烃类热裂解反应的特点与规律
烃类热裂解

petrochemical industry
Boiling point and its use of various petroleum products
Petroleum gas Crude gasoline Petroleum ether Gasoline Solvent oil Kerosene Aviation kerosene Kerosene Diesel Machine oil Vaseline Paraffin wax Fuel oil Asphalt Petroleum coke
异构烷烃裂解规律 Cracking rules of isoalkanes
(1)比正构烷烃容易裂解或脱氢 The pyrolysis or dehydrogenation of the isoalkane is easier than that of the normal alkane. (2)脱氢能力与分子结构有关,难易顺序为叔氢>仲氢>伯氢
We studied the catalyst performance and utilization, and the mass balance calculation of the reaction process.
石油加工的两大体系 Two system of petroleum processing
3.1 热裂解过程的化学反应
(chemical reaction of thermal cracking process)
一、烃类裂解的反应规律 (Reaction rules of thermal cracking of hydrocarbon)
烃类热裂解过程是十分复杂的,即使是纯组分裂解,得到的产物也是很 复杂的。包括:脱氢、断裂、异构化、环化、岐化、聚合、焦化、二烯 合成等。 The process of hydrocarbon pyrolysis is very complex, and products are also very complex even if pure component is cracked. Thermal cracking of hydrocarbon contains the reactions of dehydrogenation, chain scission, isomerization, cyclization, disproportionation, polymerization, diene synthesis, etc.
化学工艺学第3章烃类热裂解过程(三烯)

衡量裂解结果的指标
转化率(单程转化率、总转化率)
转化率=参加反应的原料量/通入反应器的原料量(%)
产气率(一般小于C4的产物为气体)
产气率=气体产物总质量/原料质量(%)
选择性
选择性= 转化为目的产物的原料量/反应掉的原料量(mol%)
收率和质量收率
收率=转化为目的产物的原料量/通入反应器的原料量(mol%) (wt%)
可判断原料可能达到的裂解深度,及C4 及 C4以下轻烃的收率
用元素分析法测得,是用于各种原料,用以关联 烃原料的乙烯潜在产率
氢含量高则乙烯产率越高
裂解原料含氢量≤低 于13%时,可能达到 的乙烯收率将低于 20%。
特性因数
表征烃类和石油馏分化学性质的参数 反映烃的氢饱和程度
主要用于液体燃料,K值可以通过下式算出:
K 1.216(TB)1/3 d1155..66
n
TB ( ViTi1/3)3 i1
K值以烷烃最高,环烷烃次之,芳烃最低
原料烃的K值越大则乙烯产率越高。乙烯和丙烯 总体收率大体上随裂解原料K值的增大而增加
芳烃指数
即美国矿务局关联指数(Bureau of Mines Correlation Index),简称BMCI。
液体焦油 固体沥青质 焦炭
焦和碳的区别
形成过程不同:烯烃经过炔烃中间阶段而生碳; 经过芳烃中间阶段而结焦
