吸附剂性能
SDG酸气吸附剂

SDG酸气吸附剂:
*吸附剂净化酸气原理
*工艺特点
*吸附剂性能表
*吸附剂净化酸气原理
SDG吸附剂是一种比表面积较大的固体颗粒状无机物,当被净化气体中的酸气扩散运动到达SDG吸附剂表面吸附力场时,便被固定在其表面上,然后与其中活性成分发生化学反应,生成一种新的中性盐物质而存储于SDG吸附剂结构中。
SDG吸附剂对酸气的净化是一个多功能的综合作用,除了一般的物理吸附外,还有化学吸附,粒子吸附,催化作用,化学反应等。
*工艺特点
1、使用范围广
适合多种用酸(H
2SO
4
、HCL、NO
X、
、HF…)场合,包括有机酸。
并可对混合酸
气(H
2SO
4
、HCL、NO
X、
、HF…)共存时一次净化。
2、无二次污染
本工艺技术对酸气的净化是经吸附之后发生化学反应生成无害的盐。
废吸附剂作为无害垃圾处理。
3、使用操作简单方便
本工艺技术只要净化系统安装完成后,就不需专人管理。
一开机酸气就自动被净化,运转一段时间,吸附剂饱和后,换上新吸附剂便可继续使用。
4、不受使用条件限制
净化设备可安装在室内或室外,不需作防冻处理。
5、耐温性能好
吸附剂耐温可达300℃。
吸附剂使用手册

吸附剂使用手册一、简介吸附剂是一种常用的化学材料,具有吸附和分离物质的能力。
本手册旨在向用户提供有关吸附剂的基本知识和正确使用方法,以确保最佳的吸附效果和安全性。
二、吸附剂的分类根据用途和化学性质不同,吸附剂可分为以下几类:1. 活性炭:活性炭是一种多孔碳材料,具有很大的比表面积,能够有效吸附气体和溶解物质,广泛用于空气和水的净化处理。
2. 分子筛:分子筛是一种具有有序孔道结构的晶体材料,能够选择性吸附不同大小和形状的分子,常用于分离和干燥气体和液体。
3. 吸附树脂:吸附树脂是一种高分子化合物,具有吸附和释放离子的能力,常用于水处理、药物分离等领域。
4. 吸附剂纸:吸附剂纸是一种涂有吸附剂的特殊纸张,用于分离和检测物质成分。
三、吸附剂的应用领域吸附剂广泛应用于许多领域,包括但不限于:1. 环境净化:活性炭用于吸附空气中的有害气体和异味物质,分子筛用于水和空气中的污染物去除。
2. 医药领域:吸附树脂用于药物分离、纯化和去除杂质。
3. 化学工艺:吸附剂在化学反应中起到催化剂和分离剂的作用,提高反应效率。
4. 食品加工:吸附剂纸用于食品中有害物质的检测和分离,确保食品安全。
5. 实验室研究:吸附剂在实验室中用于分离和富集目标物质,便于后续分析和检测。
四、吸附剂的选择和使用方法1. 根据目标物质的特性选择合适的吸附剂:不同的吸附剂对不同的物质有特异性吸附特性,根据目标物质的特性选择合适的吸附剂,以获得最佳的吸附效果。
2. 确定吸附剂的用量和接触时间:根据目标物质的浓度和要求的吸附效果,确定合适的吸附剂用量和接触时间,避免过量使用或接触时间过短导致吸附效果不佳。
3. 注意吸附剂的再生和处理:一些吸附剂可以通过再生或处理恢复其吸附性能,合理采取相应的再生或处理方法,延长吸附剂的使用寿命和降低成本。
4. 安全操作:使用吸附剂时,应佩戴适当的防护装备,避免直接接触吸附剂,防止吸附剂进入眼睛或口腔,确保操作过程的安全性。
化学反应速率与催化剂吸附性能关系

化学反应速率与催化剂吸附性能关系标题:化学反应速率与催化剂吸附性能关系催化剂是在化学反应中起到催化作用的物质,它们能够降低反应的活化能,提高反应速率。
催化剂的催化效果受到其吸附性能的影响,不同的吸附性能会导致不同的催化效果。
本文将探讨化学反应速率与催化剂吸附性能之间的关系。
一、催化剂的吸附性能对反应活性的影响催化剂吸附性能的好坏会直接影响其对反应物质的吸附能力,从而影响反应速率。
一般来说,催化剂的吸附性能越好,对反应物质的吸附能力就越强,反应速率也会相应增加。
催化剂的吸附性能与其表面活性位密度、表面结构和孔隙结构等因素密切相关。
二、催化剂表面活性位密度与反应速率的关系催化剂表面活性位密度指的是单位表面积上拥有的活性位数。
活性位是催化剂吸附反应物质的地方,它们能够提供与反应物质发生相互作用所需的键能。
催化剂的表面活性位密度越高,反应物质与催化剂表面的接触机会就越多,反应速率也会相应增加。
