定积分高考真题及答案
高考数学十年真题专题解析—定积分及其应用

定积分及其应用十年大数据年份题号考点考查内容20119定积分的几何意义主要考查利用定积分计算曲边梯形的面积考点34定积分的计算1.(2013江西)若22221231111,,,x S x dx S dx S e dx x===⎰⎰⎰则123,,S S S 的大小关系为A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<【答案】B 【解析】3221127133x S x dx ===⎰,22121ln ln 21S dx x x ===⎰,223121xxS e dx ee e ===-⎰.显然213S S S <<,故选B .2.(2011福建)1(2)x e x dx +⎰等于A .1B .1e -C .eD .1e +【答案】C 【解析】1(2)xex dx +⎰210()x e x e =+=,选C .3.(2015湖南)2(1)x dx -⎰=.【答案】0【解析】2221(1)()002x dx x x -=-=⎰.4.(2013湖南)若209,Tx dx T =⎰则常数的值为.【答案】3【解析】39333032=⇒===⎰T T x dx x TT.5.(2012江西)计算定积分121(sin )x x dx -+=⎰___________.【答案】23【解析】31211111(sin )cos |cos1cos1333x x x dx x --⎛⎫-⎛⎫⎛⎫+=-=--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎰112333=+=.6.(2011陕西)设2lg 0()30ax x f x x t dt x >⎧⎪=⎨+⎪⎩⎰ ,若((1))1f f =,则a =.【答案】8.1【解析】因为10x =>,所以(1)lg10f ==,又因为230()3af x x t dt x a =+=+⎰,所以3(0)f a =,所以31a =,1a =.考点35定积分的几何意义1.(2011全国课标理9)由曲线y x =,直线2y x =-及y 轴围成的图形的面积为(A)103(B)4(C)163(D)6【答案】C 【解析】解2y xy x ⎧=⎪⎨=-⎪⎩得(4,2),由图知,由曲线y x =,直线2y x =-及y 轴围成的图形的面积为4(2)x x dx +⎰=3242021(2)|32x x x -+=163,故选C .2.(2014山东)直线x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积为A .22B .24C .2D .4【答案】D【解析】由34x x =得,0x =、2x =或2x =-(舍去),直线x y 4=与曲线3y x =在第一象限内围成的封闭图形的面积23242001(4)(2)|44S x x dx x x =-=-=⎰,故选D .3.(2012福建)如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为A .14B .15C .16D .17【答案】C【解析】∵312201211)()0326S x x dx x x -=-=⎰阴影=(,正方形的面积为1,∴P =16,故选C .4.(2015福建)如图,点A 的坐标为()1,0,点C 的坐标为()2,4,函数()2f x x =,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于.【答案】512【解析】由已知得阴影部分面积为221754433x dx -=-=⎰.所以此点取自阴影部分的概率等于553412=.5.(2014福建)如图,在边长为e (e 为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.【答案】22e 【解析】根据对称性,两个阴影部分面积相等,∴1100=2()22|2x x S e e dx e e -=-=⎰阴,由几何概型的概率计算公式,得所求的概率为22=S S e 阴正.6.(2012山东)设0>a ,若曲线x y =与直线0,==y a x 所围成封闭图形的面积为2a ,则=a .【答案】94【解析】a a x dx x S a a====⎰23233232,解得49=a .。
十年高考真题(答案)——导数,微积分,定积分

∫1
8.C【解析】∵
S阴影 =
(
0
x − x)dx =
(2
3
x2
−
1
x2 )
1
=
3 20
1
,正方形的面积为 1,
6
∴P=1. 6
∫4
9.C【解析】用定积分求解 ( 0
x − x + 2)d=x
(2 3
3
x2
−
1 2
x2
+
2 x)=04
16
,选 C
3
∫ 10.C【解析】
1(ex + 2x)dx
0
=(ex
∫ 20. 5 【解析】由已知得阴影部分面积为 4 − 2 x2dx =4 − 7 = 5 .所以此点取自阴影部分
12
1
33
5
的概率等于 3 = 5 . 4 12
21. y =−5x + 3 【解析】 y′ = −5e−5x ,在点 (0, 3) 处的切线的斜率为 −5 ,
切线方程为 y − 3 =−5(x − 0) ,即 y =−5x + 3.
2 22. e2 【解析】根据对称性,两个阴影部分面积相等,
∫ ∴ S阴=2(e −
1 e x dx)
0
=2e
−
2ex
|10
=2 ,由几何概型的概率计算公式,
得所求的概率为
S阴 S正
=
2 e2
.
