现代控制理论
《现代控制理论》课件

目录
• 引言 • 线性系统理论 • 非线性系统理论 • 最优控制理论 • 自适应控制理论 • 鲁棒控制理论
01
引言
什么是现代控制理论
现代控制理论是一门研究动态系统控制的学科,它利用数学模型和优化方法来分析 和设计控制系统的性能。
它涵盖了线性系统、非线性系统、多变量系统、分布参数系统等多种复杂系统的控 制问题。
20世纪60年代
线性系统理论和最优控制理论得到发展,为现代控制理论的建立奠定 了基础。
20世纪70年代
非线性系统理论和自适应控制理论逐渐发展起来,进一步丰富了现代 控制理论的应用范围。
20世纪80年代至今
现代控制理论在智能控制、鲁棒控制、预测控制等领域取得了重要进 展,为解决复杂系统的控制问题提供了更有效的工具。
01
利用深度学习算法对系统进行建模和学习,实现更高
效和智能的自适应控制。
多变量自适应控制
02 研究多变量系统的自适应控制方法,以提高系统的全
局性能。
非线性自适应控制
03
发展非线性系统的自适应控制方法,以处理更复杂的
控制系统。
06
鲁棒控制理论
鲁棒控制的基本概念
鲁棒控制是一种设计方法,旨在 提高系统的稳定性和性能,使其 在存在不确定性和扰动的情况下
自适应逆控制
一种基于系统逆动态特性的自适应控制方法,通过对系统 逆动态特性的学习和控制,实现系统的自适应控制。
自适应控制系统设计
系统建模
建立被控对象的数学模型,包括线性系统和非线性系统。
控制器设计
根据系统模型和性能指标,设计自适应控制器,包括线性自适应控制器和 非线性自适应控制器。
参数调整
根据系统运行状态和环境变化,调整控制器参数,以实现最优的控制效果 。
控制理论的三个发展阶段:经典控制理论、现代控制理论、智能控制理论

经典控制理论是以传递函数为基础的一种控制理论,控制系统的分析与设计是建立在某种近似的和(或)试探的基础上的、控制对象一般是单输入单输出、线性定常系统;对多输入多输出系统、时变系统、非线性系统等.则无能为力。
经典抑制理论主要的分析方法有频率特性分析法、根轨迹分析法、描述函数法、相平面法、波波夫法等。
控制策略仅局限于反馈控制、PID控制等。
这种控制不能实现最优控制。
现代控制理论是建立在状态空间上的一种分析方法,它的数学模型主要是状态方程,控制系统的分析与设计是精确的。
控制对象可以是单输入单输出控制系统.也可以是多输人多输出控制系统,可以是线件定常控制系统,也可以是非线性时变控制系统,可以是连续控制系统,也可以是离散和(或)数字控制系统。
因此,现代控制理论的应用范围更加广泛。
主要的控制策略有极点配置、状态反馈、输出反馈等。
由于现代控制理论的分析与设计方法的精确性,因此,现代控制可以得到最优控制。
但这些控制策略大多是建立在已知系统的基础之上的。
严格来说.大部分的控制系统是一个完全未知或部分未知系统,这里包括系统本身参数未知、系统状态未知两个方面,同时被控制对象还受外界干扰、环境变化等的因素影响。
智能控制是一种能更好地模仿人类智能的、非传统的控制方法,它采用的理论方法则主要来自自动控制理论、人工智能和运筹学等学科分支。
内容包括最优控制、自适应控制、鲁棒控制、神经网络控制、模糊控制、仿人控制等。
其控制对象可以是已知系统也可以是未知系统,大多数的控制策略不仅能抑制外界干扰、环境变化、参数变化的影响,还能有效地消除模型化误差的影响。
现代控制理论绪论ppt课件

7
其主要特点有: 1.对系统进行精确的数学描述,使控制由一类工程设计方法 提高成为一门科学。 2.从系统结构的内在特性出发研究控制系统,注重系统本质 的理论刻划。 3.促进了非线性系统,最优控制,自适应控制,辨识与估计 理论,卡尔曼滤波,鲁棒控制等的发展,使它们成为独立的 学科分支。
8
三. 控制理论的进一步发展 并不是现代控制理论就可以解决一切问题了,随着经济全 球化和生产大规模化,单机、局部自动化走向综合自动化, 自动化科学技术面对越来越复杂的系统,表现为: 1.系统结构的复杂性:不确定性,非线性,变量过多,难以 用常规数学工具建模和研究(自动化工厂等)。 2. 任务的复杂性:高产量,低消耗,调度,监控、预警等。