因此,在设计催化剂时,提高表面活性位密度可以有效提升催化效果。
三、催化剂表面结构与反应速率的关系催化剂的表面结构对其吸附性能具有重要影响。
表面结构的改变可以影响催化剂对反应物质的吸附能力和扩散性能。
例如,催化剂表面存在较多的缺陷、齿位和孔洞结构时,可以提高对反应物质的吸附能力,促进反应的进行。
因此,在催化剂设计中,合理调控催化剂的表面结构有助于优化催化剂的吸附性能,从而提高反应速率。
四、催化剂孔隙结构与反应速率的关系催化剂的孔隙结构对反应速率也具有一定的影响。
孔隙结构会影响反应物质在催化剂内的扩散速率,从而影响反应速率。
催化剂内部较大的孔隙可以提高反应物质的扩散速率,使其更容易进入催化剂的活性位进行反应。
因此,设计具有合理孔隙结构的催化剂,有助于提高反应速率。
五、其他影响催化剂性能的因素除了催化剂的吸附性能、表面活性位密度、表面结构和孔隙结构等因素外,还有其他一些因素会影响催化剂的性能和反应速率,如催化剂的温度、压力和反应物质浓度等。
微晶材料吸附剂

微晶材料吸附剂随着现代工业的快速发展,工业废水、废气、废渣等污染物越来越多。
因此,寻找优秀的吸附剂在解决这些污染问题中具有重要的作用。
其中,“微晶材料吸附剂”是一种良好的吸附材料。
在本文中,我们将为你介绍微晶材料吸附剂的制备、特点以及应用。
一、微晶材料吸附剂的制备1、高分子微晶制备法该制备法主要是通过化学方法,将吸附剂中的官能基与高分子材料相结合,其过程主要分为以下步骤:(1)选取合适的高分子基质,将其置于溶剂中;(2)溶剂中加入含有活性基团的吸附剂;(3)在一定条件下,通过化学反应,将吸附剂中的活性基团与高分子基质结合成一体。
2、物理微晶制备法该制备法主要是通过物理方法,将吸附剂和其他材料混合,形成微晶吸附剂。
其过程主要分为以下步骤:(1)选取合适的吸附剂;(2)将吸附剂置于溶剂中;(3)按照一定比例,将吸附剂和其他材料混合,并在一定条件下进行研磨;(4)形成微晶吸附剂。
二、微晶材料吸附剂的特点1、微粒子大小均匀微晶材料吸附剂制备过程中,微晶材料的粒径分布均匀,具有较强的分散性,可以有效地提高吸附材料的表面积。
2、吸附效率高微晶材料吸附剂表面积大,与被吸附物质接触面积增大,从而提高了吸附效率。
3、重复利用性能好微晶材料吸附剂的吸附能力稳定,具有较好的重复利用性能。
三、微晶材料吸附剂的应用1、环境污染控制微晶材料吸附剂可用于水质、大气等环境污染的控制。
比如,可用于处理含有铅、镉等重金属的污水,以及大气中的挥发性有机物。
2、食品加工微晶材料吸附剂可用于食品加工,在保证食品无害的情况下,去除食品中的致癌物质等有害物质,提高食品的质量和安全性。
3、医疗保健微晶材料吸附剂可用于医疗保健领域,提取中药有效成分,去除有毒成分,保证中药的安全性和疗效。
总之,微晶材料吸附剂是一种良好的吸附材料,制备方法简单、吸附效率高、重复利用性能好,具有很广泛的应用前景。
在未来的生产中将被广泛运用,为保护环境、提高产品质量以及促进健康等方面发挥更大的作用。
金属基复合吸附剂的吸湿性能测试

s o r b e n t i s 3 0 % 一4 5 % h i g h e r ,wi t h i n w h i c h t h e a d s o r p t i o n r a t e a n d ma xi mu m mo i s t u r e u p t a k e o f l i t h i u m c h l o id r e c o mp o s i t e a d s o r b e n t i s
d o p t e d t o ma k e s a mp l e s ,a n d a c o mp a r i s o n s t u d y o f c o mp o s i t e a d s o r b e n t a n d s i n g l e s i l i c a g e l s m p a l e s i s ma d e .W h e n t h e s a mp l e s re a