氢含量不同:碳几乎不含氢,焦含有微量氢 (0.1-0.3%)
各族烃裂解生成乙烯、丙烯能力的规律:
正构烷烃在各族烃中最利于乙烯、丙烯的生成 大分子烯烃裂解为乙烯和丙烯 环烷烃生成芳烃的反应优于生成单烯烃的反应 无烷基的芳烃基本上不易裂解为烯烃,有烷基的芳烃,主要
反应部分 芳烃
烃类热裂解原理

二、烃类热裂解原理1. 烃类的热裂解反应裂解过程中的主要中间产物及其变化可以用图5-1-01作一概括说明。
按反应进行的先后顺序,可以将图5-1-01所示的反应划分为一次反应和二次反应,一次反应即由原料烃类热裂解生成乙烯和丙烯等低级烯烃的反应。
二次反应主要是指由一次反应生成的低图5-1-01 烃类裂解过程中一些主要产物变化示意图级烯烃进一步反应生成多种产物,直至最后生成焦或碳的反应。
二次反应不仅降低了低级烯烃的收率,而且还会因生成的焦或碳堵塞管路及设备,破坏裂解操作的正常进行,因此二次反应在烃类热裂解中应设法加以控制。
现将烃类热裂解的一次反应分述如下。
(1)烷烃热裂解烷烃热裂解的一次反应主要有:①脱氢反应:R-CH2-CH3<==>R-CH=CH2+H2②断链反应:R-CH2-CH2-R’→R-CH=CH2+R’H不同烷烃脱氢和断链的难易,可以从分子结构中键能数值的大小来判断。
一般规律是同碳原子数的烷烃,C-H键能大于C-C键能,故断链比脱氢容易;烷烃的相对稳定性随碳链的增长而降低。
因此,分子量大的烷烃比分子量小的容易裂解,所需的裂解温度也就比较低;脱氢难易与烷烃的分子结构有关,叔氢最易脱去,仲氢次之,伯氢最难;带支的C-C键或C-H键,较直链的键能小,因此支链烃容易断链或脱氢;裂解是一个吸热反应,脱氢比断链需供给更多的热量;脱氢为一可逆反应,为使脱氢反应达到较高的平衡转化率,必须采用较高的温度;低分子烷烃的C-C键在分子两端断裂比在分子链中央断裂容易,较大分子量的烷烃则在中央断裂的可能性比在两端断裂的大。
(2)环烷烃热裂解环烷烃热裂解时,发生断链和脱氢反应,生成乙烯、丁烯、丁二烯和芳烃等烃类;带有侧链的环烷烃,首先进行脱烷基反应,长侧链先在侧链中央的C-C链断裂一直进行到侧链全部与环断裂为止,然后残存的环再进一步裂解,裂解产物可以是烷烃,也可以是烯烃;五碳环比六碳环稳定,较难断裂;由于拌有脱氢反应,有些碳环,部分转化为芳烃;因此,当裂解原料中环烷烃含量增加时,乙烯收率会下降,丁二烯、芳烃的收率则会有所增加。
07-第二章-烃类热裂解

P↓, c↓, r一次↓、r二次↓; (r一次/r二次)↑ 降低压力能促进生成乙烯的一次反应,抑制发生 聚合、缩合的二次反应,从而减轻结焦程度。
烃类裂解工艺条件——P
烃类裂解工艺条件——稀释剂
高温-短停留时间-减压
(二)经过芳烃中间阶段结焦 (500~900℃) 萘 单环芳烃 -H2 二联萘 多环芳烃 -H2 三联萘 稠环芳烃 焦炭 -H2 焦
液体焦油
固体沥青
结焦生碳反应
焦和碳的区别 形成过程不同: 烯烃经过芳烃中间阶段而生焦, (500~900℃) 氢含量不同: 碳几乎不含氢; 焦含有微量氢(0.1%~0.3%)
键能分析
(C-H) 大 (C-C)
大
伯 仲 叔
小 小
烷烃裂解——键能分析
结论
1、CH4的键能最高,一般裂解温度下不发生任何反应;
2、相同C原子数的烷烃,断链比脱氢容易; (C-H键能大于C-C键能) 3、随着碳链增长,键能下降,碳链越长,裂解反应越容易;
4、异构烷烃的C-C、C-H键能比正构烷烃低,更容易裂解 或脱氢,但收率低于正构烷烃;
5、脱氢能力与分子结构有关,由易到难的顺序为:
叔C-H>仲C-H>伯C-H
可 逆
强 吸 热
√ 不 可 逆 √ √ 吸 热
结论
烷烃裂解——热力学分析
1、烷烃裂解是强吸热反应,脱氢反应比断链反应吸热值 更高。 △H脱氢>△H断链 (C-H键能大于C-C键能) ——不可逆过程 Θ值的比较: 断链反应 2、通过对△G 脱氢反应 ——可逆过程 3、C-C键断裂 在分子两端断裂的优势>在分子中间断裂
