, OB,则△ OAB是等边三角形,过 O作 OH⊥ AB于 H,∴∠ AOH=30°,∴ OH=AO=,故答案为:.17.解:连结BD,作 OE⊥ AD,连结 OD,∵⊙ O为四边形 ABCD的外接圆,∠ BCD=120°,∴∠ BAD=60°.∵AD=AB=2,∴△ ABD是等边三角形.∴DE= AD=1,∠ ODE=∠ ADB=30°,∴OD==.故答案为18.解:连结OE,∵∠ CDF=15°,∠ C=75°,∴∠ OAE=30°=∠ OEA,∴∠ AOE=120°,AE× OE sin∠ OEA=× 2×OE× cos∠OEA×OE sin∠OEA=,S△=OAES 暗影部分=扇形﹣S△=×π×32﹣= 3π﹣.SOAEOAE故答案3π﹣.三.解答题(共8 小题)19.( 1)证明:连结OC,∵D为的中点,∴ =,∴∠ BOD=BOC,∵∠ BAC=BOC,∴∠ A=∠ DOB;(2)解:DE与⊙O相切,原因:∵∠ A=∠ DOB,∴ AE∥OD,∵DE⊥AE,∴OD⊥DE,∴DE与⊙ O相切.20.( 1)证明:连结OA,∵ AF、BF为半⊙ O的切线,∴AF=BF,∠ FAO=∠ EBC=90°,∴∠ E+∠ C=∠ EAF+∠ OAC=90°,∵OA=OC,∴∠C=∠OAC,∴∠ E=∠ EAF,∴ AF=EF,∴ BF=EF;( 2)解:连结AB,∵AF、BF为半⊙ O的切线,∴∠ OAP=∠ OBE=90°,且 BF= AF=1.5,又∵ tan ∠P=,即,∴PB=,∵∠ PAE+∠ OAC=∠ AEB+∠OCA=90°,且∠ OAC=∠ OCA,∴∠ PAE=∠ AEB,∠ P=∠ P,∴△ APB∽△ CPA,∴2,即 PA= PB?PC,∴,解得 PA=.21.解:( 1)连结OA、OC,过O作OH⊥AC于点H,如图 1,∵∠ ABC=120°,∴∠ AMC=180°﹣∠ ABC=60°,∴∠ AOC=2∠ AMC=120°,∴∠ AOH=∠AOC=60°,∵AH= AC=,∴OA=,故⊙ O的半径为2.( 2)证明:在BM上截取 BE= BC,连结 CE,如图2,∵∠ MBC=60°, BE= BC,∴△ EBC是等边三角形,∴CE=CB=BE,∠BCE=60°,∴∠ BCD+∠ DCE=60°,∵∠ ACM=60°,∴∠ ECM+∠ DCE=60°,∴∠ ECM=∠ BCD,∵∠ ABC=120°, BM均分∠ ABC,∴∠ ABM=∠ CBM=60°,∴∠ CAM=∠ CBM=60°,∠ ACM=∠ ABM=60°,∴△ ACM是等边三角形,∴AC=CM,∴△ ACB≌△ MCE,∴AB=ME,∵ME+EB= BM,∴AB+BC= BM.22.解:( 1)CF与⊙O相切.连结BC, OC,∵AB是⊙O的直径,∴∠ ACB=90°,∵AB=BD,∴∠ A=∠ D,又∵ OA= OB,∴OC是△ ABD的中位线.∴OC∥BD,∴∠ OCF=∠ CFD=90°,即 CF⊥OC.∴ CF与⊙ O相切;(2)过点O作OH⊥BE于点H,则∠OCF=∠CFH=∠OHB=90°,∴四边形 OCFH是矩形,∴ OC=FH, OH=CF,设 BH=x,∵ OC=5, BF+CF=6,∴ BF=5﹣ x, OH= CF=6﹣(5﹣ x)=x+1,在 Rt △BOH中,由勾股定理知:222222BH+OH= OB,即 x +( x+1)= 5 ,解得 x1=3,x2=﹣4(不合题意,舍去).∴BH=3,∵ OH⊥BE,∴BH=EH= BE,∴BE=2BH=2×3=6.23.( 1)证明:∵四边形ABCD是正方形, AB为⊙ O的直径,∴∠ ABE=∠ BCG=∠ AFB=90°,∴∠ BAF+∠ ABF=90°,∠ ABF+∠ EBF=90°,∴∠ EBF=∠ BAF,在△ ABE与△ BCG中,,∴△ ABE≌△ BCG( ASA);( 2)解:连结OF,∵∠ ABE=∠ AFB=90°,∠ AEB=55°,∴∠ BAE=90°﹣55°=35°,∴∠ BOF=2∠ BAE=70°,∵OA=3,∴的长==.24.( 1)证明:连结OA,则∠ COA=2∠B,∵AD=AB,∴∠ B=∠ D=30°,∴∠ COA=60°,∴∠ OAD=180°﹣60°﹣30°=90°,∴OA⊥AD,即 CD是⊙ O的切线;(2)解:∵BC= 4,∴ OA=OC=2,在 Rt △OAD中,OA= 2,∠D=30°,∴ OD=2OA=4,AD=2,因此 S△OAD=OA?AD=× 2× 2=2,由于∠ COA=6 0°,因此 S 扇形==π,COA因此S 暗影= S△OAD﹣ S 扇形COA=2﹣.25.证明( 1)∵AB=AC,AC=CD∴∠ ABC=∠ ACB,∠ CAD=∠ D∵∠ ACB=∠ CAD+∠ D=2∠CAD∴∠ ABC=∠ ACB=2∠ CAD∵∠ CAD=∠ EBC,且∠ ABC=∠ ABE+∠ EBC∴∠ ABE=∠ EBC=∠ CAD,∵∠ ABE=∠ ACE∴∠ CAD=∠ ACE∴CE=AE(2)①当∠ABC=60°时,四边形AOCE是菱形;原因以下:如图,连结 OE∵OA=OE, OE=OC, AE=CE∴△ AOE≌△ EOC( SSS)∴∠ AOE=∠ COE,∵∠ ABC=60°∴∠ AOC=120°∴∠ AOE=∠ COE=60°,且 OA= OE= OC∴△ AOE,△ COE都是等边三角形∴AO=AE= OE=OC= CE,∴四边形 AOCE是菱形故答案为: 60°②如图,过点 C作 CN⊥ AD于 N,∵AE=,AB=,∴ AC=CD=2,CE=AE=,且CN⊥AD∴ AN=DN222在 Rt △ACN中,AC=AN+CN,①222在 Rt △ECN中,CE=EN+CN,②2222∴①﹣②得: AC﹣ CE= AN﹣ EN,2 2∴8﹣ 3=(+EN)﹣EN,∴EN=∴ AN=AE+EN==DN∴DE=DN+EN=故答案为:26.( 1)证明:如图,连结AC, BC,∵ AB为⊙ O的直径,∴∠ ACB=90°,∴∠ B+∠ CAO=90°,∵CD为⊙ O的切线,∴∠ ECA+∠ ACO=90°,∵OC=OA,∴∠ ACO=∠ OAC,∴∠ ECA=∠ B,∵EF=CE,∴∠ ECF=∠ EFC,∵∠ ECF=∠ ECA+∠ ACG,∠ EFC=∠ GAF+∠ G,∵∠ ECA=∠ B=∠ G,∴∠ ACG=∠ GAF=∠ GCH,∴;(2)解:∵CH是⊙O的直径,∴∠ CAH=90°,∵ CD是⊙ O的切线,∴∠ ECO=90°,设 CO=2x,∵sim∠ CDO==,∴DO=6x,∴CD==4,∵ E 为 DC的中点,∴CE==2,EH==2,∵∠ ECH=∠ CAH,∠ CHA=∠ EHC,∴△ CAH∽△ ECH,∴,2∴ CH= AH?EH,∴AH=,∵ AH=2,∴,∴ x=3,∴⊙ O的半径 CO=2x=6.人教版九年级上册第24 章数学圆单元测试卷( 含答案 )(3)一、填空题(每题 3 分,共30 分)1.如图 1 所示 AB 是⊙ O的弦, OC⊥ AB于 C,若 OA=2cm,OC=1cm,则 AB长为 ______.?图1图2图32.如图 2 所示,⊙O的直径CD过弦EF中点G,∠ EOD=40°,则∠DCF=______.3.如图 3 所示,点M, N分别是正八边形相邻两边AB, BC上的点,且AM=BN,则∠MON=度.4.假如半径分别为 2 和3 的两个圆外切,那么这两个圆的圆心距是_______.5.如图 4 所示,宽为 2cm 的刻度尺在圆上挪动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰巧为“ 2”和“ 8”(单位: cm) ?则该圆的半径为 ______cm.图 4图5图66.如图 5 所示,⊙ A 的圆心坐标为(0,4),若⊙ A 的半径为3,则直线y=x与⊙ A?的地点关系是 ________.BOC=100°,则∠A=______.7.如图 6 所示,O是△ ABC的心里,∠8.圆锥底面圆的半径为5cm,母线长为8cm,则它的侧面积为________.(用含的式子表示)9.已知圆锥的底面半径为40cm,?母线长为90cm,?则它的侧面睁开图的圆心角为_______.10.矩形 ABCD中, AB=5,BC=12,假如分别以A,C 为圆心的两圆相切,点D在⊙ C内,点 B 在⊙ C外,那么⊙ A 的半径 r 的取值范围为________.二、选择题(每题 4 分,共 40 分)11.如图 7 所示, AB是直径,点 E 是 AB 中点,弦CD∥ AB且均分 OE,连 AD,∠ BAD度数为()A.45°B.30°C.15°D.10°图7图8图912.以下命题中,真命题是()A .圆周角等于圆心角的一半B.等弧所对的圆周角相等C.垂直于半径的直线是圆的切线D.过弦的中点的直线必经过圆心13.(易错题)半径分别为 5 和 8 的两个圆的圆心距为d,若 3<d≤ 13, ?则这两个圆的地点关系必定是()A.订交B.相切C.内切或订交D.外切或订交14.过⊙O内一点M的最长弦长为10cm,最短弦长为8cm,那么OM长为()A . 3cmB .6cm C.41 cm D . 9cm15.半径相等的圆的内接正三角形,正方形边长之比为()A.1:2B .:2C .3:2 D .1:216.如图 8,已知⊙ O的直径AB与弦 AC的夹角为35°,过 C点的切线 PC与 AB?的延伸线交于点 P,则∠ P 等于()A.15° B .20° C .25° D .30°17.如图 9 所示,在直角坐标系中, A 点坐标为( -3 , -2 ),⊙ A 的半径为1,P 为 x?轴上一动点, PQ切⊙ A 于点 Q,则当 PQ最小时, P点的坐标为()A .(-4,0)B.( -2 ,0)C.(-4 ,0)或( -2 ,0) D.(-3,0)18.在半径为 3 的圆中, 150°的圆心角所对的弧长是()A .15B. 15C.5D.5 424219.如图 10 所示, AE切⊙ D 于点 E, AC=CD=DB=10,则线段 AE 的长为().B .15C.103D.20A10220.如图 11 所示,在齐心圆中,两圆半径分别是 2 和 1,∠ AOB=120°, ?则暗影部分的面积为()A . 4B.2C.3D .4三、解答题(共50 分)21.(8 分)以下图, CE是⊙ O的直径,弦 AB⊥ CE于 D,若 CD=2,AB=6,求⊙ O?半径的长.22.( 8 分)以下图,AB 是⊙ O的直径, BC切⊙ O于 B, AC交⊙ O于 P, E 是 BC?边上的中点,连结 PE, PE与⊙ O相切吗?若相切,请加以证明,若不相切,请说明原因.23.( 12 分)已知:以下图,直线PA交⊙ O于 A,E 两点, PA的垂线 DC切⊙ O于点 C,过A 点作⊙ O的直径 AB.( 1)求证: AC均分∠ DAB;( 2)若 AC=4, DA=2,求⊙ O的直径.24.( 12 分)“五一”节,小雯和同学一同到游玩场玩大型摩天轮,?