23.-3【解析】由题意可得 −5= 4a + b ① 2
又 f ′(= x)
2ax −
b x2
,过点 P(2,−5) 的切
x1
+
1 x1
高中数学 定积分 试题及解析

高中数学定积分试题一.选择题(共32小题)1.=()A.4+πB.4+2πC.4+4πD.2+π2.的值为()A.e﹣2B.e C.e+1D.e﹣13.|1﹣x2|dx=()A.B.4C.D.4.P(a,b)为函数f(x)=x2(x>0)图象上一点,当直线x=0,y=b与函数的图象围成区域的面积等于时,a的值为()A.B.C.1D.5.计算的值为()A.ln2+1B.2ln2+1C.3ln2+3D.3ln2+1 6.如图,在矩形OABC内随机取一点,则它位于阴影部分的概率为()A.B.C.D.7.已知函数,则定积分的值为()A.B.C.D.8.定积分(x+e x)的值为()A.e B.e+C.e﹣D.e+19.定积分(+x)dx=()A.+B.C.+1D.10.若a=(x+1)dx,b=cos xdx,c=e x dx,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b 11.计算:=()A.﹣1B.1C.﹣8D.812.抛物线y=x2+1和直线y=x+3所围成的封闭图形的面积是()A.B.C.D.13.函数f(x)在区间[﹣1,5]上的图象如图所示,g(x)=f(t)dt,则下列结论正确的是()A.在区间(﹣1,0)上,g(x)递增且g(x)>0B.在区间(﹣1,0)上,g(x)递增且g(x)<0C.在区间(﹣1,0)上,g(x)递减且g(x)>0D.在区间(﹣1,0)上,g(x)递减且g(x)<014.设,则二项式展开式的所有项系数和为()A.1B.32C.243D.102415.曲线,以及直线l:x=2所围成封闭图形的面积为()A.1B.3C.6D.816.如图所示阴影部分是由函数y=e x、y=sin x、x=0和x=围成的封闭图形,则其面积是()A.e+2B.e﹣2C.e D.2﹣e17.直线y=x与曲线y=围成的封闭图形的面积为()A.B.C.D.18.若函数f(x)=A sin(ωx﹣)(A>0,ω>0)的图象如图所示,则图中的阴影部分的面积为()A.﹣1+B.C.1﹣D.19.已知,由抛物线y=x2、x轴以及直线x=1所围成的曲边区域的面积为S.如图可以通过计算区域内多个等宽的矩形的面积总和来估算S.所谓“分之弥细,所失弥少”,这就是高中课本中的数列极限的思想.由此可以求出S的值为()A.B.C.D.20.曲线y=e2x与直线x+y=1、x﹣1=0围成的平面图形的面积等于()A.e2﹣1B.e2﹣C.e2﹣D.e2﹣21.曲线y2=x与y=x2所围图形的面积为()A.B.C.D.﹣1 22.汽车以V=3t+1(单位:m/s)作变速直线运动时,在第1s至第2s间的1s内经过的位移是()A.4.5m B.5m C.5.5m D.6m23.曲线y=﹣x2﹣x与x轴所围成图形的面积被直线y=kx分成面积相等的两部分,则k的值为()A.B.C.D.24.求曲线y=x2与y=x所围成的图形的面积S,正确的是()A.B.C.D.25.直线y=﹣x与函数f(x)=﹣x3围成封闭图形的面积为()A.1B.C.D.026.如图,阴影部分的面积为()A.2B.2﹣C.D.27.由曲线y=,直线y=x﹣2及x轴所围成的图形的面积为()A.B.C.D.828.由y=﹣x2与直线y=2x﹣3围成的图形的面积是()A.B.C.D.929.一物体在变力F(x)=5﹣x2(力单位:N,位移单位:m)作用下,沿与F(x)成30°方向作直线运动,则由x=1运动到x=2时F(x)作的功为()A.1J B.J C.J D.2J30.圆(x﹣a)2+y2=r2(a,r∈R,且r>0)的面积等于()A.(a+)dyB.2(a+)dyC.dxD.2dx31.由曲线y=x2﹣4,直线x=0,x=4和x轴围成的封闭图形的面积(如图)是()A.(x2﹣4)dxB.|(x2﹣4)dx|C.|x2﹣4|dxD.(x2﹣4)dx+(x2﹣4)dx32.某同学用“随机模拟方法”计算曲线y=lnx与直线x=e,y=0所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1,e]上的均匀随机数x i和10个区间[0,1]上的均匀随机数,其数据如表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22 y0.840.250.980.150.010.600.590.880.840.10 lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值是()A.B.C.D.二.填空题(共18小题)33.cos xdx+dx=.34.计算定积分=.35.(e x+2x)dx=.36.计算:dx=.37.若,则a=.38.由曲线y=﹣x2+2x与直线y=x围成的封闭图形的面积为.39.由x的正半轴、y=x2和x=4所围成的封闭图形的面积是40.计算定积分sin xdx=.41.定积分=.42.的值为.43.由曲线,直线y=2x,x=2所围成的封闭的图形面积为.44.已知曲线y2=x与y=x﹣2的图象所围成的阴影部分面积为.45.直线x=0、直线y=e+1与曲线y=e x+1围成的图形的面积为.46.如图是平面直角坐标系下y=sin x与圆O:x2+y2=π2图象,在圆O内随机取一点,则此点落在右图中阴影部分的概率是.47.曲线y=与直线y=2x﹣1及x轴所围成的封闭图形的面积为.48.由函数y=e x,y=,x=e所围成的封闭图形的面积为.49.直线y=kx+1与抛物线y=kx2+1(k≠0)围成的封闭区域的面积为1,则k=.50.计算2xdx=.参考答案与试题解析一.选择题(共32小题)1.=()A.4+πB.4+2πC.4+4πD.2+π【分析】对2和分别积分,结合定积分的几何意义求解即可.【解答】解:=+,而表示以原点为圆心,2为半径的上半个圆在[0,2]部分的面积,故=+=2x+=4+π,故选:A.【点评】本题考查了定积分的求法,考查了定积分的几何意义,主要考查计算能力,属于基础题.2.的值为()A.e﹣2B.e C.e+1D.e﹣1【分析】根据定积分的计算方法直接求解即可.