表2.不同温度下乙烷裂解系统的平衡组成
第三章烃类裂解

3、裂解与裂化区别 共同点均符合广义定义。 不同点 ①、T不同 T裂解> 600℃ T裂化< 600℃ ②、目的不同 裂解产物---乙烯、丙烯、乙炔,联产 为丁二烯、苯、甲苯、二甲苯等。 裂化产物---汽油等燃料产品。
第一节
裂解反应和反应机理
烃类热裂解,简称烃类裂解,就是利用烃类在高 温下不稳定、易分解的特性,在高温下将含碳原 子数较多,即分子量较高的烃类 ——石油系原料 断裂分解成含碳原子数较少,即分子量较低的烃 类,以制取低级烯烃——乙烯、丙烯、丁二烯和 芳烃等基本有机化工原料的化学过程。
二次反应:
是指一次反应产物(乙烯、丙烯)继续反应,并转化为炔烃、二烯烃、芳烃以 至结焦生炭的反应,千方百计抑制其进行
一、烃类裂解的一次反应
1.烷烃裂解的一次反应
(1)脱氢反应 C-H键的断裂 (2)环化脱氢反应
(3)断链反应 C-C键的断裂 碳原子数(m+n)越大,断裂反应越容易进行。
从分子结构中的键能数据分析
被夺走氢的容易顺序:伯氢>仲氢>叔氢 自由基分解反应是生成烯烃的反应
链终止 两个自由基形成稳定分子的过程 活化能一般较低
自由基分解反应的规律
自由基分解为碳原子数较少的烯烃的反应活化 能较小 自由基中带有未配对电子的碳原子,若所连的 氢较少,就主要分解为氢自由基和同碳原子数 的烯烃分子 链增长反应中生成的自由基碳原子数大于 3 , 还可继续发生分解反应 自由基分解反应直到生成氢自由基、甲基自由 基为止
所以,高含量的烷烃,低含量的芳烃和烯烃是理想的裂解 原料。
二、裂解过程的动力学分析
1.反应机理
自由基反应机理
链引发反应是自由基的产生过程 链增长反应是自由基的转变过程 链终止是自由基消亡生成分子的过程
烃类热裂解

烃类热裂解当今世界,⽯油化⼯产业已经成为全球经济发展的⽀柱产业之⼀,⽽烃类热裂解技术则是⽯油化⼯产业中不可或缺的重要技术。
本⽂将重点介绍烃类热裂解的基本概念、原理及其在⽯油化⼯产业中的应⽤。
烃类热裂解是⼀种重要的⼯业过程,可⽤于原油精制、⽯油化⼯等领域。
烷烃的热反应主要有两类:⼀是C-C键断裂⽣成较⼩分⼦的烷烃和烯烃;⼆是C-H键断裂⽣成碳原⼦数保持不变的烯烃及氢⽓。
在烷烃分⼦中,C-C键更易于断裂,因为键能相对较⼩;⽽异构烷烃中的C-C键及C-H键的键能都⼩于正构烷烃,因此,异构烷烃更易于断链和脱氢。
因此,在相同条件下,异构烷烃⽐正构烷烃更易产⽣烯烃。
这是因为C-H 键键⻓较短,键能⼤于C-C键。
在热裂解过程中,费托蜡4#可获得更⾼的单程转化率和α-烯烃收率,分别为65.0%和53.0%。
不同原料蜡液相产物分布及LAO碳数分布如图3所⽰。
五种原料都⽣成了极少量异构烯烃和芳烃等副产物,α-烯烃含量随原料碳数的增加⽽提⾼。
这些结果表明,选择适当的原料蜡和反应条件可以有效地提⾼烃类热裂解的转化率和选择性。
烃类热裂解是⼀项复杂的过程,需要深⼊了解其基本原理和⼯艺条件。
烃类热裂解的⼯业应⽤主要包括⽯油化⼯、⽣物质转化、液化煤、催化转化等领域。
这些应⽤领域对烃类热裂解的要求各不相同,需要针对不同的应⽤进⾏相应的⼯艺研究。
什么是烃类热裂解烃类热裂解是指在⾼温、⾼压、⽆氧或缺氧的条件下,将⾼分⼦烃类化合物分解成低分⼦烃类化合物的化学反应。
这种反应是烃类加⼯的基础,通过这种⽅法可以获得⼀系列的烃类产品,如⼄烯、丙烯、丁⼆烯等。
烃类热裂解的原理烃类热裂解的反应机理⾮常复杂,但可以归纳为以下三个阶段:1. 烷基⾃由基形成阶段:在⾼温下,⾼分⼦烃类化合物被加热并断裂,形成烷基⾃由基。
2. 反应中间体形成阶段:烷基⾃由基与⾼分⼦烃类化合物发⽣反应,形成各种反应中间体。
3. 产物⽣成阶段:反应中间体进⼀步发⽣反应,形成低分⼦烃类产物。
乙烯的生产 裂解
CH2=CH2 CH≡CH 2C+H2 乙炔生成的碳不是断链生成单个碳原子,而 是稠合成几百个碳原子。
烃类的热裂解反应的规律总结