摩天轮的半径为20m,匀速转动一周需要12min,小雯所坐最底部的车厢(离地面0.5m).( 1)经过 2min 后小雯抵达点Q以下图,此时他离地面的高度是多少.( 2)在摩天轮转动的过程中,小雯将有多长时间连续保持在离地面不低于30.5m 的空中.25.( 10 分)以下图,⊙O 半径为 2,弦 BD=2 3, A 为弧 BD的中点, E 为弦 AC 的中点,且在 BD上,求四边形ABCD的面积.人教版数学九年级上册第二十四章《圆》培优单元测试卷(含分析)一.选择题1.如图,圆锥的底面半径为1,母线长为3,则侧面积为()A. 2πB. 3πC. 6πD.8π2.如图,为⊙O 的直径,P为弦上的点,∠= 30°,过点P作⊥交⊙O于点AB BC ABC PD OP D,过点 D作 DE∥ BC交 AB的延伸线于点E.若点 C恰巧是的中点, BE=6,则 PC的长是()A. 6﹣ 8B. 3﹣ 3C. 2D.12﹣ 63.如图,已知⊙O的内接正六边形ABCDEF的边长为6,则弧BC的长为()A. 2πB. 3πC. 4πD.π4.《九章算术》是我国古代第一部自成系统的数学专著,代表了东方数学的最高成就.它的算法系统到现在仍在推进着计算机的发展和应用.书中记录:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深 1 寸(ED= 1 寸),锯道长1 尺(AB= 1尺= 10 寸)”,问这块圆柱形木材的直径是多少?”以下图,请依据所学知识计算:圆柱形木材的直径AC是()A.13寸B.20寸C.26 寸D.28 寸5.如图,PA、PB是⊙O切线,A、B 为切点,点C在⊙ O上,且∠ACB=55°,则∠APB等于()A. 55°B.70°C. 110°D.125°6.如图,在 Rt △中,∠= 90°,⊙O 是△的内切圆,三个切点分别为、、,ABC ACB ABC D E F 若=2,= 3,则△的面积是()BF AF ABCA. 6B. 7C. 7D.127.如图,正方形ABCD内接于圆O, AB=4,则图中暗影部分的面积是()A. 4π﹣ 16B. 8π﹣ 16C. 16π﹣ 32D.32π﹣ 168.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别订交于点G、H.若 AE=3,则 EG的长为()A.B.C.D.9.假如一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”.将半径为 5 的“等边扇形”围成一个圆锥,则圆锥的侧面积为()A.B.πC. 50D.50π10.如图,点C 为△外接圆上的一点(点C不在上,且不与点,重合),且ABD B D∠=∠=45°,若= 8,= 4,则的长为()ACB ABD BC CD ACA. 8.5B. 5C. 4D.11.在△ABC中,∠C= 90°,∠A= 30°,AB= 12,将△ABC绕点B按逆时针方向旋转60°,直角边AC扫过的面积等于()A. 24πB. 20πC. 18πD.6π12.如图,矩形ABCD中,BC=2,C D=1,以 AD为直径的半圆O与BC相切于点E,连结BD,则暗影部分的面积为()A.B.C.D.二.填空题13.若一个圆锥的底面圆的周长是5πcm,母线长是6cm,则该圆锥的侧面睁开图的圆心角度数是.14.如图,△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,连结DE,过点 D作 DF⊥ AC于点 F.若 AB=6,∠ CDF=15°,则暗影部分的面积是.15.如图,已知AB是⊙O的弦,C是的中点,联络OA,AC,假如∠ OAB=20°,那么∠ CAB 的度数是.16.如图,用均分圆的方法,在半径为OA的圆中,画出了以下图的四叶好运草,若OA=2,则四叶好运草的周长是.17.半径为 6 的扇形的面积为12π,则该扇形的圆心角为°.18.如图,在平面直角坐标系中,已知C(3,4),以点 C为圆心的圆与 y 轴相切.点A、 B在 x 轴上,且 OA= OB.点 P为⊙ C上的动点,∠APB=90°,则 AB长度的最大值为.三.解答题19.如图,⊙O与△ABC的AC边相切于点C,与 AB、 BC边分别交于点 D、E, DE∥ OA,CE是⊙ O的直径.(1)求证:AB是⊙O的切线;(2)若BD= 4,EC= 6,求AC的长.20.如图,AB是⊙O的直径,AC与⊙O交于点F,弦AD均分∠BAC,DE⊥AC,垂足为E.(1)试判断直线DE与⊙O的地点关系,并说明原因;(2)若⊙O的半径为 2,∠BAC= 60°,求线段EF的长.21.如图,AB为⊙O的直径,C,D为圆上的两点,OC∥ BD,弦 AD,BC订交于点 E.(1)求证:=;(2)若CE= 1,EB= 3,求⊙O的半径;( 3)在( 2)的条件下,过点C作⊙ O的切线,交BA的延伸线于点P,过点 P 作 PQ∥ CB 交⊙ O于 F, Q两点(点 F 在线段 PQ上),求 PQ的长.22.如图,AB为⊙O的切线,切点为B,连结 AO,AO与⊙ O交于点 C,BD为⊙ O的直径,连接 CD.若∠ A=30°,⊙ O的半径为2,则图中暗影部分的面积是多少?23.已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥ BC于 M.(1)求证:AH= 2OM;(2)若∠BAC=60°,求证:AH=AO.(初二)24.如图,是半圆的直径,C 是半圆上一点,=,⊥ 于点,分别交、AB O DH AB H AC BD DH于 E、 F.(1)已知AB= 10,AD=6,求AH.(2)求证:DF=EF25.已知:如图,在△ABC中,∠ ACB=90°,以点.( 1)求证:∠ACD=∠DEC;BC为直径的⊙O交 AB于点 D, E为的中( 2)延伸DE、 CB交于点P,若PB= BO, DE=2,求PE的长.参照答案一.选择题1.解:圆锥的侧面积=×2π× 1×3=3π,应选: B.2.解:连结OD,交 CB于点 F,连结 BD,∵=,∴∠ DBC=∠ ABC=30°,∴∠ ABD=60°,∵OB=OD,∴△ OBD是等边三角形,∴OD⊥FB,∴OF=DF,∴BF∥DE,∴OB=BE=6∴ CF=FB= OB?cos30°=6×=3,在 Rt △POD中,OF=DF,∴ PF=DO=3(直角三角形斜边上的中线,等于斜边的一半),∴ CP=CF﹣ PF=3﹣3.应选: B.3.解:∵ABCDEF为正六边形,∴∠ COB=360°×=60°,∴△ OBC是等边三角形,∴OB=OC= BC=6,弧 BC的长为=2π.应选: A.4.解:设⊙O的半径为r .在 Rt △ADO中,AD= 5,OD=r﹣ 1,OA =r,则有 r 2=52+( r ﹣1)2,解得 r =13,∴⊙ O的直径为26寸,应选: C.5.解:连结OA, OB,∵PA,PB是⊙O的切线,∴ PA⊥OA, PB⊥OB,∵∠ ACB=55°,∴∠ AOB=110°,∴∠ APB=360°﹣90°﹣90°﹣110°=70°.应选: B.6.解:连结DO, EO,∵⊙ O是△ ABC的内切圆,切点分别为D, E, F,∴OE⊥AC, OD⊥BC, CD=CE, BD=BF=3, AF= AE=4又∵∠ C=90°,∴四边形 OECD是矩形,又∵ EO= DO,∴矩形 OECD是正方形,设 EO=x,则 EC=CD= x,在 Rt △ABC中222BC+AC= AB故( x+2)2+( x+3)2=52,解得: x=1,∴BC=3, AC=4,∴S△ABC=×3×4=6,应选: A.7.解:连结OA、 OB,∵四边形 ABCD是正方形,∴∠ AOB=90°,∠ OAB=45°,∴ OA=AB cos45°=4×=2,2) 2 ﹣4×4=8π﹣16.因此暗影部分的面积=S⊙﹣ S 正方形=π×(OABCD应选: B.8.解:如图,连结AC、 BD、OF,,设⊙ O的半径是 r ,则 OF=OA= r ,∵ AO是∠ EAF的均分线,∴∠ OAF=60°÷2=30°, AC⊥ EF,EG=EF=∵OA=OF,∴∠ OFA=∠ OAF=30°,∴∠ COF=30°+30°=60°,∴ FI =r ?sin60°=r ,∴ =r × 2=r==3,EF AE∴r =∴OI=,∴ CI=OC﹣ OI=,∵EF⊥AC,∠ BCA=45°∴∠ IGC=∠ BCI=45°∴ CI=GI=∴EG=EI﹣ GI=应选: B.9.解:圆锥的侧面积=?5?5=.应选: A.10.解:延伸CD到 E,使得DE= BC,连结AE,如右图所示,∵∠ ACB=∠ ABD=45°,∠ ACB=∠ ADB,∴∠ ADB=45°,∴∠ BAD=90°, AB= AD,∵四边形 ABCD是圆内接四边形,∠ADE+∠ ADC=180°,∴∠ ADC+∠ ABC=180°,∴∠ ABC=∠ ADE,在△ ABC和△ ADE中,,∴△ ABC≌△ ADE( SAS),∴∠ BAC=∠ DAE,∵∠ BAC+∠ CAD=∠ BAD=90°,∴∠ DAE+∠ CAD=90°,∴∠ CAE=90°,∵ACD=45°, BC= DE=8, CD=4,∴∠ ACE=45°, CE=12,∴ AC=AE=6,应选: D.11.解:∵在△ABC中,∠ C=90°,∠ A=30°, AB=12,∴BC= AB=6,∠ ABC=60°,∴ S 暗影=﹣=﹣=18π.应选: C.12.解:连结OE交 BD于 F,如图,∵以 AD为直径的半圆O与 BC相切于点 E,∴OE⊥BC,∵四边形 ABCD为矩形, OA= OD=1,而 CD=1,∴四边形 ODCE和四边形 ABEO都是正方形,∴ BE=1,∠ DOE=∠ BEO=90°∵∠ BFE=∠ DFO,OD=BE,∴△ ODF≌△ EBF( AAS),∴S△=S△,ODF EBF∴暗影部分的面积=S 扇形=EOD=.应选: C.二.填空题(共 6 小题)13.解:∵圆锥的底面圆的周长是5πcm,∴圆锥的侧面睁开扇形的弧长为5πcm,∴=5π,解得: n=150故答案为150°.14.解:连结OE,∵∠ CDF=15°,∠ C=75°,∴∠ OAE=30°=∠ OEA,∴∠ AOE=120°,S△=AE× OE sin∠ OEA=× 2× OE× cos∠ OEA× OE sin∠OEA=,OAES 暗影部分=S扇形OAE﹣ S△OAE=×π× 32﹣= 3π﹣.故答案 3π﹣.15.解:连结OC交 AB于 E.∵C是的中点,∴ OC⊥AB,∴∠ AEO=90°,∵∠ BAO=20°,∴∠ AOE=70°,∵OA=OC,∴∠ OAC=∠ C=55°,∴∠ CAB=∠ OAC﹣∠ OAB=35°,故答案为35°.16.解:由题意得:四叶好运草的周长为 4 个半圆的弧长= 2 个圆的周长,连结AB、BC、CD、AD,则四边形ABCD是正方形,连结OB,以下图:则正方形 ABCD的对角线=2OA=4, O A⊥ OB, OA= OB=2,∴AB=2,过点O作ON⊥ AB于N,则NA=AB=,∴圆的半径为,∴四叶好运草的周长=2×2π×=4π;故答案为: 4π.17.