【解答】解:=(x﹣lnx)=(e﹣1)﹣(1﹣0)=e﹣2,故选:A.【点评】本题考查了定积分的计算,主要考查计算能力,属于基础题.3.|1﹣x2|dx=()A.B.4C.D.【分析】根据函数|1﹣x2|为偶函数,将原式转化为[0,2]上的定积分,再分别转化为[0,1]和[1,2]上分别积分即可.【解答】解:∵函数|1﹣x2|为偶函数,∴|1﹣x2|dx=2=2+2=2(x﹣)|+2()|=4.故选:B.【点评】本题考查了定积分的计算,主要考查计算能力,属于基础题.4.P(a,b)为函数f(x)=x2(x>0)图象上一点,当直线x=0,y=b与函数的图象围成区域的面积等于时,a的值为()A.B.C.1D.【分析】画出图象,利用定积分求出即可.【解答】解:=b﹣=,b=1,故b=1,把b=1代入f(x)=x2(x>0),得a=1,故选:C.【点评】考查定积分的应用,基础题.5.计算的值为()A.ln2+1B.2ln2+1C.3ln2+3D.3ln2+1【分析】由定积分公式,求解.【解答】解:,故选:D.【点评】本题考查定积分,属于基础题.6.如图,在矩形OABC内随机取一点,则它位于阴影部分的概率为()A.B.C.D.【分析】利用定积分求出阴影面积,再求出概率.【解答】解:阴影部分的面积m=,矩形的面积为n=3,故阴影部分概率为,故选:B.【点评】考查了几何概型和用定积分求面积,基础题.7.已知函数,则定积分的值为()A.B.C.D.【分析】依题意,=(﹣x+2)dx+,根据定积分的几何意义,表示已(3,0)为圆心,以1为半径的上半个圆的面积,计算即可.【解答】解:依题意,=(﹣x+2)dx+其中表示已(3,0)为圆心,以1为半径的上半个圆的面积,如图,所以=(﹣x+2)dx+=(2x﹣)|+=,故选:C.【点评】本题考查了定积分的计算,定积分的几何意义,属于基础题.8.定积分(x+e x)的值为()A.e B.e +C.e ﹣D.e+1【分析】直接利用定积分的应用求出结果.【解答】解:==.故选:C.【点评】本题考查的知识要点:利用定积分的关系式的应用求出结果,主要考察学生的运算能力和转换能力,属于基础题型.9.定积分(+x)dx=()A .+B .C .+1D .【分析】直接利用定积分的运算和几何意义的应用求出结果.【解答】解:==.故选:A.【点评】本题考查的知识要点:定积分的应用,定积分的几何意义的应用,主要考察学生的运算能力和转换能力,属于基础题型.10.若a =(x+1)dx,b =cos xdx,c =e x dx,则()A.a<b<c B.b<c<a C.b<a<c D.c<a<b 【分析】直接利用定积分和三角函数的值的应用求出结果.【解答】解:a =(x+1)dx =.b =cos xdx =,c =e x dx =所以:c>a>b故选:C.【点评】本题考查的知识要点:定积分的应用,定积分的几何意义的应用,主要考察学生的运算能力和转换能力,属于基础题型.11.计算:=()A.﹣1B.1C.﹣8D.8【分析】根据题意,由定积分的计算公式可得=(x2+2x ),进而计算可得答案.11【解答】解:根据题意,=(x2+2x )=(4+4)﹣(4﹣4)=8;故选:D.【点评】本题考查定积分的计算,关键是掌握定积分的计算公式,属于基础题.12.抛物线y=x2+1和直线y=x+3所围成的封闭图形的面积是()A .B .C .D .【分析】根据题意分析,封闭图形面积即为(x+3)﹣(x2+1)在x=﹣1到x=2上定积分的值.【解答】解:令x+3=x2+1,得x1=﹣1,x2=2,则S ===,故选:C.【点评】本题考查定积分的基本定理,涉及定积分的计算,属于基础题.13.函数f(x)在区间[﹣1,5]上的图象如图所示,g(x )=f(t)dt,则下列结论正确的是()A.在区间(﹣1,0)上,g(x)递增且g(x)>0B.在区间(﹣1,0)上,g(x)递增且g(x)<0C.在区间(﹣1,0)上,g(x)递减且g(x)>0D.在区间(﹣1,0)上,g(x)递减且g(x)<0【分析】由定积分,微积分基本定理可得:f(t)dt表示曲线f(t)与t轴以及直线t=0和t=x所围区域面积,当x 增大时,面积减小,减小,g(x)增大,故g(x)递增且g(x)<0,得解.【解答】解:如图,g(x )=f(t)dt =﹣,因为x∈(﹣1,0),12所以t∈(﹣1,0),故f(t)>0,故f(t)dt表示曲线f(t)与t轴以及直线t=0和t=x所围区域面积,当x 增大时,面积减小,减小,g(x)增大,故g(x)递增且g(x)<0,故选:B.【点评】本题考查了定积分,微积分基本定理,属中档题.14.设,则二项式展开式的所有项系数和为()A.1B.32C.243D.1024【分析】由定积分、微积分基本定理及二项式展开式的系数得a ==﹣cos x=2,所以二项式(2x +)5展开式中令x=1可得:二项式(2x +)5展开式的所有项系数和为(2+1)5=243,得解【解答】解:因为a ==﹣cos x=2,所以二项式(2x +)5展开式中令x=1可得:二项式(2x +)5展开式的所有项系数和为(2+1)5=243,故选:C.【点评】本题考查了定积分、微积分基本定理及二项式展开式的系数,属基础题.15.曲线,以及直线l:x=2所围成封闭图形的面积为()A.1B.3C.6D.8【分析】联立得交点A(2,4),联立,得交点B(2,﹣4),解得A(2,4),B(2,﹣4),由曲线,以及直线l:x=2围成的封闭图形面积S,即可判断出正误.【解答】解:联立得交点A(2,4),联立,得交点B(2,﹣4),所以曲线,以及直线l:x=2所围成封闭图形的面积为:S ===2x2=2×22﹣2×02=8,13故选:D.【点评】本题主要考查积分的应用,求出积分上限和下限,是解决本题的关键.16.如图所示阴影部分是由函数y=e x、y=sin x、x=0和x =围成的封闭图形,则其面积是()A.e+2B.e﹣2C.e D.2﹣e【分析】直接利用定积分的应用求出结果.【解答】解:根据封闭图形的组成,所以:==.故选:B.【点评】本题考查的知识要点:定积分的应用,主要考察学生的运算能力和转换能力,属于基础题型.17.直线y=x与曲线y =围成的封闭图形的面积为()A .B .C .D .【分析】利用定积分的几何意义,首先利用定积分表示面积,然后计算即可.