3 0 %Байду номын сангаас 4 5 %, 其中氯化锂复合吸 附剂 吸湿速率 和最大吸湿量高于氯化 钙复合 吸附剂 ; 在材料初 始未进 行干燥 处理 , 且在 吸湿 , 放 湿工况周期 性切换的情况下 , 复 合吸附剂循环吸湿量 比硅胶 高出 7 0 % 一1 2 0 %, 且 高相对湿 度的 吸湿 条件下 , 氯化钙 循环吸湿量
五种吸附剂的原理和应用

五种吸附剂的原理和应用引言吸附剂是广泛应用于化工、环保、制药等领域的一种重要材料。
它们通过吸附固定目标物质,起到分离、净化和催化等作用。
本文将介绍五种常见的吸附剂,包括活性炭、分子筛、纳米材料、环氧树脂和离子交换剂。
将重点探讨它们的原理和应用。
1. 活性炭活性炭是一种具有大量微孔的多孔材料,具有较高的吸附性能。
其原理是通过物质在活性炭表面的吸附作用实现目标物质的分离。
活性炭广泛应用于水处理、空气净化、脱色和脱臭等领域。
•活性炭的吸附原理是通过表面微孔和宏孔提供的大表面积,吸附目标物质,并去除水中的有机污染物。
•活性炭广泛应用于水处理领域,如城市自来水厂的水处理、工业废水处理等。
•在空气净化方面,活性炭常用于吸附室内有害气体,提高室内空气质量。
•另外,活性炭还能用于食品工业中的脱色和脱臭,以及药物和化妆品工业中的净化过程。
2. 分子筛分子筛是一种孔径较小的多孔材料,其吸附原理是通过目标分子与分子筛孔道之间的相互作用来实现分离。
分子筛具有高效的分离性能和选择性,被广泛应用于石油化工、制药和化学等领域。
•分子筛的吸附原理是通过目标分子与分子筛中孔道吸附剂表面的相互作用(如吸附力、排斥力和交互作用力)实现分离。
•在石油化工领域,分子筛常用于提取和分离石油化工生产中的目标化合物,如乙烯和丙烯的分离。
•在制药领域,分子筛被用于提纯药物和去除杂质,达到分离和纯化的目的。
•在化学领域,分子筛可用于气相吸附和液相吸附,以分离和纯化目标物质。
3. 纳米材料纳米材料是具有纳米级尺寸的材料,其吸附原理是通过纳米材料表面的大面积和活性位点与目标物质之间的相互作用来实现吸附和分离。
纳米材料具有高比表面积、优异的吸附性能和催化性能等特点,在环境保护和生物医学等领域有广泛应用。
•纳米材料的吸附原理是通过纳米尺寸下的表面活性位点与目标物质之间的相互作用实现吸附和分离。
•纳米材料广泛应用于环境保护领域,如对有害气体和重金属的吸附和处理,以净化环境。
吸附分离技术讲解
2.5 吸附动力学
1. 吸附传质过程的三个阶段
第一阶段 是吸附质通过吸附剂颗粒周围的液膜到颗粒的 表面,称为外部传递过程或外扩散(膜扩散)。
第二阶段 是从吸附剂颗粒表面传向颗粒孔隙内部,称为 孔内部传递过程或内扩散。
第三阶段 为溶质在吸附剂内表面上发生吸附。
2.6 影响吸附的因素
吸附质的性质: 溶解度、极性等
另一类吸附过程是化学吸附,以化学键结合,一般为 不可逆过程,工业应用少,分析化学中有。
例:巯基棉吸附、黄原酯棉吸附
1、巯基棉吸附:
利用巯基乙酸与棉花纤维上的羟基的酯化反应, 将巯基接到纤维素大分子上。利用巯基与不同元素 离子的反应进行分离富集。
2、黄原酯棉
脱酯棉与氢氧化钠作用生成碱纤维,再与二硫化 碳进行酯化反应,把黄原酸基团固定在棉纤维上。 利用黄原酸基团的作用进行分离富集。
吸附等温线是描述吸附平衡行为的基本工具,可 用于比较吸附剂的基本吸附性能。由于吸附机理在很 大程度上决定了吸附等温线的形状,因而对吸附等温 线分类有助于诊断吸附过程。
曲线的形状反映吸附的难易,低浓度下曲线向 下弯,如I、II、IV的初始表示分子容易被吸附; 如不易被吸附则向上弯,如III、V。
浓度增大曲线往上斜,如IV,表示吸附由单分子 层开始向多分子层进行。
二、吸附的基本理论
2.1 吸附过程 固体吸附剂与流动相接触,流动相中的一种或多种
溶质向固体颗粒表面选择性传递,被吸附和积累于 固体吸附剂微孔表面的过程。 吸附分离原理大体可分为以下四种类型:
①表面选择性吸附:范德华力 ②分子筛效应:多孔固体中的微孔孔径均一,与 分子尺寸相当。尺寸小于孔径的分子可以进入而被 吸附,比孔径大的分子则被排斥在外。 ③通过微孔的扩散: 利用扩散速率的差别分离。 ④微孔中的凝聚: 多孔固体周围的可凝气体在 与其孔径对应的压力下在微孔中凝聚。 表面吸附是基本的,其它是伴随发生.