解:设该扇形的圆心角为n2,则= 12π,解得: n=120,故答案为: 120.18.解:连结OC并延伸,交⊙ C上一点 P,以 O为圆心,以OP为半径作⊙ O,交 x 轴于 A、B,此时 AB的长度最大,∵ C(3,4),∴ OC==5,∵以点 C为圆心的圆与y 轴相切.∴⊙ C的半径为3,∴OP=OA= OB=8,∵ AB是直径,∴∠ APB=90°,∴AB长度的最大值为16,故答案为 16.三.解答题(共7 小题)19.( 1)证明:连结OD、 CD,∵CE是⊙O的直径,∴∠ EDC=90°,∵DE∥OA,∴OA⊥CD,∴OA垂直均分 CD,∴OD=OC,∴OD=OE,∴∠ OED=∠ ODE,∵DE∥OA,∴∠ ODE=∠ AOD,∠ DEO=∠ AOC,∴∠ AOD=∠ AOC,∵ AC是切线,∴∠ ACB=90°,在△ AOD和△ AOC中∴△ AOD≌△ AOC( SAS),∴∠ ADO=∠ ACB=90°,∵ OD是半径,∴ AB是⊙ O的切线;(2)解:连结OD,CD,∵ BD是⊙ O切线,∴∠ ODB=90°,∴∠ BDE+∠ ODE=90°,∵ CE是⊙ O的直径,∴∠ CDE=90°,∴∠ ODC+∠ ODE=90°,∴∠ BDE=∠ ODC,∵OC=OD,∴∠ OCD=∠ ODC,∴∠ BDE=∠ OCD,∵∠ B=∠ B,∴△ BDE∽△ BCD,∴2∴ BD= BE?BC,设 BE=x,∵ BD=4, EC=6,∴ 42=x(x+6),解得 x=2或 x=﹣8(舍去),∴ BE=2,∴BC=BE+EC=8,∵AD、AC是⊙O的切线,∴ AD=AC,设 AD=AC= y,222在 Rt △ABC中,AB=AC+BC,∴( 4+y)2=y2+82,解得 y=6,∴ AC=6,故 AC的长为6.20.解:( 1)直线DE与⊙O相切,连结 OD.∵AD均分∠BAC,∴∠ OAD=∠ CAD,∵OA=OD,∴∠ OAD=∠ ODA,∴∠ ODA=∠ CAD,∴OD∥AC,∵DE⊥AC,即∠AED=90°,∴∠ ODE=90°,即 DE⊥OD,∴ DE是⊙ O的切线;( 2)过O作OG⊥AF于G,∴AF=2AG,∵∠ BAC=60°, OA=2,∴AG= OA=1,∴AF=2,∴AF=OD,∴四边形 AODF是菱形,∴DF∥OA, DF=OA=2,∴∠ EFD=∠ BAC=60°,∴EF= DF=1.21.证明:( 1)∵OC=OB∴∠ OBC=∠ OCB∵OC∥BD∴∠ OCB=∠ CBD∴∠ OBC=∠ CBD∴( 2)连结AC,∵CE=1, EB=3,∴ BC=4∵∴∠ CAD=∠ ABC,且∠ ACB=∠ ACB∴△ ACE∽△ BCA∴2∴ AC= CB?CE=4×1∴ AC=2,∵AB是直径∴∠ ACB=90°∴AB==2∴⊙ O的半径为( 3)如图,过点O作 OH⊥ FQ于点 H,连结 OQ,∵ PC是⊙ O切线,∴∠ PCO=90°,且∠ ACB=90°∴∠ PCA=∠ BCO=∠ CBO,且∠ CPB=∠ CPA ∴△ APC∽△ CPB∴2∴ PC=2PA, PC= PA?PB∴ 42=×(+2 )PA PA PA∴PA=∴PO=∵PQ∥BC∴∠ CBA=∠ BPQ,且∠ PHO=∠ ACB=90°∴△ PHO∽ △ BCA。
2022年天津河北区数学九年级第一学期期末监测试题含解析
2022-2023学年九上数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(每题4分,共48分)1.若关于x 的一元二次方程x 2﹣2x +m =0没有实数根,则实数m 的取值是( ) A .m <1B .m >﹣1C .m >1D .m <﹣12.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图1),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形. 图2是等宽的勒洛三角形和圆形滚木的截面图.图1 图2有如下四个结论:①勒洛三角形是中心对称图形②图1中,点A 到BC 上任意一点的距离都相等 ③图2中,勒洛三角形的周长与圆的周长相等④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动 上述结论中,所有正确结论的序号是( ) A .①②B .②③C .②④D .③④3.某农科院对甲、乙两种甜玉米各用10块相同条件的试验田进行试验,得到两个品种每亩产量的两组数据,其方差分别为2=0.03S 甲,2=0.01S 乙,则 ( ) A .甲比乙的产量稳定 B .乙比甲的产量稳定C .甲、乙的产量一样稳定D .无法确定哪一品种的产量更稳定4.如图所示,在平面直角坐标系中,已知点A (2,4),过点A 作AB ⊥x 轴于点B .将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,则CD 的长度是( )A .2B .1C .4D .255.已知关于x 的一元二次方程240x x c -+=有两个相等的实数根,则c =( ) A .4B .2C .1D .﹣46.在平面直角坐标系中,对于二次函数()221y x =-+,下列说法中错误的是( ) A .y 的最小值为1B .图象顶点坐标为()21,,对称轴为直线2x =C .当2x <时,y 的值随x 值的增大而增大,当2x ≥时,y 的值随x 值的增大而减小D .当2x <时,y 的值随x 值的增大而减小,当2x ≥时,y 的值随x 值的增大而增大 7.方程x (x ﹣1)=0的根是( ) A .0B .1C .0或1D .无解8.如图,在ABC △中,DE BC ∥,且DE 分别交AB ,AC 于点D ,E ,若:=2:3AD AB ,则△ADE 和△ABC 的面积之比等于( )A .2:3B .4:9C .4:5D .2:39.如图,已知AE 是O 的直径,40B ∠=︒,则CAE ∠的度数为( )A .40︒B .50︒C .60︒D .70︒10.下列命题中正确的是( ) A .对角线相等的四边形是矩形B .对角线互 相垂直的四边形是菱形C .对角线互相垂直平分且相等的四边形是正方形D .一组对边相等,另一组对边平行的四边形是平行四边形 11.已知扇形的圆心角为60°,半径为1,则扇形的弧长为( ) A .2πB .πC .6π D .3π 12.如图,在平面直角坐标系内,四边形OABC 是矩形,四边形ADEF 是正方形,点A ,D 在x 轴的正半轴上,点F 在BA 上,点B 、E 均在反比例函数y =kx(k≠0)的图象上,若点B 的坐标为(1,6),则正方形ADEF 的边长为( )A .1B .2C .4D .6二、填空题(每题4分,共24分)13.如图,有一张直径(BC )为1.2米的圆桌,其高度为0.8米,同时有一盏灯A 距地面2米,圆桌的影子是DE ,AD 和AE 是光线,建立图示的平面直角坐标系,其中点D 的坐标是(2,0).那么点E 的坐标是____.14.方程23x x =的根是__________.15.若关于x 的方程x 2+2x ﹣m =0(m 是常数)有两个相等的实数根,则反比例函数y =mx经过第_____象限. 16.已知关于x 的一元二次方程(k -1)x 2+x +k 2-1=0有一个根为0,则k 的值为________. 17.某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同,则该商品每次降价的百分率为_____.18.如图,Rt △ABC 中,∠ACB =90°,AC =BC =22,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为________(结果保留π).三、解答题(共78分)19.(8分)如图,⊙O 的弦AB 、CD 的延长线相交于点P ,且AB =CD .求证PA =PC .20.(8分)测量计算是日常生活中常见的问题,如图,建筑物BC 的屋顶有一根旗杆AB ,从地面上D 点处观测旗杆顶点A 的仰角为50°,观测旗杆底部B 点的仰角为45°(参考数据:sin50°≈0.8,tan50°≈1.2). (1)若已知CD =20米,求建筑物BC 的高度;(2)若已知旗杆的高度AB =5米,求建筑物BC 的高度.21.(8分)甲、乙两名同学5次数学练习(满分120分)的成绩如下表:(单位:分) 测试日期 11月5日 11月20日 12月5日 12月20日 1月3日 甲 96 97 100 103 104 乙10095100105100已知甲同学这5次数学练习成绩的平均数为100分,方差为10分2.(1)乙同学这5次数学练习成绩的平均数为 分,方差为 分2;(2)甲、乙都认为自已在这5次练习中的表现比对方更出色,请你分别写出一条支持他们俩观点的理由. 22.(10分)已知关于x 的方程222(1)0x m x m -++=(1)当m 取何值时,方程有两个实数根;(2)为m 选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根. 23.(10分)如图,破残的圆形轮片上,弦AB 的垂直平分线交AB 于C ,交弦AB 于D . (1)求作此残片所在的圆(不写作法,保留作图痕迹); (2)若AB =24cm ,CD =8cm ,求(1)中所作圆的半径.24.(10分)制作一种产品,需先将材料加热达到60 ℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为x(分钟).据了解,设该材料加热时,温度y与时间x成一次函数关系;停止加热进行操作时,温度y与时间x成反比例关系(如图).已知该材料在操作加工前的温度为15 ℃,加热5分钟后温度达到60 ℃.(1)求将材料加热时,y与x的函数关系式;(2)求停止加热进行操作时,y与x的函数关系式;(3)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么操作时间是多少?25.(12分)如图,是一张盾构隧道断面结构图.隧道内部为以O为圆心,AB为直径的圆.隧道内部共分为三层,上层为排烟道,中间为行车隧道,下层为服务层.点A到顶棚的距离为1.6m,顶棚到路面的距离是6.4m,点B到路面的距离为4.0m.请求出路面CD的宽度.(精确到0.1m)26.先化简,再求值:(1+2a1-)÷2211a aa++-,其中a=1.参考答案一、选择题(每题4分,共48分) 1、C【解析】试题解析:关于x 的一元二次方程2x 2x m 0-+=没有实数根,()224241440b ac m m ∆=-=--⨯⨯=-<,解得: 1.m > 故选C . 2、B【分析】逐一对选项进行分析即可.