【解答】解:y=x与曲线y =围成的封闭图形的面积S ===.14故选:D.【点评】本题考查了定积分的几何意义的应用,关键是正确利用定积分表示面积,属基础题.18.若函数f(x)=A sin(ωx ﹣)(A>0,ω>0)的图象如图所示,则图中的阴影部分的面积为()A.﹣1+B .C.1﹣D .【分析】先求出f(x)的解析式,以及对应的零点,积分即可.【解答】解:依题意A=1,==π,∴T=2π,ω==1,∴f(x)=sin(x ﹣),故当x =时,f(x)=0.∴阴影面积为==cos(x ﹣)|=1﹣.故选:C.【点评】本题考查了正弦型函数的图象,定积分,主要考查计算能力,属于基础题.19.已知,由抛物线y=x2、x轴以及直线x=1所围成的曲边区域的面积为S.如图可以通过计算区域内多个等宽的矩形的面积总和来估算S.所谓“分之弥细,所失弥少”,这就是高中课本中的数列极限的思想.由此可以求出S的值为()A .B .C .D .15【分析】由题意利用积分法求出由抛物线y=x2、x轴以及直线x=1所围成的曲边区域的面积.【解答】解:由题意,令S =x2dx =x 3=×(1﹣0)=,∴由抛物线y=x2、x轴以及直线x=1所围成的曲边区域的面积为S =.故选:B.【点评】本题考查了定积分的几何意义与应用问题,是基础题.20.曲线y=e2x与直线x+y=1、x﹣1=0围成的平面图形的面积等于()A .e2﹣1B .e2﹣C .e2﹣D.e2﹣【分析】先求出曲线与直线的交点,设围成的平面图形面积为S,利用定积分求出S 即可.【解答】解:由题意,曲线y=e2x与直线x+y=1、x﹣1=0围成的平面图形如图所示∴S ==()=﹣=故选:A.【点评】本题主要考查定积分求面积.用定积分求面积时,要注意明确被积函数和积分区间,属于基本运算.21.曲线y2=x与y=x2所围图形的面积为()A .B .C .D .﹣1【分析】作出两个曲线的图象,求出它们的交点,由此可得所求面积为函数在区间[0,1]上的定积分的值,再用定积分计算公式加以运算即可得到本题答案.16【解答】解:由,解得或,则曲线y2=x与y=x2所围图形的面积为S =(﹣x2)dx =(﹣x3)=(﹣)﹣0=,故选:C.【点评】本题求两条曲线围成的曲边图形的面积,着重考查了定积分的几何意义和积分计算公式等知识,属于基础题.22.汽车以V=3t+1(单位:m/s)作变速直线运动时,在第1s至第2s间的1s内经过的位移是()A.4.5m B.5m C.5.5m D.6m【分析】根据题意,由定积分定理,可得汽车在第1s至第2s间的1s内经过的位移S =(3t+1)dt,计算即可得答案.【解答】解:根据题意,汽车在第1s至第2s间的1s内经过的位移S =(3t+1)dt =(+t )=5.5;故选:C.【点评】本题考查了微积分基本定理,关键是理解定积分的几何意义.23.曲线y=﹣x2﹣x与x轴所围成图形的面积被直线y=kx分成面积相等的两部分,则k的值为()A .B .C .D .【分析】先计算出曲线y=﹣x2﹣x与x轴围成区域的面积,然后求出曲线y=﹣x2﹣x与直线y=kx的交点坐标,然后利用定积分计算直线y=kx与曲线y=﹣x2﹣x围17成区域的面积,等于曲线y=﹣x2﹣x与x轴围成区域的面积的一半,列方程求出k 的值.【解答】解:曲线y=﹣x2﹣x与x轴交于(﹣1,0)和原点,所以,曲线y=﹣x2﹣x与x轴围成的平面区域的面积为,联立,解得或,即直线y=kx与曲线y=﹣x2﹣x交于点(﹣k﹣1,﹣k2﹣k)和坐标原点,所以,曲线y=﹣x2﹣x位于直线y=kx上方区域的面积为==,解得,故选:D.【点评】本题考察利用定积分计算曲边三角形的面积,关键在于积分函数与积分区间,属于中等题、24.求曲线y=x2与y=x所围成的图形的面积S,正确的是()A .B .C .D .【分析】根据题意,画出图象确定所求区域,结合定积分的几何性质分析可得答案.【解答】解:根据题意,如图所示,阴影部分为曲线y=x2与y=x所围成的图形,其面积S=S△ABO﹣S曲边梯形ABO =(x﹣x2)dx;故选:A.【点评】本题考查定积分的几何意义,要注意明确被积函数和积分区间.1825.直线y=﹣x与函数f(x)=﹣x3围成封闭图形的面积为()A.1B .C .D.0【分析】先根据题意画出区域,然后然后依据图形得到积分上限为1,积分下限为﹣1的积分,从而利用定积分表示出曲边梯形的面积,最后用定积分的定义求出所求即可.【解答】解:联立方程可得,解得x=﹣1,0,1,∴直线y=﹣x与函数f(x)=﹣x3围成封闭图形的面积S=2(x﹣x3)dx=2()=2(﹣)=,故选:C.【点评】考查学生会求出原函数的能力,以及会利用定积分求图形面积的能力,同时考查了数形结合的思想,属于基础题.26.如图,阴影部分的面积为()A.2B.2﹣C .D .【分析】确定积分区间与被积函数,求出原函数,即可求得定积分.【解答】解:由题意阴影部分的面积等于(3﹣x2﹣2x)dx=(3x ﹣x3﹣x2)=(3﹣﹣1)﹣(﹣9+9﹣9)=,故选:C.19【点评】本题考查定积分求面积,考查导数知识的运用,考查学生的计算能力,属于基础题.27.由曲线y =,直线y=x﹣2及x轴所围成的图形的面积为()A .B .C .D.8【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y=x2与直线y=6x围成的封闭图形的面积,即可求得结论.【解答】解:由解得,∴曲线y =,直线y=x﹣2及x轴所围成的图形的面积S =﹣(x ﹣2)dx =﹣()=﹣2=.故选:A.【点评】本题考查利用定积分求面积,解题的关键是确定被积区间及被积函数.28.由y=﹣x2与直线y=2x﹣3围成的图形的面积是()A .B .C .D.9【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出y=﹣x2与直线y=2x﹣3的面积,即可求得结论.【解答】解:由y=﹣x2与直线y=2x﹣3联立,解得y=﹣x2与直线y=2x﹣3的交点为(﹣3,﹣9)和(1,﹣1)因此,y=﹣x2与直线y=2x﹣3围成的图形的面积是S =(﹣x2﹣2x+3)dx =(﹣x3﹣x2+3x )=.故选:B.【点评】本题给出y=﹣x2与直线y=2x﹣3,求它们围成的图形的面积,着重考查了20定积分的几何意义和定积分计算公式等知识,属于基础题.29.