5
二. 现代控制理论的特点和主要内容 60年代航天技术和先进武器的发展,使这样一些问题
必须得到研究(如飞行器姿态控制): 1.多输入—多输出系统,变参数系统,非线性系统 2.系统的最优化问题,最小时间系统,最小能耗问题等 3.对随机干扰的处理
现代数学(线性代数,泛函分析,微分几何等)的发展 为系统的定量化研究奠定了基础。 电子计算机的发展和普及成为这种研究的有力工具。
3
经典控制理论: 1.系统模型:微分方程(常系数线性微分方程)
L变换 传递函数
2.系统分析:稳定性:劳斯判据 根轨迹 奈氏判据 静态特性:L终值定理 动态特性:根轨迹 截止频率c 谐振频率r
谐振峰值 M r 等
3.系统综合:根轨根轨迹法、频率法分析 和设计系统的经典控制理论存在许多局限性: 1、仅适合单变量(一个输入一个输出)、线性的、定常的 系统。 2、其输入—输出的系统描述方式不关心系统内部的运行及 变量的变化,本质上忽略了系统结构的内在特性 。 3、采用工程的试探方法设计系统,依赖经验,不是最优。 但也不能否定它:对线性定常的单变量系统,它简单实用, 易于实现。并也在不断得以改进。
现代控制理论期末公式总结

现代控制理论期末公式总结一、传递函数与频域分析1. 传递函数公式:传递函数是描述线性时不变系统输入输出关系的数学表达式,用来表示系统的动态特性。
一般形式为:H(s) = Y(s)/X(s)其中,H(s)表示传递函数,s表示复频域变量,Y(s)和X(s)分别表示输出和输入。
2. 频域分析公式:常见的频域分析方法包括波特图、根轨迹和Nyquist图等,用于分析系统的稳定性和频率响应。
相关公式如下:a. 波特图:H(jω) = |H(jω)|ejφ其中,H(jω)表示传递函数在复频域的值,|H(jω)|是幅频特性,φ是相频特性。
b. 根轨迹:K(sI - A)^-1B = 0根轨迹是描述闭环系统极点随控制参数变化情况的图形。
c. Nyquist图:L(jω) = L(Re(s),Im(s)) = |G(jω)H(jω)|ejφNyquist图是描述开环系统传递函数G(jω)H(jω)在复平面上轨迹的图形。
二、状态空间与观测器设计1. 状态空间模型:状态空间模型是用状态方程和输出方程描述动态系统的数学模型。
一般形式为:ẋ(t) = Ax(t) + Bu(t)y(t) = Cx(t) + Du(t)其中,ẋ(t)表示状态向量的导数,x(t)是状态向量,u(t)和y(t)分别是输入和输出向量,A、B、C、D是系统的系数矩阵。
2. 观测器设计公式:观测器是一种用于估计系统状态的附加反馈环节。
常见的观测器类型包括全状态反馈观测器和Luenberger观测器。
相关公式如下:a. 全状态反馈观测器:ẋe(t) = (A - LC)x(t) + Ly(t)其中,ẋe(t)表示观测器误差的导数,x(t)是系统状态向量,y(t)是系统输出,L是观测器的增益矩阵,A是系统的状态转移矩阵,C是输出矩阵。
b. Luenberger观测器:ẋe(t) = (A - LC)x(t) + Ly(t)其中,ẋe(t)表示观测器误差的导数,x(t)是系统状态向量,y(t)是系统输出,L是观测器的增益矩阵,A是系统的状态转移矩阵,C是输出矩阵。
《现代控制理论》 教案大纲