【详解】①勒洛三角形不是中心对称图形,故①错误; ②图1中,点A 到BC 上任意一点的距离都相等,故②正确; ③图2中,设圆的半径为r ∴勒洛三角形的周长=12032180rr ππ⨯= 圆的周长为2r π∴勒洛三角形的周长与圆的周长相等,故③正确;④使用截面是勒洛三角形的滚木来搬运东西,不会发生上下抖动,故④错误 故选B 【点睛】本题主要考查中心对称图形,弧长公式等,掌握中心对称图形和弧长公式是解题的关键. 3、B【分析】由2=0.03S 甲,2=0.01S 乙,可得到2S 乙<2S 甲,根据方差的意义得到乙的波动小,比较稳定. 【详解】∵2=0.03S 甲,2=0.01S 乙, ∴2S 乙<2S 甲, ∴乙比甲的产量稳定. 故选:B . 【点睛】本题考查了方差的意义:方差反映一组数据在其平均数左右的波动大小,方差越大,波动就越大,越不稳定,方差越小,波动越小,越稳定. 4、A【解析】直接利用位似图形的性质结合A 点坐标可直接得出点C 的坐标,即可得出答案.【详解】∵点A (2,4),过点A 作AB ⊥x 轴于点B ,将△AOB 以坐标原点O 为位似中心缩小为原图形的12,得到△COD ,∴C (1,2),则CD 的长度是2, 故选A .【点睛】本题主要考查了位似变换以及坐标与图形的性质,正确把握位似图形的性质是解题关键.5、A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论. 【详解】解:∵方程240x x c -+=有两个相等的实数根, ∴2(4)411640c c =--⨯⨯=-=,解得:4c =. 故选A . 【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键. 6、C【分析】根据()221y x =-+,可知该函数的顶点坐标为(2,1),对称轴为x=2,最小值为1,当x<2时,y 随x 的增大而减小,当x≥2时,y 随x 的增大而增大,进行判断选择即可.【详解】由题意可知,该函数当x<2时,y 随x 的增大而减小,当x≥2时,y 随x 的增大而增大,故C 错误,所以答案选C. 【点睛】本题考查的是一元二次函数顶点式的图像性质,能够根据顶点式得出其图像的特征是解题的关键. 7、C【分析】解一元二次方程时,需要把二次方程化为两个一元一次方程,此题可化为:0x =或10x -=,解此两个一次方程即可. 【详解】()10x x -=,∴0x =或10x -=,∴ 10x =,21x =.故选C . 【点睛】此题虽不难,但是告诉了学生求解的一个方法,高次的要化为低次的,多元得要化为一元的. 8、B 【解析】由DE ∥BC ,利用“两直线平行,同位角相等”可得出∠ADE=∠ABC ,∠AED=∠ACB ,进而可得出△ADE ∽△ABC ,再利用相似三角形的面积比等于相似比的平方即可求出结论. 【详解】∵DE ∥BC ,∴∠ADE=∠ABC ,∠AED=∠ACB , ∴△ADE ∽△ABC , ∴249ADE ABCS AD SAB ==(). 故选B . 【点睛】本题考查了相似三角形的判定与性质,牢记相似三角形的面积比等于相似比的平方是解题的关键. 9、B【分析】根据同弧所对的圆周角相等可得∠E=∠B=40°,再根据直径所对的圆周角是直角得到∠ACE=90°,最后根据直角三角形两锐角互余可得结论.【详解】∵在⊙O 中,∠E 与∠B 所对的弧是AC , ∴ ∠E=∠B=40°, ∵AE 是⊙O 的直径, ∴∠ACE=90°,∴∠AEC=90°-∠E=90°-40°=50°, 故选:B . 【点睛】此题主要考查了圆周角定理以及直径所对的圆周角是直角和直角三角形两锐角互余等知识,求出∠E=40°,是解此题的关键. 10、C【解析】试题分析:A 、对角线相等的平行四边形是矩形,所以A 选项错误; B 、对角线互相垂直的平行四边形是菱形,所以B 选项错误;C 、对角线互相垂直平分且相等的四边形是正方形,所以C 选项正确;D 、一组对边相等且平行的四边形是平行四边形,所以D 选项错误. 故选C .考点:命题与定理.11、D【解析】试题分析:根据弧长公式知:扇形的弧长为601= 1803ππ⨯.故选D.考点:弧长公式.12、B【分析】由点B的坐标利用反比例函数图象上点的坐标特征即可求出k值,设正方形ADEF的边长为a,由此即可表示出点E的坐标,再根据反比例函数图象上点的坐标特征即可得出关于a的一元二次方程,解之即可得出结论.【详解】∵点B的坐标为(1,1),反比例函数ykx=的图象过点B,∴k=1×1=1.设正方形ADEF的边长为a(a>0),则点E的坐标为(1+a,a).∵反比例函数ykx=的图象过点E,∴a(1+a)=1,解得:a=2或a=﹣3(舍去),∴正方形ADEF的边长为2.故选:B.【点睛】本题考查了反比例函数图象上点的坐标特征、矩形的性质以及正方形的性质,根据反比例函数图象上点的坐标特征得出关于a的一元二次方程是解答本题的关键.二、填空题(每题4分,共24分)13、(4,0)【分析】如图延长CB交y轴于F,由桌面与x轴平行△AFB∽△AOD,求FB=1.2,由△AFC∽△AOE,可求OE即可.【详解】如图,延长CB交y轴于F,∵桌面与x轴平行即BF∥OD,∴△AFB∽△AOD,∵OF=0.8,∴AF=AO-OF=2-0.8=1.2, ∵OA=OD=2,则AF=FB=1.2,BC =1.2,FC=FB+BC=1.2+1.2=2.4, ∵FC ∥x 轴, ∴△AFC ∽△AOE ,∴AF FC=AO OE, ∴AO FC 2 2.4OE==AF 1.2⨯=4, E (4,0). 故答案为:(4,0)..【点睛】本题考查平行线截三角形与原三角形相似,利用相似比来解,关键是延长CB 与y 轴相交,找到了已知与未知的比例关系从而解决问题. 14、10x =,23x =【分析】本题应对方程进行变形,提取公因式x ,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题. 【详解】解:x 2=3x x 2﹣3x =0 即x (x ﹣3)=0 ∴10x =,23x =故本题的答案是10x =,23x =. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法. 15、二,四【分析】关于x 的方程有唯一的一个实数根,则△=0可求出m 的值,根据m 的符号即可判断反比例函数y =mx经过【详解】解:∵方程x2+2x﹣m=0(m是常数)有两个相等的实数根,∴△=22﹣4×1×(﹣m)=4+4m=0,∴m=﹣1;∴反比例函数y=mx经过第二,四象限,故答案为:二,四.【点睛】本题考查的知识点是一元二次方程根与系数的关系以及反比例函数的图象,利用根的判别式求出m的值是解此题的关键16、-1【解析】把x=0代入方程得k2-1=0,解得k=1或k=-1,而k-1≠0,所以k=-1,故答案为:-1.17、10%【解析】设该种商品每次降价的百分率为x%,根据“两次降价后的售价=原价×(1-降价百分比)的平方”,即可得出关于x的一元二次方程,解方程即可得出结论.【详解】设该种商品每次降价的百分率为x%,依题意得:400×(1-x%)2=324,解得:x=10,或x=190(舍去).答:该种商品每次降价的百分率为10%.故答案为:10%【点睛】本题考查了一元二次方程的应用,解题的关键是根据数量关系得出关于x的一元二次方程.18、【分析】过点C作CD⊥AB于点D,在Rt△ABC中,求出AB长,继而求得CD长,继而根据扇形面积公式进行求解即可.【详解】过点C作CD⊥AB于点D,Rt△ABC中,∠ACB=90°,AC=BC,∴AC=4,以CD为半径的圆的周长是:4π.故直线旋转一周则所得的几何体得表面积是:2×12×4π×22=82π.故答案为82π.【点睛】本题考查了圆锥的计算,正确求出旋转后圆锥的底面圆半径是解题的关键.三、解答题(共78分)19、见解析.【分析】连接AC,由圆心角、弧、弦的关系得出AB CD=,进而得出AD CB=,根据等弧所对的圆周角相等得出∠C=∠A,根据等角对等边证得结论.【详解】解:如图,连接AC.∵AB CD=,∴AB CD=.∴AB BD CD DB+=+,即AD CB=.∴C A∠=∠.∴PA PC=.【点睛】本题考查了圆心角、弧、弦的关系,圆周角定理,等腰三角形的判定等,熟练掌握性质定理是解题的关键.20、(1) 20米;(2) 25米.【分析】(1)∠BDC=45°,可得DC=BC=20m,;(2)设DC=BC=xm ,可得tan50°=5=AC x DC x +≈1.2,解得x 的值即可得建筑物BC 的高. 【详解】解:(1)∵∠BDC=45°,∴DC=BC=20m ,答:建筑物BC 的高度为20m ;(2)设DC=BC=xm ,根据题意可得:tan50°=5=AC x DC x+≈1.2, 解得:x=25,答:建筑物BC 的高度为25m .【点睛】本题考查解直角三角形的应用. 21、(1)100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在100分以上(含100分)的次数更多.【分析】(1)根据平均数公式和方差公式计算即可;(2)通过成绩逐渐的变化情况或100分以上(含100分)的次数分析即可.【详解】解:(1)x 乙=()1100951001051001005⨯++++= 2s 乙=()()()()()22222110010095100100100105100100100105⎡⎤⨯-+-+-+-+-=⎣⎦ 故答案为:100,10;(2)答案不唯一,如:甲的数学成绩逐渐进步,更有潜力;乙的数学成绩在100分以上(含100分)的次数更多.【点睛】此题考查的是求平均数和方差,掌握平均数公式和方差公式是解决此题的关键.22、(1)m≥—12;(2)x 1=0,x 2=2. 【分析】(1)方程有两个实数根,必须满足△=b2−4ac ≥0,从而建立关于m 的不等式,求出实数m 的取值范围. (2)答案不唯一,方程有两个不相等的实数根,即△>0,可以解得m >−12,在m >−12的范围内选取一个合适的整数求解就可以.【详解】解:(1)△=[-2(m+1)]²-4×1×m² =8m+4∵方程有两个实数根∴△≥0,即8m+4≥0解得,m≥-1 2(2)选取一个整数0,则原方程为,x²-2x=0 解得x1=0,x2=2.【点睛】此题主要考查了根的判别式,以及解一元二次方程,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23、(1)答案见解析;(2)13cm【分析】(1)根据垂径定理,即可求得圆心;(2)连接OA,根据垂径定理与勾股定理,即可求得圆的半径长.【详解】解:(1)连接BC,作线段BC的垂直平分线交直线CD与点O,以点O为圆心,OA长为半径画圆,圆O即为所求;(2)如图,连接OA∵OD⊥AB∴AD=12AB=12cm设圆O半径为r,则OA=r,OD=r-8直角三角形AOD中,AD2+OD2=OA2∴122+(r-8)2=r2∴r=13∴圆O半径为13cm【点睛】本题考查了垂径定理的应用,解答本题的关键是熟练掌握圆中任意两条弦的垂直平分线的交点即为圆心.24、(1)y =9x +15;(2)y =300x ;(3)15分钟 【解析】(1)设加热时y=kx+b (k≠0),停止加热后y=a/x (a≠0),把b=15,(5,60)代入求解(2)把y=15代入反比例函数求得25、11.3m.【分析】连接OC ,求出OC 和OE ,根据勾股定理求出CE ,根据垂径定理求出CD 即可.【详解】连接OC ,求出OC 和OE ,根据勾股定理求出CE ,根据垂径定理求出CD 即可.【解答】解:如图,连接OC ,AB 交CD 于E ,由题意知:AB =1.6+6.4+4=12,所以OC =OB =6,OE =OB ﹣BE =6﹣4=2,由题意可知:AB ⊥CD ,∵AB 过O ,∴CD =2CE ,在Rt△OCE 中,由勾股定理得:CE =22226242OC OE -=-=,∴CD =2CE =82≈11.3m ,所以路面CD 的宽度为11.3m .【点睛】本题考查了垂径定理和勾股定理,能求出CE 的长是解此题的关键,注意:垂直于弦的直径平分这条弦.26、化简为11a +,值为13 【分析】先将分式化简,再把值代入计算即可.【详解】原式=()21111a a a a +-⨯-+ =11a +, 当a =1时,原式=11 213=+.【点睛】本题考查分式的化简求值,关键在于熟练掌握化简方法.。