一物体在变力F(x)=5﹣x2(力单位:N,位移单位:m)作用下,沿与F(x)成30°方向作直线运动,则由x=1运动到x=2时F(x)作的功为()A.1J B.J C.J D.2J【分析】由物理学知识知,变力F(x)所作的功对应“位移﹣力”只要求W=∫12(5﹣x2)•cos30°dx,进而计算可得答案.【解答】解:由于F(x)与位移方向成30°角.如图:F在位移方向上的分力F′=F•cos30°,W=∫12(5﹣x2)•cos30°dx=∫12(5﹣x2)dx=(5x﹣x3)|12=故选:C.【点评】本题属于物理学科的题,体现了数理结合的思想方法,属于基础题.30.圆(x﹣a)2+y2=r2(a,r∈R,且r>0)的面积等于()A.(a+)dyB.2(a+)dyC.dxD.2dx【分析】由圆的方程求得y关于x的解析式,再求出x的取值范围,根据圆的对称性和定积分的几何意义,写出圆的面积表达式.【解答】解:由圆(x﹣a)2+y2=r2(a,r∈R,且r>0),得y=±,由(x﹣a)2≤r2,解得a﹣r≤x≤a+r;根据圆的对称性和定积分的几何意义,计算圆的面积为S圆=2dx.故选:D.【点评】本题考查了圆的方程与定积分的应用问题,是基础题.31.由曲线y=x2﹣4,直线x=0,x=4和x轴围成的封闭图形的面积(如图)是()A.(x2﹣4)dxB.|(x2﹣4)dx|C.|x2﹣4|dxD.(x2﹣4)dx+(x2﹣4)dx【分析】由题意结合定积分的几何意义整理计算即可求得最终结果.【解答】解:定积分表示曲边梯形的面积,位于x轴上方为正面积,位于x轴下方为负面积,据此可得:由曲线y=x2﹣4,直线x=0,x=4和x轴围成的封闭图形的面积是.故选:C.【点评】本题考查定积分的几何意义及其应用,重点考查学生对基础概念的理解和计算能力,属于中等题.32.某同学用“随机模拟方法”计算曲线y=lnx与直线x=e,y=0所围成的曲边三角形的面积时,用计算机分别产生了10个在区间[1,e]上的均匀随机数x i和10个区间[0,1]上的均匀随机数,其数据如表的前两行.x 2.50 1.01 1.90 1.22 2.52 2.17 1.89 1.96 1.36 2.22 y0.840.250.980.150.010.600.590.880.840.10 lnx0.900.010.640.200.920.770.640.670.310.80由此可得这个曲边三角形面积的一个近似值是()A.B.C.D.【分析】首先确定所给数据中唯一曲边三角形的点的个数,然后利用频率近似概率,结合几何概型求解曲边三角形的面积即可.【解答】解:由表可知,向矩形区域{(x,y)|1⩽x⩽e,0⩽y⩽1}内随机抛掷10个点,其中有6个点在曲边三角形内,其横坐标分别为2.5,1.22,2.52,2.17,1.89,2.22其频率为.∵矩形区域的面积为e﹣1,∴曲边三角形面积的近似值为.故选:D.【点评】本题考查了蒙特卡洛模拟的方法,频率值近似为概率值,将古典概型与几何概型联系起来即可,属于常考题目.二.填空题(共18小题)33.cos xdx+dx=1+.【分析】cos xdx可以直接积分,dx根据几何意义积分即可.【解答】解:dx表示单位圆在[0,1]上的部分的面积,即个单位圆的面积,∴cos xdx+dx=sin x+=1+,故答案为:1+.【点评】本题考查了定积分的求法,考查了定积分的几何意义,主要考查计算能力,属于基础题.34.计算定积分=.【分析】=dx﹣dx,前式根据定积分的几何意义求解,后式直接积分即可得到所求.【解答】解:=dx﹣dx,dx表示半圆y=在[0,1]上部分的面积,即个单位圆的面积,∴=dx﹣dx=﹣x=.故答案为:.【点评】本题考查了定积分的求法,定积分的几何意义,主要考查计算能力,属于基础题.35.(e x+2x)dx=e2+3.【分析】直接利用定积分运算法则求解即可【解答】解:(e x+2x)dx=e2﹣1+(22﹣0)=e2+3,故答案为:e2+3【点评】题考查定积分的运算法则的应用,考查计算能力36.计算:dx=π﹣.【分析】根据定积分的几何意义,结合圆的知识求解即可.【解答】解:依题意,dx表示半圆y=,在x=1和x=2之间的部分与x轴围成的区域的面积,如图中阴影所示,依题意,△AOB为等边三角形,故B的纵坐标为∴dx=π×22﹣=π﹣,故答案为:π﹣.【点评】本题考查了定积分的求法,考查定积分的几何意义,主要考查计算能力和直观想象,属于中档题.37.若,则a=2.【分析】直接利用关系式求出函数的被积函数的原函数,进一步求出a的值.【解答】解:若,则,即,所以a=2.故答案为:2.【点评】本题考查的知识要点:定积分的应用,被积函数的原函数的求法,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.38.由曲线y=﹣x2+2x与直线y=x围成的封闭图形的面积为.【分析】先联立方程,组成方程组,求得交点坐标,可得被积区间,再用定积分表示出曲线y=x2+2x与直线y=x所围成的封闭图形的面积,即可求得结论.【解答】解:将直线方程与曲线方程联立可得,所以正直线y=x和抛物线y=﹣x2+2x交点坐标为(0,0),(1,1),结合图象可知围成的封闭图形的面积为.故答案为:.【点评】本题考查利用定积分求面积,解题的关键是确定被积区间及被积函数.本题属于基础题.39.由x的正半轴、y=x2和x=4所围成的封闭图形的面积是【分析】根据定积分的几何意义和积分法则求解即可.【解答】解:根据定积分的几何意义,由x的正半轴、y=x2和x=4所围成的封闭图形的面积是:S===﹣0=,故答案为:.【点评】本题主要考查了定积分的几何意义与计算问题,是基础题.40.计算定积分sin xdx=2.【分析】根据题意,由定积分的计算公式可得sin xdx=(﹣cos x),进而计算可得答案.【解答】解:根据题意,sin xdx=(﹣cos x)=cos0﹣cosπ=2;故答案为:2.【点评】本题考查定积分的计算,关键是掌握定积分的计算公式.41.定积分=+e.【分析】根据题意,由定积分的计算公式可得=(+e x),进而计算可得答案.【解答】解:根据题意,=(+e x)=(+e)﹣(0+1)=+e,故答案为:+e.【点评】本题考查定积分的计算,关键是掌握定积分的计算公式.42.的值为8π.