吸附剂和吸附质吸附剂
立式多段再生炉、旋转再生炉。
第 4 节 吸附剂的再生
二、溶剂再生 1 原理
吸附质与熔剂的亲和力大于与吸附剂的亲和力。
2 常用再生剂
酸碱类、有机溶剂。 吸附的酚、醋酸可用氢氧化钠再生。 吸附的DDT可用异丙醇再生。
三、其它再生方法
氧化法、生物法等
第 5节 应用及进展
一、应用
给水处理 嗅、味的吸附净化; 微量污染物的吸附净化。
四、设计
(一) 工艺流程与设备
间歇式操作
废水
预处理
吸附
排放
去除废水中影 响吸附的杂质:
悬浮物、油类、胶 体
废水和吸附剂在相对 运动过程中完成吸附
混凝、沉淀、过滤
固定床、流化床、移动床
第 3 节 吸附工艺设计
混凝沉淀(气浮) 催化氧化
厌氧—好氧 好氧
有机物 胶体
深度处理技术
废水 预处理
生 化
高效物化技术 强化生物技术
于什么状态?
Company
LOGO
x b( x / m)0 e
m
1be
第1节 概 述
五、影响吸附的因素
(一) 吸附剂的性质 1 物理性质:孔的大小、比表面积;
2 表面化学特性:表面的极性。
(二) 吸附质的性质 1 溶解度; 2 分子量; 3 分子极性;
第1节 概 述
(三) 操作条件
温度:物理吸附、化学吸附; pH 值:影响吸附质的存在状态和吸附剂表面特性。 接触时间: 共存物质:诱发物;干扰物; 生物协同作用:繁殖微生物,有利于有机物的分解。
原水浓度C0
10 8 6 4 2
0
10
A
B
20
空分分子筛吸附剂-概述说明以及解释
空分分子筛吸附剂-概述说明以及解释1.引言1.1 概述空分分子筛吸附剂是一种新型吸附剂,它具有高效、可重复使用和环保等优点。
它是利用吸附剂材料的孔隙结构和化学性质,对待吸附物质进行选择性吸附和分离的技术。
空分分子筛吸附剂的应用领域非常广泛,包括气体分离、液体分离、废气处理、催化剂载体等。
在气体分离方面,空分分子筛吸附剂可以根据吸附剂的特性和被吸附气体的性质,通过调节操作条件,实现对混合气体中某一组分的高效分离。
例如,可以利用空分分子筛吸附剂将氧气从空气中分离出来,用于供氧、制氧等领域。
在液体分离方面,空分分子筛吸附剂可以用来去除有机物、重金属离子等无机离子,提高水质的纯净度。
此外,空分分子筛吸附剂还可以应用于废气处理和催化剂载体领域。
在废气处理方面,它可以有效去除废气中的有害气体,如二氧化碳、二氧化硫等;而在催化剂载体领域,空分分子筛吸附剂不仅可以提高催化剂的稳定性和活性,还可以实现对反应产物的高效分离和回收利用。
然而,空分分子筛吸附剂也存在一些局限性。
首先,吸附剂的选择性和吸附容量受到孔隙结构和化学性质的限制,导致其对某些特定物质的吸附效果不理想。
其次,吸附剂的再生和循环利用过程需要消耗能量和资源。
此外,目前对于吸附剂的设计和合成还存在一定的困难,需要进一步加强相关的研究和开发。
未来的发展方向主要包括提高吸附剂的选择性和吸附容量,拓宽其应用领域,并开展对吸附剂的再生和循环利用技术的研究。
通过不断创新和改进,空分分子筛吸附剂将在环境保护、能源利用等方面发挥更加重要的作用。
1.2 文章结构文章结构部分的内容如下所示:文章结构为了系统地介绍空分分子筛吸附剂,本文将分为引言、正文和结论三个部分。
具体内容安排如下:引言部分将概述空分分子筛吸附剂的背景和意义,引发读者对该主题的兴趣。
首先,我们将简要介绍吸附剂的基本概念和吸附过程的原理。