天津南华中学2020-2021年九年级上册期末数学试题(含答案)
天津南华中学2020-2021年九年级上册期末数学试题(含答案)一、选择题1.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)2.如图,已知点D 在ABC ∆的BC 边上,若CAD B ∠=∠,且:1:2CD AC =,则:CD BD =( )A .1:2B .2:3C .1:4D .1:33.如图,在△ABC 中,DE ∥BC ,若DE =2,BC =6,则ADE ABC 的面积的面积=( )A .13B .14C .16D .194.对于二次函数2610y x x =-+,下列说法不正确的是( ) A .其图象的对称轴为过(3,1)且平行于y 轴的直线. B .其最小值为1. C .其图象与x 轴没有交点.D .当3x <时,y 随x 的增大而增大.5.为了比较甲乙两足球队的身高谁更整齐,分别量出每人身高,发现两队的平均身高一样,甲、乙两队的方差分别是1.7、2.4,则下列说法正确的是( ) A .甲、乙两队身高一样整齐 B .甲队身高更整齐C .乙队身高更整齐D .无法确定甲、乙两队身高谁更整齐6.已知Rt △ABC 中,∠C=900,AC=2,BC=3,则下列各式中,正确的是( ) A .2sin 3B =; B .2cos 3B =; C .2tan 3B =; D .以上都不对;7.在平面直角坐标系中,点A(0,2)、B(a ,a +2)、C(b ,0)(a >0,b >0),若AB=2且∠ACB 最大时,b 的值为( )A .226+B .226-+C .242+D .2428.一元二次方程x 2-x =0的根是( ) A .x =1B .x =0C .x 1=0,x 2=1D .x 1=0,x 2=-19.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 12y5 03- 4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .410.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月 11.如图,BC 是O 的直径,A ,D 是O 上的两点,连接AB ,AD ,BD ,若70ADB ︒∠=,则ABC ∠的度数是( )A .20︒B .70︒C .30︒D .90︒12.如图,BC 是A 的内接正十边形的一边,BD 平分ABC ∠交AC 于点D ,则下列结论正确的有( )①BC BD AD ==;②2BC DC AC =⋅;③2AB AD =;④51BC AC -=.A .1个B .2个C .3个D .4个13.在平面直角坐标系中,将二次函数y =32x 的图象向左平移2个单位,所得图象的解析式为( ) A .y =32x −2B .y =32x +2C .y =3()22x -D .y =3()22x +14.下列说法正确的是( ) A .所有等边三角形都相似 B .有一个角相等的两个等腰三角形相似 C .所有直角三角形都相似 D .所有矩形都相似15.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点E ,6AB =,5AD =,则AE 的长为( )A .2.5B .2.8C .3D .3.2二、填空题16.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC ,若点A 、D 、E 在同一条直线上,∠ACD =70°,则∠EDC 的度数是_____.17.若53x y x +=,则yx=______. 18.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是2200.5s t t =-,飞机着陆后滑行______m 才能停下来.19.如图,在矩形ABCD 中,AB=2,BC=4,点E 、F 分别在BC 、CD 上,若AE=5,∠EAF=45°,则AF 的长为_____.20.关于x 的方程220kx x --=的一个根为2,则k =______. 21.如图,P 为O 外一点,PA 切O 于点A ,若3PA =,45APO ∠=︒,则O 的半径是______.22.如图,45AOB ∠=,点P 、Q 都在射线OA 上,2OP =,6OQ =,M 是射线OB 上的一个动点,过P 、Q 、M 三点作圆,当该圆与OB 相切时,其半径的长为__________.23.当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为________.24.若m 是方程2x 2﹣3x ﹣1=0的一个根,则6m 2﹣9m +2020的值为_____.25.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.26.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 27.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm =,扇形的圆心角120θ=,则该圆锥的母线长l 为___cm .28.设1x 、2x 是关于x 的方程2350x x +-=的两个根,则1212x x x x +-•=__________.29.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.30.如图,边长为2的正方形ABCD ,以AB 为直径作O ,CF 与O 相切于点E ,与AD 交于点F ,则CDF ∆的面积为__________.三、解答题31.如图,在矩形纸片ABCD 中,已知2AB =,6=BC ,点E 在边CD 上移动,连接AE ,将多边形ABCE 沿AE 折叠,得到多边形AB C E '',点B 、C 的对应点分别为点B ',C '.(1)连接AC .则AC =______,DAC ∠=______°; (2)当B C ''恰好经过点D 时,求线段CE 的长;(3)在点E 从点C 移动到点D 的过程中,求点C '移动的路径长.32.如图是输水管的切面,阴影部分是有水部分,其中水面AB 宽10cm ,水最深3cm ,求输水管的半径.33.“2020比佛利”无锡马拉松赛将于3月22日鸣枪开跑,本次比赛设三个项目:A .全程马拉松;B .半程马拉松;C .迷你马拉松.小明和小红都报名参与该赛事的志愿者服务工作,若两人都已被选中,届时组委会随机将他们分配到三个项目组. (1)小明被分配到“迷你马拉松”项目组的概率为 ; (2)请利用树状图或列表法求两人被分配到同一个项目组的概率.34.已知□ABCD 边AB 、AD 的长是关于x 的方程212x mx -+=0的两个实数根. (1)当m 为何值时,四边形ABCD 是菱形? (2)当AB=3时,求□ABCD 的周长.35.如图,扇形OAB 的半径OA =4,圆心角∠AOB =90°,点C 是弧AB 上异于A 、B 的一点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E ,连结DE ,过点C 作弧AB 所在圆的切线CG 交OA 的延长线于点G .(1)求证:∠CGO =∠CDE ;(2)若∠CGD =60°,求图中阴影部分的面积.四、压轴题36.如图,在平面直角坐标系中,直线1l :162y x =-+分别与x 轴、y 轴交于点B 、C ,且与直线2l :12y x =交于点A .(1)分别求出点A 、B 、C 的坐标;(2)若D 是线段OA 上的点,且COD △的面积为12,求直线CD 的函数表达式; (3)在(2)的条件下,设P 是射线CD 上的点,在平面内里否存在点Q ,使以O 、C 、P 、Q 为顶点的四边形是菱形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.37.已知,如图1,⊙O 是四边形ABCD 的外接圆,连接OC 交对角线BD 于点F ,延长AO 交BD 于点E ,OE=OF.(1)求证:BE=FD ;(2)如图2,若∠EOF=90°,BE=EF ,⊙O 的半径25AO =,求四边形ABCD 的面积; (3)如图3,若AD=BC ;①求证:22•AB CD BC BD +=;②若2•12AB CD AO ==,直接写出CD 的长. 38.如图1,已知菱形ABCD 的边长为23,点A 在x 轴负半轴上,点B 在坐标原点.点D 的坐标为(−3,3),抛物线y=ax 2+b(a≠0)经过AB 、CD 两边的中点.(1)求这条抛物线的函数解析式;(2)将菱形ABCD 以每秒1个单位长度的速度沿x 轴正方向匀速平移(如图2),过点B 作BE ⊥CD 于点E,交抛物线于点F,连接DF.设菱形ABCD 平移的时间为t 秒(0<t<3.....) ①是否存在这样的t ,使7FB?若存在,求出t 的值;若不存在,请说明理由; ②连接FC,以点F 为旋转中心,将△FEC 按顺时针方向旋转180°,得△FE′C′,当△FE′C′落在x .轴与..抛物线在....x .轴上方的部分围成的图形中............(.包括边界....).时,求t 的取值范围.(直接写出答案即可) 39.矩形ABCD 中,AB =2,AD =4,将矩形ABCD 绕点C 顺时针旋转至矩形EGCF (其中E 、G 、F 分别与A 、B 、D 对应).