《现代控制理论》教案大纲第一章:现代控制理论概述1.1 控制理论的发展历程1.2 现代控制理论的基本概念1.3 现代控制理论的应用领域1.4 本章小结第二章:线性系统的状态空间表示2.1 状态空间的概念2.2 线性系统的状态空间表示2.3 状态方程和输出方程2.4 本章小结第三章:线性系统的稳定性分析3.1 系统稳定性的概念3.2 线性系统的稳定性条件3.3 劳斯-赫尔维茨稳定判据3.4 奈奎斯特稳定判据3.5 本章小结第四章:线性系统的控制器设计4.1 控制器设计的目标4.2 比例积分微分控制器(PID控制器)4.3 状态反馈控制器4.4 观测器设计4.5 本章小结第五章:非线性系统的控制5.1 非线性系统的基本概念5.2 非线性系统的状态空间表示5.3 非线性系统的稳定性分析5.4 非线性控制器设计方法5.5 本章小结第六章:采样控制系统6.1 采样控制理论的基本概念6.2 采样控制系统的数学模型6.3 采样控制系统的稳定性分析6.4 采样控制系统的控制器设计6.5 本章小结第七章:数字控制系统7.1 数字控制系统的组成与特点7.2 数字控制器的原理与设计7.3 数字控制系统的稳定性分析7.4 数字控制系统的仿真与实现7.5 本章小结第八章:现代控制方法8.1 模糊控制理论8.2 自适应控制理论8.3 神经网络控制理论8.4 智能控制理论8.5 本章小结第九章:现代控制理论在工程应用中的实例分析9.1 工业控制系统中的应用9.2 航空航天领域的应用9.3 交通运输领域的应用9.4 生物医学领域的应用9.5 本章小结第十章:现代控制理论的发展趋势与展望10.1 控制理论研究的新领域10.2 控制理论在新技术中的应用10.3 控制理论的发展前景10.4 本章小结重点和难点解析一、现代控制理论概述难点解析:理解控制理论的演变过程,掌握现代控制理论的核心思想。
二、线性系统的状态空间表示难点解析:理解状态空间的物理意义,熟练运用状态空间表示线性系统。
现代控制理论ppt课件

5.2 极点配置
设状态反馈系统希望的极点为 s1, s2, , sn
其特征多项式为
n
Δ*K (s) (s si ) sn an*1sn1 a1*s a0* i 1
选择 k使i 同次幂系数相同。有
K a0* a0 a1* a1 an*1 an1
而状态反馈矩阵 K KP k0 k1 kn1 9
βn-1sn1 βn-2sn2 β1s sn an-1sn1 a1s a0
β0
(s) (s)
引入状态反馈 u V Kx V KP1x V Kx
令
K KP 1 k0 k1 kn1
其中 k0 , k1, , kn1为待定常数
7
5.2 极点配置
0 1
0 0
5
5.2 极点配置
证明:充分性
线性定常系统
x Ax Bu
y
Cx
经过线性变换 x P1x ,可以使系统具有能控标准形。
0 1 0 0
x
0
0
1
0
0
x
u
0
0 0
1
a0 a1 an1
0 1
y β0 β1 βn1 x
6
5.2 极点配置
系统传递函数:g(s) C[sI A]1b C [sI A]1b
0 0 1 P 0 1 12
16
1 18 144
5.2 极点配置
0 0 1
k kP 4 66 140 1 12
1 18 144
14 186 1220
17
5.2 极点配置
方法二:
k k1 k2 k3
s k1 k2
k3
a*
(
s)
现代控制理论
1、什么是对偶系统,从传递函数矩阵,特征多项式和能控、能观性说明互为对偶的两个系统之间的关系。
答:定义:如果两个系统满足A2=A1T,B2=C1T,C2=B1T,则称这两个系统互为对偶函数.互为对偶系统传递函数矩阵互为转置特征多项式相同,一个函数的能控性等价于另一个函数的能观性。
2、什么是状态观测器?简述构造状态观测器的原则。
答:系统的状态不易检测,以原系统的输入和输出为输入量构造,一动态系统,使其输出渐近于原系统状态,此动态系统为原系统的状态观测器。
原则:(1)观测器应以原系统的输入和输出为输入量;(2)原系统完全能观或不能观于系统是渐近稳定的;(3)观测器的输出状态应以足够快速度超近于原系统状态;(4)有尽可能低的维数,以便于物理实现。
3、说明应用李氏第二法判断非线性系统稳定性基本思想和方法步骤和局限性。
答:基本思想:从能量观点分析平衡状态的稳定性。
(1)如果系统受扰后,其运动总是伴随能量的减少,当达到平衡状态时,能量达到最小值,则此平衡状态渐近稳定:(2)如果系统不断从外界吸收能量,储能越来越大,那么这个平衡状态就是不稳定的:(3)如果系统的储能既不增加也不消耗,那么这个平衡状态时李亚普诺夫意义下的稳定.方法步骤:定义一个正定的标量函数V(x)作为虚构的广义能量函数,然后根据V(x)=dV(x)/dt的符号特征来判别系统的稳定性。