烷烃—正构烷烃最利于生成乙烯、丙烯,是生产乙烯的最 理想原料。分子量越小,烯烃的总收率越高。
环烷烃—在通常裂解条件下,环烷烃脱氢生成芳烃的反应 优于断链开环生成单烯烃的反应。含环烷烃多的原料,其 丁二烯、芳烃的收率较高,乙烯的收率较低。
TV ——体积平均沸点,K
T V1 5(T 10 T30 T50 T70 T9)0
T10 ——恩氏蒸馏馏出体积为10%时的温度,K
d 15 .6 15 .6
——
15.6℃时的相对密度
正构烷烃的 BMCI值最小(正己烷为0.2),芳烃 则相反(苯为99.8)。因此:
烃原料的BMCI值越小,则乙烯潜在产率越高; BMCI值愈大,结焦的倾向性愈大。
适用于评价各种原料。 氢含量高,则乙烯收率越高。
氢含量低于13%的馏分油作裂解原料是不经济的。
3.芳烃指数BMCI
即美国矿务局关联指数 (Bureau of Mines Correlation Index)
用以表征柴油等重质馏分油的结构特性
BMC 4TV 8I 6 447 0d3 1 1..6 5 6 545 .86
液态产物量愈大。
乙烯收率:P>N>A
裂解原料 原料组成特征
乙烯 主 要 丙烯 产 物 丁二烯 收 率 混合芳烃 %(质 量) 其它
不同表组1成-7 原组成料不的同裂的解原料产裂物解产物
乙烷 P 84.0
丙烷 P
44.0
石脑油
收率
P+N 31.7
抽余油 P+N 32.9
烃类热裂解的反应原理
练习题
3.一次反应是裂解生产的____目_的__反应,
而二次反应不仅浪费了_______原,料又降低
了 ______乙_烯__和_丙的烯收 率 , 而 且 生 成 的 焦 或
碳会使设备或管道_____堵_,塞 影响正常生 产,所以是不希望发生的。
4、一次反应即由原料烃裂解生成( C )的 反应。
烃的热裂解反应十分复杂,可以将这些复杂的 反应归纳为一次反应和二次反应。 • 1、一次反应 一次反应是指原料烃经裂解生成目的产物乙烯 和丙烯的反应。 • 在生产中应促使其充分进行。 (1)烷烃裂解的一次反应 (2)环烷烃的裂解反应 (3)芳烃的裂解
9
(1)烷烃裂解的一次反应
①脱氢反应 是C-H键断裂的反应,产物中碳原子数保持不 变。例如乙烷裂解
反应特点:可逆,吸热,体积增大的反应 如何得到更多的产物乙烯?高温、降压
10
(1)烷烃裂解的一次反应 ②断链反应
C H mn 2(mn)2 Cn H 2m Cn H 2n2
断链反应是 C—C键断裂的反应,大分子烷烃 变成小分子烯烃和烷烃
C5H12 C2H4 C3H8
反应特点:不可逆
7
烃类热裂解
石油二次加工过程,石油化工的基础 不 用 催 化 剂 , 将 烃 类 加 热 到 750-900℃ 发 生热裂解 原料: 石油系烃类原料(天然气、炼厂气、轻油、 柴油、重油等) 低分子烷烃(乙烷、丙烷) 主要产品: 三烯 (乙烯、丙烯、丁二烯) 三苯 (苯、甲苯、二甲苯)
8
三、烃类裂解的基本原理
11
(2) 二 次 反 应
指一次反应得到的乙烯、丙烯继续发生的 反应,它会生成炔烃、二烯烃、芳烃,甚 至最后生成焦或碳。
烃类热裂解
5、脱氢能力与分子结构有关,由易到难的顺序为:
叔C-H>仲C-H>伯C-H
可 逆
强 吸 热
√ 不 可 逆 √ √ 吸 热
结论
烷烃裂解——热力学分析
1、烷烃裂解是强吸热反应,脱氢反应比断链反应吸热值 更高。 △H脱氢>△H断链 (C-H键能大于C-C键能) ——不可逆过程 Θ值的比较: 断链反应 2、通过对△G 脱氢反应 ——可逆过程 3、C-C键断裂 在分子两端断裂的优势>在分子中间断裂
(随着烷烃链的增长,在分子中央断裂的可能性有所加强)
4、断链所得的分子,一般较小的是烷烃,较大的是烯烃;
5、乙烷不发生断链反应,只发生脱氢反应。甲烷不发生 裂解反应。
烯烃的裂解
二、烯烃的裂解 C nH2n+ C mH2m 1、断链反应 C n+mH2(n+m) 例:C5H10 C 3H 6 + C 2 H 4 C4H6+ H2 C2H2+ H2 C2H4