【分析】利用定积分性质和圆的面积求出即可.【解答】解:根据定积分的性质,y=sin3x为奇函数,在[﹣4,4]图象关于原点对称,定积分为0,y=在x∈[﹣4,4]的面积为以(0,0)为圆心,半径为4的圆的面积的一半,故为8π,故答案为:8π.【点评】本题考查定积分的计算,考查学生分析解决问题的能力,属于中档题.43.由曲线,直线y=2x,x=2所围成的封闭的图形面积为3﹣2ln2.【分析】求出曲线,直线y=2x的交点坐标,根据定积分的几何意义列式求解即可.【解答】解:依题意,由解得,∴封闭的图形面积为=(x2﹣2lnx)=3﹣2ln2.故答案为:3﹣2n2.【点评】本题考查了定积分的几何意义,定积分的求法,主要考查分析解决问题的能力和计算能力,属于基础题.44.已知曲线y2=x与y=x﹣2的图象所围成的阴影部分面积为.【分析】联立直线和抛物线,可得交点坐标,对y积分即可求得面积.【解答】解:联立y2=x与y=x﹣2可得,直线与抛物线的交点为(1,﹣1),(4,2),根据定积分的意义,图象所围成的阴影部分面积:S==()=,故答案为:.【点评】本题考查了定积分的应用,定积分的几何意义,属于基础题.45.直线x=0、直线y=e+1与曲线y=e x+1围成的图形的面积为1.【分析】根据定积分的几何意义求解即可.【解答】解:依题意,令e+1=e x+1,得x=1,所以直线x=0,y=e+1与曲线y=e x+1围成的区域的面积为S===(ex﹣e x)|=1,故答案为:1.【点评】本题考查了定积分的几何意义,定积分的计算,属于基础题.46.如图是平面直角坐标系下y=sin x与圆O:x2+y2=π2图象,在圆O内随机取一点,则此点落在右图中阴影部分的概率是.【分析】计算出阴影面积,圆的面积,代入几何概型的概率计算公式即可.【解答】解:依题意,图中阴影面积为S=2=﹣2cos x|=4,而圆的面积为S'=π×π2=π3,所以圆O内随机取一点,则此点落在右图中阴影部分的概率是=.故答案为:.【点评】本题考查了定积分的求法,圆的方程与面积,几何概型的概率计算,属于基础题.47.曲线y=与直线y=2x﹣1及x轴所围成的封闭图形的面积为.【分析】根据定积分的几何意义,先求出积分的上下限,即可求出所围成的图形的面积【解答】解:由曲线y=与直线y=2x﹣1构成方程组,解得,由直线y=2x﹣1与y=0构成方程组,解得;∴曲线y=与直线y=2x﹣1及x轴所围成的封闭图形的面积为:S=dx﹣(2x﹣1)dx=﹣(x2﹣x)=﹣=.故答案为:.【点评】本题考查了定积分的计算问题,关键是求出积分的上下限,是基础题.48.由函数y=e x,y=,x=e所围成的封闭图形的面积为e e﹣2e.【分析】运用定积分知识计算围城曲边梯形的面积可得结果.【解答】解:根据题意得,联立得;∴S==e e﹣e﹣e(lne﹣ln1)=e e﹣2e故答案为e e﹣2e.【点评】本题考查由定积分计算围成图形的面积.49.直线y=kx+1与抛物线y=kx2+1(k≠0)围成的封闭区域的面积为1,则k=±6.【分析】求出直线y=kx+1与抛物线y=kx2+1(k≠0)的两个交点,确定被积函数和被积区间,利用定积分可求出围成的封闭区域的面积,即可求出k的值.【解答】解:当k>0时,直线y=kx+1与抛物线y=kx2+1交于(0,1)和(1,k+1)两点,且当0<x<1时,直线y=kx+1在抛物线y=kx2+1上方,此时,直线y=kx+1与抛物线y=kx2+1(k≠0)围成的封闭区域的面积为=k,得k =6;当k<0时,直线y=kx+1与抛物线y=kx2+1交于(0,1)和(1,k+1)两点,且当0<x<1时,直线y=kx+1在抛物线y=kx2+1下方,此时,直线y=kx+1与抛物线y=kx2+1(k≠0)围成的封闭区域的面积为,得k=﹣6.故答案为:±6.【点评】本题考查利用定积分来计算面积,解决本题的关键是确定被积函数和被积区间,属于中等题.50.计算2xdx=8.【分析】直接根据定积分的计算法则即可.【解答】解:2xdx=x2=32﹣12=8,故答案为:8【点评】本题考查了定积分的计算,属于基础题。
高三数学积分试题答案及解析

高三数学积分试题答案及解析1.如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为()A.B.C.D.【答案】C【解析】由题意知,这是一个几何概型概率的计算问题.正方形的面积为,阴影部分的面积为,故选.【考点】1.定积分的应用;2.几何概型.2.如图,在边长为(为自然对数的底数)的正方形中随机撒一粒黄豆,则他落到阴影部分的概率为______.【答案】【解析】由对数函数与指数函数的对称性,可得两块阴影部分的面积相同..所以落到阴影部分的概率为.【考点】1.几何概型.2.定积分.3.二项式()的展开式的第二项的系数为,则的值为( ) A.B.C.或D.或【答案】A【解析】∵展开式的第二项的系数为,∴,∴,∵,∴,当时,.【考点】二项式定理、积分的运算.4. [2013·江西高考]若S1=,S2=,S3=,则S1,S2,S3的大小关系为()A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1【答案】B【解析】S1==x3=,S2==lnx=ln2,S3==e x=e2-e=e(e-1)>e>,所以S2<S1<S3,故选B.5. [2014·琼海模拟]如图所示,则由两条曲线y=-x2,x2=-4y及直线y=-1所围成图形的面积为________.【答案】【解析】由图形的对称性,知所求图形的面积是位于y轴右侧图形面积的2倍.由得C(1,-1).同理,得D(2,-1).故所求图形的面积S=2{[--(-x2)]dx+[--(-1)]dx}=2[-]=2[-(-x)]=.6.如图,阴影区域是由函数的一段图象与x轴围成的封闭图形,那么这个阴影区域的面积是()A.B.C.D.【答案】B【解析】根据余弦函数的对称性可得,曲线从到与x轴围成的面积与从到与轴围成的面积相等,∴由函数的一段图象与轴围成的封闭图形的面积,,故选B.【考点】定积分求面积。
十年高考真题分类汇编(2010-2019) 数学(文) 专题04 导数与定积分 Word版含解析

C. D.
【答案】D
【解析】由已知函数关系式,先找到满足f(x0)<0的整数x0,由x0的唯一性列不等式组求解.