局限性:李雅普诺夫函数V(x)的选取需要一定的经验和技巧.4、举例说明系统状态稳定和输出稳定的关系。
答:关系:(1)状态稳定一定输出稳定,但输出稳定不一定状态稳定;(2)系统状态完全能观且能控=状态稳定与输出稳定等价。
举例:A的特征值=—1 =1 所以状态不是渐进稳点的,W(s)的极点S=—1,所以输出稳点。
5、什么是实现问题?什么是最小实现?说明实现存在的条件.答:(1)由系统的运动方程或传递函数建立SS表达式的问题叫做实现问题;(2)维数最小的实现方式时最小实现;(3)存在条件是m小于等于n.6、从反馈属性、功能和工程实现说明状态反馈和输出反馈的优缺点。
(完整版)《现代控制理论(第三版)》答案刘豹_唐万生编
第一章答案1-1 试求图1-27系统的模拟结构图,并建立其状态空间表达式。
图1-27系统方块结构图解:系统的模拟结构图如下:图1-30双输入--双输出系统模拟结构图系统的状态方程如下:u K K x K K x K K x X K x K x x x x J K x J x J K x J K x x J K x x x pp p p n pb1611166131534615141313322211+--=+-==++--===••••••阿 令y s =)(θ,则1x y =所以,系统的状态空间表达式及输出方程表达式为[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡-----=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡••••••654321165432111111112654321000001000000000000010010000000000010x x x x x x y uK K x x x x x x K K K K K K J K J J K J K J K x x x x x x p p pp npb1-2有电路如图1-28所示。
以电压)(t u 为输入量,求以电感中的电流和电容上的电压作为状态变量的状态方程,和以电阻2R 上的电压作为输出量的输出方程。
U图1-28 电路图解:由图,令32211,,x u x i x i c ===,输出量22x R y =有电路原理可知:•••+==+=++3213222231111x C x x x x R x L ux x L x R 既得22213322222131111111111x R y x C x C x x L x L R x u L x L x L R x =+-=+-=+--=•••写成矢量矩阵形式为:[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡32121321222111321000*********x x x R y u L x x x CCL L R L L R x x x 。
现代控制理论总结
现代控制理论总结第一章:控制系统的状态空间表达式1、状态变量,状态空间与状态轨迹的概念:在描述系统运动的所有变量中,必定可以找到数目最少的一组变量,他们足以描述系统的全部运动,这组变量就称为系统的状态变量。
以状态变量X1,,X2,X3,……X n为坐标轴所构成的n维欧式空间(实数域上的向量空间)称为状态空间。
随着时间的推移,x(t)在状态空间中描绘出一条轨迹,称为状态轨迹。
2、状态空间表达式:状态方程和输出方程合起来构成对一个系统完整的动态描述,称为系统的状态空间表达式。
3、实现问题:由描述系统输入输出关系的运动方程或传递函数建立系统的状态空间表达式,这样的问题称为实现问题单入单出系统传函:W(s)=,实现存在的条件是系统必须满足m<=n,否则是物理不可实现系统最小实现是在所有的实现形式中,其维数最低的实现。