(1)如图1,当点G 落在AD 边上时,直接写出AG 的长为 ; (2)如图2,当点G 落在线段AE 上时,AD 与CG 交于点H ,求GH 的长;(3)如图3,记O 为矩形ABCD 对角线的交点,S 为△OGE 的面积,求S 的取值范围.40.如图,正方形ABCD 中,点O 是线段AD 的中点,连接OC ,点P 是线段OC 上的动点,连接AP 并延长交CD 于点E ,连接DP 并延长交AB 或BC 于点F , (1)如图①,当点F 与点B 重合时,DEDC等于多少; (2)如图②,当点F 是线段AB 的中点时,求DEDC的值; (3)如图③,若DE CF =,求DEDC的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ), ∴抛物线2(1)2y x =-+的顶点坐标是(1,2). 故选D .2.D解析:D【解析】【分析】根据两角对应相等证明△CAD∽△CBA,由对应边成比例得出线段之间的倍数关系即可求解.【详解】解:∵∠CAD=∠B,∠C=∠C,∴△CAD∽△CBA,∴12 CD CACA CB,∴CA=2CD,CB=2CA,∴CB=4CD,∴BD=3CD,∴13 CDBD.故选:D.【点睛】本题考查相似三角形的判定与性质,得出线段之间的关系是解答此题的关键. 3.D解析:D【解析】【分析】由DE∥BC知△ADE∽△ABC,然后根据相似比求解.【详解】解:∵DE∥BC∴△ADE∽△ABC.又因为DE=2,BC=6,可得相似比为1:3.即ADEABC的面积的面积=2213:=19.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可.4.D解析:D【解析】【分析】先将二次函数变形为顶点式,然后可根据二次函数的性质判断A、B、D三项,再根据抛物线的顶点和开口即可判断C项,进而可得答案.【详解】解:()2261031y x x x =-+=-+,所以抛物线的对称轴是直线:x =3,顶点坐标是(3,1);A 、其图象的对称轴为过(3,1)且平行于y 轴的直线,说法正确,本选项不符合题意;B 、其最小值为1,说法正确,本选项不符合题意;C 、因为抛物线的顶点是(3,1),开口向上,所以其图象与x 轴没有交点,说法正确,本选项不符合题意;D 、当3x <时,y 随x 的增大而增大,说法错误,所以本选项符合题意. 故选:D. 【点睛】本题考查了二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题的关键.5.B解析:B 【解析】 【分析】根据方差的意义可作出判断,方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】∵S 2甲=1.7,S 2乙=2.4, ∴S 2甲<S 2乙, ∴甲队成员身高更整齐; 故选B. 【点睛】此题考查方差,掌握波动越小,数据越稳定是解题关键6.C解析:C 【解析】 【分析】根据勾股定理求出AB ,根据锐角三角函数的定义求出各个三角函数值,即可得出答案. 【详解】 如图:由勾股定理得:22222133AC BC ++==, 所以cosB=313BC AB =,sinB=21233AC AC tanB AB BC === ,所以只有选项C 正确; 故选:C .【点睛】 此题考查锐角三角函数的定义的应用,能熟记锐角三角函数的定义是解此题的关键.7.B解析:B【解析】【分析】根据圆周角大于对应的圆外角可得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值,此时圆心F 的横坐标与C 点的横坐标相同,并且在经过AB 中点且与直线AB 垂直的直线上,根据FB=FC 列出关于b 的方程求解即可.【详解】解:∵AB=42,A(0,2)、B(a ,a +2)∴22(22)42a a ++-=,解得a =4或a =-4(因为a >0,舍去)∴B(4,6),设直线AB 的解析式为y=kx+2,将B(4,6)代入可得k =1,所以y=x+2,利用圆周角大于对应的圆外角得当ABC ∆的外接圆与x 轴相切时,ACB ∠有最大值. 如下图,G 为AB 中点,()2,4G ,设过点G 且垂直于AB 的直线:l y x m =-+,将()2,4G 代入可得6m =,所以6y x =-+.设圆心(),6F b b -+,由FC FB =,可知()()()2226466b b b -+=-+-+-,解得2b =(已舍去负值).故选:B.【点睛】本题考查圆的综合题,一次函数的应用和已知两点坐标,用勾股定理求两点距离.能结合圆的切线和圆周角定理构建图形找到C 点的位置是解决此题的关键.8.C解析:C【解析】【分析】利用因式分解法解方程即可解答.【详解】x 2-x =0x(x-1)=0,x=0或x-1=0,∴x 1=0,x 2=1.故选C.【点睛】本题考查了一元二次方程的解法——因式分解法,熟知用因式分解法解一元二次方程的方法是解决问题的关键.9.B解析:B【解析】【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.【详解】①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x时,y<0;故此选项正确;综上:①④两项正确,故选:B .【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点.10.D解析:D【解析】【分析】【详解】当-n 2+15n -36≤0时该企业应停产,即n 2-15n+36≥0,n 2-15n+36=0的两个解是3或者12,根据函数图象当n ≥12或n ≤3时n 2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D11.A解析:A【解析】【分析】连接AC ,如图,根据圆周角定理得到90BAC ︒∠=,70ACB ADB ︒∠=∠=,然后利用互余计算ABC ∠的度数.【详解】连接AC ,如图,∵BC 是O 的直径,∴90BAC ︒∠=,∵70ACB ADB ︒∠=∠=,∴907020ABC ︒︒︒∠=-=.故答案为20︒.故选A .【点睛】本题考查圆周角定理和推论,解题的关键是掌握圆周角定理和推论.12.C解析:C【解析】【分析】①③,根据已知把∠ABD ,∠CBD ,∠A 角度确定相等关系,得到等腰三角形证明腰相等即可;②通过证△ABC ∽△BCD ,从而确定②是否正确,根据AD =BD =BC ,即 BC AC BC AC BC -=解得BC=12AC,故④正确.【详解】①BC是⊙A的内接正十边形的一边,因为AB=AC,∠A=36°,所以∠ABC=∠C=72°,又因为BD平分∠ABC交AC于点D,∴∠ABD=∠CBD=12∠ABC=36°=∠A,∴AD=BD,∠BDC=∠ABD+∠A=72°=∠C,∴BC=BD,∴BC=BD=AD,正确;又∵△ABD中,AD+BD>AB∴2AD>AB,故③错误.②根据两角对应相等的两个三角形相似易证△ABC∽△BCD,∴BC CDAB BC=,又AB=AC,故②正确,根据AD=BD=BC,即BC AC BC AC BC-=,解得AC,故④正确,故选C.【点睛】本题主要考查圆的几何综合,解决本题的关键是要熟练掌握圆的基本性质和几何图形的性质. 13.D解析:D【解析】【分析】先确定抛物线y=3x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),然后利用顶点式写出新抛物线解析式即可.【详解】解:抛物线y=3x2的顶点坐标为(0,0),把点(0,0)向左平移2个单位所得对应点的坐标为(-2,0),∴平移后的抛物线解析式为:y=3(x+2)2.故选:D.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.14.A解析:A【解析】【分析】根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.【详解】解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项正确;B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.故选:A.【点睛】本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.15.B解析:B【解析】【分析】连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DBDB AD=,从而求出DE的长,最后利用AE AD DE=-即可得出答案.【详解】连接BD,CD∵AB为O的直径90ADB∴∠=︒22226511BD AB AD∴=-=-∵弦AD平分BAC∠CD BD∴==CBD DAB ∴∠=∠ADB BDE ∠=∠ABD BED ∴DE DBDB AD∴=5=解得115DE=115 2.85AE AD DE∴=-=-=故选:B.【点睛】本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.二、填空题16.115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=7解析:115°【解析】【分析】根据∠EDC=180°﹣∠E﹣∠DCE,想办法求出∠E,∠DCE即可.【详解】由题意可知:CA=CE,∠ACE=90°,∴∠E=∠CAE=45°,∵∠ACD=70°,∴∠DCE=20°,∴∠EDC=180°﹣∠E﹣∠DCE=180°﹣45°﹣20°=115°,故答案为115°.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,三角形的内角和定理等知识,解题的关键是灵活运用所学知识,问题,属于中考常考题型.17.【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵,∴3x+3y=5x,∴2x=3y,∴.故答案为:.【点睛】本题考查比例的解析:2 3【解析】【分析】将已知比例式变形化成等积式,整理出x与y的倍数关系,再化成比例式即可得.【详解】解:∵53x yx+=,∴3x+3y=5x,∴2x=3y,∴23 yx =.故答案为:2 3 .【点睛】本题考查比例的基本性质,解题关键是将比例式与等积式之间能相互转换.18.200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用解析:200【解析】【分析】要求飞机从滑行到停止的路程就,即求出函数的最大值即可.【详解】解:()()222200.50.5404002000.520200s t t t t t =-=--++=--+ 所以当t=20时,该函数有最大值200.