∵f(0)=-1+a<0,∴x0=0.
又∵x0=0是唯一的使f(x0)<0的整数,
11.(2014·全国1·理T11文T12)已知函数f(x)=ax3-3x2+1,若f(x)存在唯一的零点x0,且x0>0,则a的取值范围是()
A.a=e,b=-1B.a=e,b=1 C.a=e-1,b=1D.a=e-1,b=-1
【答案】D
【解析】∵y'=aex+lnx+1,
∴k=y'|x=1=ae+1=2,
∴ae=1,a=e-1.
将点(1,1)代入y=2x+b,得2+b=1,
∴b=-1.
3.(2018·全国1·理T5文T6)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()
A.(2,+∞)B.(1,+∞)
C.(-∞,-2)D.(-∞,-1)
【答案】C
【解析】当a=0时,显然f(x)有2个零点,不符合题意;
当a>0时,f'(x)=3ax2-6x=3x(ax-2),易知函数f(x)在(-∞,0)上单调递增.
又f(0)=1,当x→-∞时,f(x)=x2(ax-3)+1→-∞,故不适合题意;当a<0
↗
选A.
5.(2017·浙江·T7)函数y=f(x)的导函数y=f'(x)的图象如图所示,则函数y=f(x)的图象可能是()
【答案】D
【高考数学】定积分的概念、基本定理经典习题集22

(1) 令
,注意到 t>0,得 t=10
(2) 因为
的运行的路程可知结论。 解:( Ⅰ )令 即经过的时间为 10s;
,注意到 t>0,得 t=10 (6 分 )
(Ⅱ)
即紧急刹车后火车运行的路程为 55ln11 米。 ( 12 分)
10.(本小题满分 12 分)已知:
,证明:
【答案】 见解析
【解析】
1
.
2
2
∵ 函数在( 0, 1 )上 S′< 0,在( 1 , 1)上 S′> 0,
2
2
∴t
1
是极小值点,
2
又 S( 1 )
1
, S(0)
1
, S( 1)
2
,
24
3
3
1
1
故 t 时, S= S1+S2 最小为 .
2
4
【点睛】
本题考查利用定积分求面积,解题的关键是确定被积区间及被积函数.
3.计算下列定积分.
有所求面积
,
故
的图象与两坐标轴所围成图形的面积为
.
【点睛】 本题主要考査导数的逆运算和定积分在求面积中的应用,属于基础题
. 一般情况下,定
积分
的几何意义是介于 轴、曲线
以及直线
之间的
曲边梯形面积的代数和 ,其中在 轴上方的面积等于该区间上的积分值, 在 轴下方的 面积等于该区间上积分值的相反数 ,所以在用定积分求曲边形面积时,一定要分清面积 与定积分是相等还是互为相反数;两条曲线之间的面积可以用两曲线差的定积分来求 解. 13.已知点 A(﹣ 1,2)是抛物线 C:y= 2x2 上的点,直线 l1 过点 A,且与抛物线 C 相 切,直线 l2: x= a( a≠﹣ 1)交抛物线 C 于点 B,交直线 l1 于点 D . ( 1)求直线 l1 的方程; ( 2)设 △ BAD 的面积为 S1,求 |BD|及 S1 的值; ( 3)设由抛物线 C,直线 l1, l2 所围成的图形的面积为 S2,求证: S1: S2的值为与 a 无关的常数.
高考定积分分类汇总及答案汇编
第十四节 定积分与微积分基本定理(理)一、选择题1.(2013·江西卷)若S 1=⎠⎛12x 2d x ,S 2=⎠⎛121x d x ,S 3=⎠⎛12e x d x ,则S 1,S 2,S 3的大小关系为( )A .S 1<S 2<S 3B .S 2<S 1<S 3C .S 2<S 3<S 1D .S 3<S 2<S 1 解析 本题考查微积分基本定理.S 1=⎠⎛12x 2d x =x 33|21=73. S 2=⎠⎛121x d x =ln x |21=ln 2-ln 1=ln 2.S 3=⎠⎛12e x d x =e x |21=e 2-e =e (e -1). 令e =2.7,∴S 3>3>S 1>S 2.故选B .A .3B .4C .3.5D .4.5答案 C3.如图所示,图中曲线方程为y =x 2-1,用定积分表达围成封闭图形(阴影部分)的面积是( )A .⎪⎪⎪⎪⎠⎛02(x 2-1)d x B .⎠⎛02(x 2-1)d x C.⎠⎛02|x 2-1|d x D .⎠⎛01(x 2-1)d x +⎠⎛02(x 2-1)d x解析 面积S =⎠⎛01(1-x 2)d x +⎠⎛12(x 2-1)d x =⎠⎛02|x 2-1|d x ,故选C.4.(2012·湖北卷)已知二次函数y =f (x )的图象如图所示,则它与x 轴所围图形的面积为( )A.2π5B.43C.32D.π25.(2013·湖北卷)一辆汽车在高速公路上行驶,由于遇到紧急情况而刹车,以速度v (t )=7-3t +251+t(t 的单位:s ,v 的单位:m/s)行驶至停止.在此期间汽车继续行驶的距离(单位:m)是( )A .1+25ln5B .8+25ln 113 C .4+25ln5D .4+50ln2解析 令v (t )=0,7-3t +251+t=0 ∴3t 2-4t -32=0,∴t =4,则汽车行驶的距离为⎠⎛04v (t )d t =⎠⎛04⎝⎛⎭⎪⎫7-3t +251+t d t =⎣⎢⎡⎦⎥⎤7t -32t 2+25ln (1+t )|40=7×4-32×42+25ln5-0=4+25ln5,故选C.6.(2014·武汉调研)如图,设D 是图中边长分别为1和2的矩形区域,E 是D 内位于函数y =1x (x >0)图象下方的区域(阴影部分),从D 内随机取一个点M ,则点M 取自E 内的概率为( )A.ln22B.1-ln22C.1+ln22D.2-ln22二、填空题(本大题共3小题,每小题5分,共15分) 7.(2013·湖南卷)若⎠⎛0T x 2d x =9,则常数T 的值为________.解析 ∵⎠⎛0T x 2d x =x 33|T 0=T 33=9,∴T =3.答案 38.(2014·厦门市质检)计算:⎠⎛01(x 2+1-x 2)d x =______.