即无零,极点对消的传函的实现。
三种常用最小实现:能控标准型实现,能观标准型实现,并联型实现(约旦型)4、能控标准型实现,能观标准型实现,并联型实现(约旦型)传函无零点系统矩阵A的主对角线上方元素为1,最后一行元素是传函特征多项式系数的负值,其余元素为0,A为友矩阵。
控制矩阵b除最后一个元素是1,其他为0,矩阵A,b具有上述特点的状态空间表达式称为能控标准型。
将b与c矩阵元素互换,另输出矩阵c除第一个元素为1外其他为0,矩阵A,c具有上述特点的状态空间表达式称为能观标准型。
传函有零点见书p17页……..5、建立空间状态表达式的方法:①由结构图建立②有系统分析基里建立③由系统外部描述建立(传函)6、子系统在各种连接时的传函矩阵:设子系统1为子系统2为1)并联:另u1=u2=u,y=y1+y2的系统的状态空间表达式所以系统的传递函数矩阵为:2)串联:由u1=u,u2=y1,y=y2得系统的状态空间表达式为:W(S)=W2(S)W1(S)注意不能写反,应为矩阵乘法不满足交换律3)反馈:系统状态空间表达式:第二章:状态空间表达式的解:1、状态方程解的结构特征:线性系统的一个基本属性是满足叠加原理,把系统同时在初始状态和输入u作用下的状态运动x(t)分解为由初始状态和输入u分别单独作用所产生的运动和的叠加。
现代控制理论结课大作业
现代控制理论结课大作业一、引言现代控制理论是现代科学技术的重要组成部分,广泛应用于工程控制系统中。
在控制理论课程的学习过程中,结课大作业是一项重要的任务。
本文将介绍现代控制理论结课大作业的相关要求和设计思路。
二、研究背景现代控制理论是控制理论的一个重要分支,它主要研究控制系统的建模、分析和设计方法。
通过运用数学和工程技术知识,利用现代控制理论可以对各种系统进行精确的描述和控制。
因此,现代控制理论在自动控制领域具有广泛的应用。
三、大作业要求现代控制理论结课大作业要求学生能够独立选择一个控制系统并进行详细的研究和设计。
具体要求如下: 1. 选择一个真实的控制系统作为研究对象;2. 系统建模:根据实际情况,选择合适的建模方法,将系统转化为数学模型;3. 系统分析:通过分析系统模型,对系统的稳定性、鲁棒性等进行评估; 4. 系统设计:基于现代控制理论的设计思想,设计适合该系统的控制器; 5. 系统仿真:利用仿真软件对设计的控制系统进行验证和优化; 6. 结果分析和总结:对仿真结果进行分析,总结设计过程和经验教训。
四、设计思路在完成现代控制理论结课大作业时,需要有清晰的设计思路和步骤。
以下是一个可能的设计思路供参考: 1. 选择合适的控制系统:可以选择一个典型的工业控制系统,或者选择一个与个人兴趣相关的系统; 2. 进行系统建模:根据系统的实际情况,选择适合的建模方法,如状态空间法、传递函数法等;3. 系统分析:利用控制理论的知识和工具,分析系统的稳定性、鲁棒性,确定系统的可控性和可观性等性能指标;4. 系统设计:基于现代控制理论,设计一个合适的控制器结构,并选择适当的控制参数;5. 系统仿真:利用仿真软件,对设计的控制系统进行仿真验证,观察系统的响应特性和控制性能; 6.结果分析和总结:根据仿真结果,分析系统的优点和不足之处,并总结设计过程中的经验教训。
五、实例分析下面以一个简单的倒立摆系统为例,介绍如何完成现代控制理论结课大作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
现代控制理论实验报告
1.
用 Simulink 对该系统进行实现
能控性实现
(1) W(s)=sssss65623
(2) 很容易就可以得到能控Ⅰ型实现,状态空间表达式如下:
(3) 由上述表达式可得结构模拟图如下:
-5
-6
6
6
u
y
(4) 根据结构模拟图在simulink中仿真子系统如下图:
串联实现
(1)W(s)=6(1+21s)(s+3)
(2)很容易就可以得到串联实现,状态空间表达式如下:
uxx660200130
010
.