故答案为200.【点睛】本题主要考查了二次函数的应用,掌握二次函数求最值的方法,即公式法或配方法是解题关键.19.【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对应边的比值相等可求出x 的解析:410 【解析】分析:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,则NF=2x ,再利用矩形的性质和已知条件证明△AME ∽△FNA ,利用相似三角形的性质:对应边的比值相等可求出x 的值,在直角三角形ADF 中利用勾股定理即可求出AF 的长.详解:取AB 的中点M ,连接ME ,在AD 上截取ND=DF ,设DF=DN=x ,∵四边形ABCD 是矩形,∴∠D=∠BAD=∠B=90°,AD=BC=4,∴x,AN=4﹣x,∵AB=2,∴AM=BM=1,∵AB=2,∴BE=1,∴=∵∠EAF=45°,∴∠MAE+∠NAF=45°,∵∠MAE+∠AEM=45°,∴∠MEA=∠NAF,∴△AME∽△FNA,∴AM ME FN AN=,4x=-,解得:x=4 3∴3=.点睛:本题考查了矩形的性质、相似三角形的判断和性质以及勾股定理的运用,正确添加辅助线构造相似三角形是解题的关键,20.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.21.3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA解析:3【解析】【分析】由题意连接OA,根据切线的性质得出OA⊥PA,由已知条件可得△OAP是等腰直角三角形,进而可求出OA的长,即可求解.【详解】解:连接OA,∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APO=45°,∴OA=PA=3,故答案为:3.【点睛】本题考查切线的性质即圆的切线垂直于经过切点的半径.若出现圆的切线,连接过切点的半径,构造定理图,得出垂直关系.22.【解析】【分析】圆C 过点P 、Q ,且与相切于点M ,连接CM ,CP ,过点C 作CN⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再解析:4223-【解析】【分析】圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D ,根据等腰直角三角形的性质和垂径定理,即可求出ON 、ND 、PN ,设圆C 的半径为r ,再根据等腰直角三角形的性质即可用r 表示出CD 、NC ,最后根据勾股定理列方程即可求出r .【详解】解:如图所示,圆C 过点P 、Q ,且与OB 相切于点M ,连接CM ,CP ,过点C 作CN ⊥PQ 于N 并反向延长,交OB 于D∵2OP =,6OQ =,∴PQ=OQ -OP=4根据垂径定理,PN=122PQ = ∴ON=PN +OP=4 在Rt △OND 中,∠O=45°∴ON=ND=4,∠NDO=∠O=45°,242ON =设圆C 的半径为r ,即CM=CP=r∵圆C 与OB 相切于点M ,∴∠CMD=90°∴△CMD 为等腰直角三角形∴CM=DM=r ,22CM r =∴NC=ND -CD=42r根据勾股定理可得:NC 2+PN 2=CP 2即()222422r r -+=解得:124223,4223r r +==DM >OD ,点M 不在射线OB 上,故舍去)故答案为:.【点睛】此题考查的是等腰直角三角形的判定及性质、垂径定理、勾股定理和切线的性质,掌握垂径定理和勾股定理的结合和切线的性质是解决此题的关键.23.2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数的对称轴为直线x=m ,且开口向下,解析:2或【解析】【分析】求出二次函数对称轴为直线x=m ,再分m <-2,-2≤m≤1,m >1三种情况,根据二次函数的增减性列方程求解即可.【详解】解:二次函数22()1y x m m =--++的对称轴为直线x=m ,且开口向下,①m <-2时,x=-2取得最大值,-(-2-m )2+m 2+1=4, 解得74m =-, 724->-, ∴不符合题意,②-2≤m≤1时,x=m 取得最大值,m 2+1=4,解得m =所以m =,③m >1时,x=1取得最大值,-(1-m )2+m 2+1=4,解得m=2,综上所述,m=2或时,二次函数有最大值.故答案为:2或【点睛】本题考查了二次函数的最值,熟悉二次函数的性质及图象能分类讨论是解题的关键. 24.2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2解析:2023【解析】【分析】根据一元二次方程的解的定义即可求出答案.【详解】解:由题意可知:2m2﹣3m﹣1=0,∴2m2﹣3m=1,∴原式=3(2m2﹣3m)+2020=3+2020=2023.故答案为:2023.【点睛】本题考查一元二次方程的解,解题的关键是正确理解一元二次方程的解的定义,本题属于基础题型.25.x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2解析:x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x 1﹣1)2>1,∴x 1>2或x 1<0.故答案为:x 1>2或x 1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.26.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.27.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 28.2【解析】【分析】根据根与系数的关系确定和,然后代入计算即可.【详解】解:∵∴=-3, =-5∴-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于(a≠解析:2【解析】【分析】根据根与系数的关系确定12x x +和12x x •,然后代入计算即可.【详解】解:∵2350x x +-=∴12x x +=-3, 12x x •=-5∴1212x x x x +-•=-3-(-5)=2故答案为2.【点睛】本题主要考查了根与系数的关系,牢记对于20ax bx c ++=(a≠0),则有:12b x x a +=-,12c x x a•=是解答本题的关键. 29.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC 可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P 或∠C=∠Q 或.【详解】解:这个条件解析:∠P =∠B (答案不唯一)【解析】【分析】要使△APQ ∽△ABC ,在这两三角形中,由∠PAB =∠QAC 可知∠PAQ=∠BAC ,还需的条件可以是∠B=∠P 或∠C=∠Q 或AP AQ AB AC =. 【详解】解:这个条件为:∠B=∠P∵∠PAB =∠QAC ,∴∠PAQ=∠BAC∵∠B=∠P ,∴△APQ ∽△ABC ,故答案为:∠B=∠P 或∠C=∠Q 或AP AQ AB AC=. 【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键. 30.【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵与相切于点,与交于点∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt△C 解析:32【解析】【分析】运用切线长定理和勾股定理求出DF ,进而完成解答.【详解】解:∵CF 与O 相切于点E ,与AD 交于点F∴EF=AF,EC=BC=2设EF=AF=x,则CF=2+x,DF=2-x在Rt △CDF 中,由勾股定理得:DF 2=CF 2-CD 2,即(2-x)2=(2+x)2-22解得:x=12,则DF=32∴CDF ∆的面积为13222⨯⨯=32 故答案为32. 【点睛】 本题考查了切线长定理和勾股定理等知识点,根据切线长定理得到相等的线段是解答本题的关键.三、解答题31.(1),30;(2)CE =;(3)CC '的长3=【解析】【分析】(1)直接利用勾股定理可求出AC 的长,再利用特殊角的三角函数值可得出∠DAC 的度数(2)设CE=x ,则x ,根据已知条件得出AD B DEC '',再利用相似三角形对应线段成比例求解即可.(3)点C?运动的路径长为´CC 的长,求出圆心角,半径即可解决问题.【详解】解:(1)连接AC22AC 2622AB BC =+=+= ∵21sin 30222AB AC ===︒ ∴ACB DAC 30∠∠==︒ (2)由已知条件得出,A 2B '=,D 2B '=,D 62C '=- 易证AB D DC E ''∆∆∽∴C E DC BD AB ''='' ∴6222CE -= ∴2322CE =-(3)如图所示,C'运动的路径长为CC '的长由翻折得:30C AD DAC '∠=∠=︒∴60CAC '∠=︒∴CC '的长602222π⋅== 【点睛】本题考查的知识点有相似三角形的判定与性质,特殊的三角函数值,弧长的相关计算等,解题的关键是弄清题意,综合利用各知识点来求解. 32.173cm 【解析】【分析】设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,由垂径定理可求出BD 的长,再根据最深地方的高度是3cm得出OD的长,根据勾股定理即可求出OB的长.【详解】解:设圆形切面的半径为r,过点O作OD⊥AB于点D,交⊙O于点E,则AD=BD=12AB=12×10=5cm,∵最深地方的高度是3cm,∴OD=r﹣3,在Rt△OBD中,OB2=BD2+OD2,即2r=52+(r﹣3)2,解得r=173(cm),∴输水管的半径为173cm.【点睛】本题考查了垂径定理,构造圆中的直角三角形,灵活利用垂径定理是解题的关键.33.(1)13;(2)13.【解析】【分析】(1)直接利用概率公式计算;(2)先利用画树状图展示所有9种等可能的结果数,找出两人被分配到同一个项目组的结果数,然后根据概率公式计算.【详解】解:(1)小明被分配到“迷你马拉松”项目组的概率为13;(2)画树状图为:共有9种等可能的结果数,其中两人被分配到同一个项目组的结果数为3,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级上册数学期末考试试题(含答案) 一、选择题(3×12=36) 1.点P(﹣2,4)关于坐标原点对称的点的坐标为( )
A.(4,﹣2) B.(﹣4,2) C.(2,4) D.(2,﹣4)
2.下列图形中,可以看作是中心对称图形的是( )