(900~1000℃) 烯烃经过炔烃中间阶段而生碳,
结焦生碳反应
各族烃裂解生成乙烯丙烯的规律
烷烃:正构烷烃最利于乙烯、丙烯的生成,且烷烃 的分子量越小,总产率越高。异构烷烃的烯烃总产 率低于同碳原子数的正构烷烃; 烯烃:大分子烯烃裂解为乙烯和丙烯;烯烃能脱氢 生成炔烃、二烯烃,进而生成芳烃; 环烷烃:环烷烃生成芳烃的反应优于生成单烯烃的 反应,丁二烯、芳烃的收率高,乙烯的收率低; 芳烃:无烷基的芳烃基本上不易裂解为烯烃,有烷 基的芳烃,主要是烷基发生断链和脱氢反应,芳环 不开裂,可脱氢缩合为多环芳烃,进而结焦。
2、脱氢反应 C4H8
(两个同一分子烯烃歧化为两个不同烃分子) 3、歧化反应
2C3H6 2C3H6 2C3H6
第2章 烃类热裂解
烯烃在裂解条件下继续反应,最终生成焦或炭
烯烃裂解成较小分子烯烃 烯烃加氢生成饱和烷烃 烃裂解生成炭 烯烃聚合、环化、缩合和生焦反应
2.3 裂解反应的热力学 和动力学
2.3.1 裂解反应的热力学分析
裂解反应的热效应
强吸热过程
基尔霍夫公式:
根据裂解反应器的实际进出口
温度计算反应器的热负荷
异构烷烃裂解规律
比正构烷烃容易裂解或脱氢 脱氢能力与分子结构有关,难
易顺序为叔氢>仲氢>伯氢
随着碳原子数的增加,异构烷
烃与正构烷烃裂解所得乙烯和 丙烯收率的差异减小
异构烷烃
主要产物:氢、甲烷、乙烯、丙烯、C4烯烃 特点:
异构烷烃裂解所得乙烯、丙烯收率远较正
构烷裂解所得收率低,而氢、甲烷、C4及
2.1 热裂解过程的化学反应
2.1.1 烷烃
脱氢反应 :
CnH2n+2
断链反应 :
CnH2n+H2
(C—H键断裂 )
CnH2n+2
CmH2m+ CkH2k+2
m+k=n
正构烷烃裂解规律
相同烷烃断链比脱氢容易 碳链越长越易裂解 断链是不可逆过程,脱氢是可逆过程 在分子两端断链的优势大 乙烷不发生断链反应,只发生脱氢反应生成 乙烯,甲烷在一般裂解温度下不发生变化 主要产物: 氢、甲烷、乙烯、丙烯 特点: 生产乙烯、丙烯的理想原料
ArH+CnH2n Ar-CkH2k+1+CmH2m
Ar-CnH2n+1
Ar-CnH2n-1+H2
芳烃缩合反应
R1
R2
R3
+
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
烃类热裂解反应的特点与规律
1.烃类热裂解反应的特点烃类热裂解反应具有以下特点:
①无论断链还是脱氢反应,都是热效应很高的吸热反应;②断链反应
可以视为不可逆反应,脱氢反应则为可逆反应③存在复杂的二次反应;④
反应产物是复杂的混合物。
2.烃类热裂解反应的一般规律(1)烷烃的裂解反应规律;
①同碳原子数的烷烃,C-H键能大于c-c键能,断链反应比脱氢反应
容易。
②烷烃分子的碳链越长,越容易发生断链反应。
③烷烃的脱氢能力与其结构有关,叔氢最易,仲氢次之,伯氢再次之。
④含有支链的烷烃容易发生裂解反应。
乙烷不发生断链反应,只发生脱氢
反应。
(2)环烷烃的裂解反应规律
①侧链烷基比环烷烃容易裂解,长侧链中央的c-c键先断裂,含有侧
链的环烷烃裂解比无侧链的环烷烃裂解的烯烃收率高。
②环烷烃脱氢反应生成芳烃,比开环反应生成烯烃容易。
③低碳数的
环比多碳数的环难以裂解。
裂解原料中的环烷烃含量增加,乙烯收率下降,而丁二烯和芳烃的收
率有所提高。
(3)各种烃类热裂解的反应规律
①烷烃:正构烷烃,最有利于生成乙烯、丙烯,分子量越小,烯烃的
总收率越高;异构烷烃的烯烃总收率低于同碳原子数的正构烷烃。
②环烷烃:生成芳烃的反应优于生成单烯烃的反应;含环烷烃较多,丁二烯和芳烃的收率较高,而乙烯和丙烯的收率较低。
③芳烃:无侧链芳烃的裂解,基本不生成烯烃;有侧链芳烃的裂解,其侧链逐步断链及脱氢;芳环的脱氢缩合反应,主要生成稠环芳烃,直至结焦。
④烯烃:大分子量的烯烃裂解反应,生成低级烯烃和二烯烃。
各类烃的热裂解反应的难易顺序为:正构烷烃>异构烷烃>环烷烃>芳烃。