, xy001
(3)由上式很容易得到结构模拟图如下:
1
6
-2 -3
(4)根据结构模拟图在simulink中仿真子系统如下图:
能观性实现(选做)
(1) 错误!未找到引用源。sssssW6566)(23
(2) 可以写出能观Ⅱ型实现,状态空间表达式如下:
(3) 结构模拟图如下:
6
6
-5
-6
uy
(4) 根据结构模拟图在simulink中仿真子系统如下图:
并联实现(选做)
(1) 错误!未找到引用源。W(s)=34231sss
(2)由上式可写出约当标准型实现,状态空间表达式如下:
(3)由状态空间表达式可以得到结构模拟图如下:
-2
-3
3
-4
yu
(2) 根据结构模拟图在simulink中仿真子系统如下图:
仿真结果如下图:
上图曲线由左到右,由上及下分别是能控实现,串联实现,能观实现,并联实现,
可见各种实现仿真曲线一致,证明同一系统各种实现效果唯一,只是形式方式不
一样而已,在表观性质上有区别但本质是相同的。
2. 以上述系统的串联实现为基础,实验研究:
系统在初始条件作用下的状态响应和输出响应
以串联实现为基础,在simulink中模型实现如下图:
(1) 当错误!未找到引用源。时,仿真模型如上图,仿真结果如下图1:
x1 x2
x3
图1
(2) 错误!未找到引用源。时,仿真结果如下图2:
x1 x2
x3
系统在阶跃输入信号作用下的状态响应和输出响应
状态响应仿真结果:
x1 x2
输出响应仿真结果
分析系统在状态空间坐标原点的稳定性
由实验要求1串联实现的结构模拟图,写出状态空间表达式:
uxx660200130
010
.
, xy001
det[λI-A]=(λ+3)(λ+2)λ=0错误!未找到引用源。
特征根有0,并不是全具有负实部,0不在s左半平面,所以系统并非在错误!未
找到引用源。时渐进稳定系统。
3. 以上述系统的串联实现为基础,设计状态反馈控制器
采用配置极点方式将系统转换成二阶系统,所以其中一个极点为-1,通过要求计
算参数:
二阶系统的标准形式为:错误!未找到引用源。
13nst 6n
2
2,11nn
jss
,所以另外两个极点是:-333i
状态反馈矩阵K的计算:
det(sI-A)=sss6523
则5,6,0210aaa
)1)(333)(333()(sisissf
=3642723sss
则7,42,36210aaa
所以23636221100aaaaaaK
则K=TcK*。
由matlab编程求得K。
源程序如下:
A=[0 1 0; 0 -3 -1; 0 0 -2]; B=[0 6 6]'
C=[1 0 0;5 1 0;6 5 1];
T=[A*A*B A*B B]*C
K=[-36 -36 -2]*inv(T)
K =
-6.0000 -0.5000 0.1667
则在simulink中模型实现如下图:
仿真结果:
x1 x2
x3
4. 以上述系统的串联实现为基础,设计系统的全维状态观测器。
det(sI-A)=sss6523
则
5,6,0210aaa
)1()4()(2sssf
=1622723sss
则7,42,36210aaa
所以21616221100aaaaaaG
由matlab编程求得G.
源程序如下:
A=[0 0 0;1 0 -6;0 1 -5];
>> C=[0 0 1];
T=[6 5 1;5 1 0;1 0 0]*[C;C*A;C*A*A]
T =
1 0 0
0 1 0
0 0 1
G=inv(T)*[16 16 2]'
G =
16
16
2
则在simulink中模型实现如下图:
仿真结果:
x1 x2
实现观测器反馈的模型如下图:
仿真结果如下:
5. 结合以上 3、4 的结果,应用观测状态实现状态反馈控制对比分析实际状态
反馈与观测状态反馈系统控制效果的异同。
根据3、4种仿真结果,可以看到两种反馈控制效果一样,只不过是观测状态
反馈能更清晰地观测状态变量,符合能观特性,根据输出就能观测状态,而状态
反馈并没体现这一点。
6. 实验总结
1、通过做这次现控实验,我加深了对现代控制理论中的一些基本概念的理解,
掌握用状态方程描述的线性系统的稳定性、能控性、能观性的分析计算方法。
2、通过实验练习,掌握对线性系统能进行任意极点配置的方法,并运用状态反
馈设计方法来计算反馈增益矩阵。巩固了课堂上学到的理论知识。
3、通过matlab编程,锻炼了自己的编程能力。