接着,我们将阐述本文的目的和意义,以及读者可望获得的收益。
正文部分将围绕空分分子筛吸附剂展开。
金属吸附剂
金属吸附剂金属吸附剂是一种能够吸附金属离子的材料,其主要作用是将废水中的金属离子吸附、分离和回收。
金属吸附剂广泛应用于水处理、废水处理、环境保护等领域,成为了重要的环保材料。
一、金属吸附剂的种类金属吸附剂的种类繁多,常见的有活性炭、离子交换树脂、氧化铁、硅藻土、壳聚糖等。
这些吸附剂都有着不同的吸附性能和适用范围。
活性炭是一种常见的吸附剂,其特点是吸附性能较好、使用方便、成本较低等,广泛应用于水处理和废水处理中。
离子交换树脂可以选择性地吸附某种金属离子,具有高效、快速、可重复使用等特点,适用于高浓度金属离子的吸附和回收。
氧化铁是一种高效的吸附剂,能够吸附多种金属离子,同时还具有催化氧化和还原的作用,适用于废水处理和环境修复。
硅藻土和壳聚糖也是常见的吸附剂,具有良好的吸附性能和生物可降解性,适用于环境保护和生态修复。
二、金属吸附剂的吸附机理金属吸附剂的吸附机理主要包括物理吸附、化学吸附和离子交换等。
物理吸附是指金属离子和吸附剂之间的静电作用、范德华力和氢键等吸附力作用,其特点是吸附速度快、吸附量大、可逆性强。
化学吸附是指金属离子与吸附剂之间的化学反应,形成化合物后吸附在吸附剂表面上,其特点是吸附选择性强、吸附速度慢、吸附量小。
离子交换是指吸附剂中的固定离子与水中的金属离子进行交换,其特点是吸附速度快、吸附量大、可重复使用。
三、金属吸附剂的应用1. 水处理金属吸附剂可以有效地净化水质,去除水中的重金属离子和有机物质,提高水的质量和安全性。
在饮用水处理中,活性炭和离子交换树脂是常用的吸附剂,能够去除水中的余氯、异味、余药等物质。
在工业水处理中,氧化铁和硅藻土等吸附剂能够去除水中的重金属离子和有机物质,保证生产过程的安全和稳定。
2. 废水处理金属吸附剂在废水处理中有着重要的应用,可以将废水中的金属离子吸附、分离和回收,降低废水中的金属含量,减少对环境的污染。
在电镀、冶金、化工等工业废水处理中,离子交换树脂和活性炭是常用的吸附剂,能够去除废水中的重金属离子和有机物质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
吸附剂的吸湿性能评价
摘要
吸附剂的吸湿性能直接影响空调系统的运行情况。
在现代建筑中,暖通空调系统是耗能大户。
当今,资源和能源极度紧缺,改良传统的吸附剂,开发高效、高性能的复合吸附剂成为一大研究课题。
关键词:吸附剂除湿性能
在现代建筑中,暖通空调系统是耗能大户。
除湿空调系统主要存在投资高、设备体积大和制冷功率低等问题。
除湿空调技术的研究主要集中在除湿器种类、除湿器结构和除湿系统运行模式3个方面,而这些研究则依赖于除湿吸附剂种类和性能。
因而,开发用于除湿空调系统的高效吸附剂,提高除湿空调系统制冷能力,减小设备体积,降低系统投资,已成为加速除湿空调商品化进程的关键。
在空气调节中,吸附剂类型包括固体吸附剂和液体除湿剂,下面将对其除湿性能作出具体评价。
1 固体吸附剂
常用的固体吸附剂可分为“极性吸附剂”和“非极性吸附剂”。
极性吸附剂具有亲水性,主要有硅胶、多孔活性铝、沸石等铝硅酸盐类吸附剂。
非极性吸附剂具有憎水性,主要有活性炭等。
还有许多高分子材料对水蒸气具有良好的吸附性,通常称为“高分子胶”。
1.1 硅胶