A. B. C. D.
3.半径为6的圆中,120°的圆心角所对的弧长是( )
A.4π B.5π C.6π D.8π
4.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让
转盘自由转动,指针停止后落在黄色区域的概率是( )
A. B. C. D.
5.如图,△ABC与△DEF是位似图形,位似比为2:3,已知DF=4,则AC的长为( )
A. B. C. D.
6.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=122°,
则∠C的度数为( )
A.22° B.26° C.28° D.30°
7.将一个正方形纸片放在平面直角坐标系中,已知A(﹣1,0),B(﹣1,1),C(0,1),
若绕点D(0,0)顺时针旋转这个正方形,旋转角为135°,则旋转后点B的坐标B′为( ) A.(1,1) B.(2,0) C.(,0) D.(1,﹣1) 8.已知函数y=(x﹣1)2,下列结论正确的是( )
A.当x>0时,y随x的增大而减小
B.当x<0时,y随x的增大而增大
C.当x<1时,y随x的增大而减小
D.当x<﹣1时,y随x的增大而增大
9.若抛物线y=2x2﹣3x﹣k与x轴没有交点,则k的取值范围为( )
A.k≤﹣ B.k<﹣ C.k≥﹣且k≠0 D.k>﹣且k≠0 10.如图,四边形ABCD是⊙O内接四边形,若∠BAC=30°,∠CBD=80°,则∠BCD的度
数为( )
A.50° B.60° C.70° D.80°
11.已知抛物线y=x2+2x+4的顶点为P,与y轴的交点为Q,则PQ的长度为( )
A. B.2 C. D.
12.已知直线y=n与二次函数y=(x﹣2)2﹣1的图象交于点B,点C,二次函数图象的顶
点为A,当△ABC是等腰直角三角形时,则n的值为( ) A.1 B. C.2﹣ D.2+ 二、填空题(3×6=18) 13.不透明袋子中装有6个球,其中有5个红球、1个绿球,这些球除颜色外无其他差别.从
袋子中随机取出1个球,则它是红球的概率是 . 14.如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E,若DE=4,BC=AE=6,则
EC的长为 .
15.如图,A,B,C是⊙O上的三点,且OA=AB=BC=2,则AC的长为 .
16.把二次函数y=x2﹣4x+3的图象沿y轴向下平移1个单位长度,再沿x轴向左平移3个单位
长度后,此时抛物线相应的函数表达式是 . 17.正方形ABCD的边长AB=2,E是AB的中点,F是BC的中点,AF分别与DE,BD相交
于点M,N,则MN的长为 .
18.如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,B,C均在格点上.
(1)∠ACB的大小为 (度) (2)在如图所示的网格中,以A为中心,取旋转角等于∠BAC,把△ABC逆时针旋转,请用无刻度的直尺,画出旋转后的△ABC,并简要说明旋转后点C和点B的对应点点C′和点B′的位置是如何而找到的(不要求证明)
三、解答题(66分) 19.(8分)解方程:x2﹣5x﹣6=0.
20.(8分)泰州具有丰富的旅游资源,小明利用周日来泰州游玩,上午从A、B两个景点中任
意选择一个游玩,下午从C、D、E三个景点中任意选择一个游玩.用列表或画树状图的方法列出所有等可能的结果,并求小明恰好选中景点B和C的概率. 21.(10分)如图,在矩形ABCD中,E是边AB的中点,连接DE交对角线AC于点F,
(Ⅰ)求证:△AFE∽△CFD; (Ⅱ)若AB=4,AD=3,求CF的长.
22.(10分)如图,AB是⊙O的直径,CD切⊙O于点C,AD交⊙O于点E,AC平分∠BAD,
连接BE. (Ⅰ)求证:AD⊥ED; (Ⅱ)若CD=4,AE=2,求⊙O的半径. 23.(10分)某网商经销一种畅销玩具,每件进价为18元,每月销量y(件)与销售单价x(元)
之间的函数关系如图中线段AB所示 (Ⅰ)写出毎月销量y(件)与销售单价x(元)之间的函数关系式(含x的取值范围) ; (Ⅱ)当销售单价为多少元时,该网商毎月经销这种玩具能够获得最大销售利润?最大销售利润是多少?(销售利润=售价﹣进价)
24.(10分)【问题解决】
一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?
小明通过观察、分析、思考,形成了如下思路: 思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数; 思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP′,求出∠APB的度数. 请参考小明的思路,任选一种写出完整的解答过程. 【类比探究】 如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC=,求∠APB的度数.
25.(10分)如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段
OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.
(1)求抛物线的函数表达式. (2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少? (3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离. 2018-2019学年天津市河西区九年级(上)期末数学试卷
参考答案与试题解析 一、选择题(3×12=36)
1.【分析】根据关于原点对称,则两点的横、纵坐标都是互为相反数,可得答案.
【解答】解:点P(﹣2,4)关于坐标原点对称的点的坐标为(2,﹣4), 故选:D. 【点评】本题考查了关于原点对称的点的坐标,关于原点对称,则两点的横、纵坐标都是互为相反数. 2.【分析】根据中心对称图形的概念求解.
【解答】解:A、不是中心对称图形.故本选项错误; B、不是中心对称图形.故本选项错误;
C、不是中心对称图形.故本选项错误;
D、是中心对称图形.故本选项正确.
故选:D. 【点评】本题考查了中心对称图形的概念,关键是根据中心对称图形是要寻找对称中心,旋转180度后与原图重合解答.
3.【分析】根据弧长的公式l=进行解答.
【解答】解:根据弧长的公式l=, 得到:l==4π. 故选:A. 【点评】本题考查了弧长的计算,熟记弧长公式即可解答该题,属于基础题. 4.【分析】求出黄区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.
【解答】解:∵黄扇形区域的圆心角为90°,
所以黄区域所占的面积比例为=,
即转动圆盘一次,指针停在黄区域的概率是, 故选:B. 【点评】本题将概率的求解设置于转动转盘游戏中,考查学生对简单几何概型的掌握情况,既避免了单纯依靠公式机械计算的做法,又体现了数学知识在现实生活、甚至娱乐中的运用,体现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比. 5.【分析】位似图形就是特殊的相似图形位似比等于相似比.利用相似三角形的性质即可求解.
【解答】解:∵△ABC与△DEF是位似图形,位似比为2:3, ∴AC:DF=2:3, ∴AC:4=2:3, 则AC=. 故选:C. 【点评】本题主要考查位似的定义.解题的关键是掌握位似图形是相似图形的特殊形式,位似比等于相似比的特点. 6.【分析】连接OD,如图,根据切线的性质得∠ODC=90°,即可求得∠ODA=32°,再利
用等腰三角形的性质得∠A=32°,然后根据三角形内角和定理计算即可. 【解答】解:连接OD,如图, ∵CD与⊙O相切于点D, ∴OD⊥CD, ∴∠ODC=90°, ∴∠ODA=∠CDA﹣90°=122°﹣90°=32°, ∵OA=OD, ∴∠A=∠ODA=32°, ∴∠C=180°﹣∠ADC+∠A=180°﹣122°﹣32°=26°. 故选:B.
【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系. 7.【分析】作出图形,解直角三角形求出BD=,根据旋转变换的性质可得点B′在x轴的
正半轴上,且DB′=DB=,即可得解. 【解答】解:如图,∵A(﹣1,0),B(﹣1,1),C(0,1),D(0,0), ∴BD=, ∵正方形ABCD绕点D顺时针旋转135°, ∴点B′在x轴的正半轴上,且DB′=DB=, 所以,点B′的坐标是(,0). 故选:C.