硅胶是一种性能良好的除湿剂,但当其吸附大量水分后易破裂,且不耐高温,严重影响除湿效果。
经专家研究,经金属离子掺杂改性,可以使硅胶BET比表面积、孔容、平均孔径明显增大,吸附性能明显增强。
这是因为对于中孔结构,孔径越大,水蒸气分子的扩散阻力就越小,吸附速率就越快,同时大孔径也有利于吸附放出的热量扩散到环境中,从而有利于吸附过程的进行。
1.2 高分子胶
有机高分子吸湿材料是新型的功能高分子材料,它最初是由高吸水性树脂发展而产生的。
它具有优异的吸湿、保湿性能,是一种经过化学与物理方法改性的水性树脂,以分子中的亲水基团来吸收水分。
丙烯酸和丙烯酰胺的共聚物是一类用途广泛的多功能高分子化合物,因各自含羧酸基(-COOH)和酰胺基(-CONH)这样的强吸湿基团,多种亲水基的协同作用,使得吸湿性能优于其相应的均聚物和传统的无机吸湿材料硅胶和分子筛,添加的部分尿素起到“致孔剂”作用,使得材料表面出现孔洞,增加了有效吸湿比表面积,故被作为有机高分子吸湿材料的重要一类。
2 液体除湿剂
液体除湿剂对水蒸气有很强的吸湿能力,可当做单纯的物理过程。
利用液体除湿剂除湿,是空气处理过程中常用的方法之一。
在空气调节过程中,常用的液体除湿剂有溴化锂溶液、氯化锂溶液、氯化钙溶液、乙二醇、三甘醇等。
2.1 有机溶剂
三甘醇是最早用于溶液除湿系统的除湿剂,但由于它是有机溶剂,粘度较大,在系统中循环流动时容易发生停滞,粘附于空调系统的表面,影响系统的稳定工作,而且二甘醇、三甘醇等有机物质易挥发,容易进入空调房间,对人体造成危害,上述缺点限制了它们在溶液除湿系统中的应用,已经被金属卤盐溶液所取代。
2.2 金属卤盐溶液
溴化锂、氯化锂和氯化钙溶液是目前在溶液调湿空调中应用较广泛的除湿剂。
氯化钙溶液容易结晶,处理的空气范围有限,比热容较小,过程中温升明显,且密度和粘度也较大,性能劣于氯化锂溶液和溴化锂溶液。
对于溴化锂溶液和氯化锂溶液,当除湿负荷相同时,要求的氯化锂溶液浓度低于溴化锂溶液;在吸湿过程中,氯化锂溶液吸收相等潜热时的温升较小,吸湿能力更稳定;密度和粘度方面,两者各具优势。
溴化锂、氯化锂等盐溶液虽然具有一定的腐蚀性,但塑料等防腐材料的使用,可以防止盐溶液对管道等设备的腐蚀,而且成本较低,另外盐溶液不会挥发到空气中影响、污染室内空气,相反还具有除尘杀菌功能,有益于提高室内空气品质。
综合来看,溴化锂溶液和氯化锂溶液都是适用于溶液调湿空调的优秀吸湿剂。
另外,将氯化钙与膨胀石墨相混合,利用膨胀石墨丰富的微孔来强化氯化钙的传质,可解决化学吸附剂吸附过程中由于结块现象而导致的性能衰减现象。
同时,由于混合吸附剂压缩固化后,传质的微通道变得狭窄,使得固化混合吸附剂的吸附性能低于散状混合吸附剂,但是固化混合吸附剂具有较高的体积制冷量。
参考文献
[1] 方玉堂等. 金属离子掺杂改性硅胶吸附剂的吸附性能[J]. 材料导报:研究篇,2009,23(4):11-14
[2] 易晓勤等. 溶液调湿空调中常用除湿剂的物性分析[OL].
[3] 崔群,姚虎卿. 除湿空调用高效吸附剂的特性研究[J]. 南京化工大学学报,2001,23(4):43-46
[4] 王凯等. 氯化钙/膨胀石墨混合吸附剂的吸附特性[J]. 上海交通大学学报,2009,43(2):271-274
[5] 张春晓等. 丙烯酸和丙烯酰胺共聚合的竞聚率测定及其共聚物的吸湿性能研究[J]. 动能材料,2010,41(6):943-947。