解析 ⎠⎛01(x 2+1-x 2)d x =⎠⎛01x 2d x +⎠⎛011-x 2d x =x 3310+14π=13+π4.9.已知函数y =f (x )的图象是折线段ABC ,其中A (0,0)、B ⎝ ⎛⎭⎪⎫12,5、C (1,0).函数y =xf (x )(0≤x ≤1)的图象与x 轴围成的图形的面积为________.解析 设直线为y =kx +b ,代入A ,B 两点,得y =10x .代入B ,C 两点,则⎩⎨⎧5=12k +b ,0=k +b ,∴k =-10,b =10.∴f (x )=⎩⎪⎨⎪⎧10x , 0≤x ≤12,-10x +10, 12<x ≤1.∴y =xf (x )=⎩⎪⎨⎪⎧10x 2, 0≤x ≤12,-10x 2+10x , 12<x ≤1.三、解答题(本大题共3小题,每小题10分,共30分)10.若f (x )是一次函数,且⎠⎛01f (x )d x =5,⎠⎛01xf (x )d x =176,求⎠⎛12f (x )x d x 的值.解 ∵f (x )是一次函数,∴设f (x )=ax +b (a ≠0). 由⎠⎛01(ax +b )d x =5,得⎝ ⎛⎭⎪⎫12ax 2+bx |10=12a +b =5.①由⎠⎛01xf (x )d x =176,得⎠⎛01(ax 2+bx )d x =176. 即⎝ ⎛⎭⎪⎫13ax 3+12bx 2|10=176. ∴13a +12b =176.②解①②,得a =4,b =3.∴f (x )=4x +3.于是⎠⎛12f (x )x d x =⎠⎛124x +3x d x =⎠⎛12(4+3x )d x=(4x +3ln x )|21=8+3ln2-4=4+3ln2.11.(2013·日照调研)如图,直线y =kx 分抛物线y =x -x 2与x 轴所围图形为面积相等的两部分,求k 的值.解 抛物线y =x -x 2与x 轴两交点的横坐标x 1=0,x 2=1, 所以抛物线与x 轴所围图形的面积S =⎠⎛01(x -x 2)d x =⎝ ⎛⎭⎪⎫x 22-x 33|10=12-13=16.又可得抛物线y =x -x 2与y =kx 两交点的横坐标为x ′1=0,x ′2=1-k , 所以S 2=∫1-k 0(x -x 2-kx )d x=⎝ ⎛⎭⎪⎫1-k 2x 2-x 33|1-k 0 =16(1-k )3.又知S =16,所以(1-k )3=12.于是k =1-312=1-342.12.设函数f (x )=x 3+ax 2+bx 在点x =1处有极值-2.(1)求常数a ,b 的值;(2)求曲线y =f (x )与x 轴所围成的图形的面积.解 (1)由题意知,f ′(x )=3x 2+2ax +b ,f (1)=-2,且f ′(1)=0, 即⎩⎪⎨⎪⎧ 1+a +b =-2,3+2a +b =0,解得⎩⎪⎨⎪⎧a =0,b =-3.(2)由(1)可知,f (x )=x 3-3x .作出曲线y =x 3-3x 的草图如图,所求面积为阴影部分的面积,由x 3-3x =0得曲线y =x 3-3x 与x 轴的交点坐标是(-3,0),(0,0)和(3,0),而y =x 3-3x 是R 上的奇函数,所以函数图象关于原点成中心对称.所以所求图形的面积为。
高考定积分及答案文档
定积分【知识梳理】(1)概念设函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…x n =b 把区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上取任一点ξi (i =1,2,…n )作和式I n =∑ni f1=(ξi )△x (其中△x 为小区间长度),把n →∞即△x →0时,和式I n 的极限叫做函数f (x )在区间[a ,b ]上的定积分,记作:⎰badx x f )(。
这里,a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )dx 叫做被积式。
基本的积分公式:⎰dx 0= ;⎰dx x m = (m ∈Q , m ≠-1);⎰x 1dx = ;⎰dx e x = ;⎰dx a x=a a x ln +C ;⎰xdx cos = ;⎰xdx sin = (表中C 均为常数)。
(2)定积分的性质 ①()ba kf x dx =⎰(k 为常数); ②()()baf xg x dx ±=⎰;③⎰⎰⎰+=bacabcdx x f dx x f dx x f )()()((其中a <c <b )。
(3)定积分求曲边梯形面积由三条直线x =a ,x =b (a <b ),x 轴及一条曲线y =f (x )(f (x )≥0)围成的曲边梯的面积⎰=ba dx x f S )(。
如果图形由曲线y 1=f 1(x ),y 2=f 2(x )(不妨设f 1(x )≥f 2(x )≥0), 及直线x =a ,x =b (a<b )围成,那么所求图形的面积 S =S 曲边梯形AMNB -S 曲边梯形DMNC = 。
【课前预习】 1.求下列定积分. (1)02dx π-⎰= ; (2)312x dx ⎰= ;(3)1831x dx -⎰= ; (4)122()x x dx ---⎰= ;2.求下列定积分.(1)24cos xdx ππ-⎰= ; (2)36sin xdx ππ-⎰= ;(3)22xdx ⎰= ; (4)21e edx x⎰= ; 【典型例题】题型一:利用积分公式求定积分值例1.计算下列定积分的值(1)⎰--312)4(dx x x ;(2)⎰-215)1(dx x ;(3)dx x x ⎰+20)sin (π;(4)dx x ⎰-222cos ππ;题型二:利用定积分求平面图形的面积例2 已知直线y ax =与曲线xy e b =+相交于点(0,0),(1,)y ,求直线y ax =与xy e b =+所围成的图形的面积。
定积分试题及答案大学
定积分试题及答案大学一、选择题1. 定积分的几何意义是表示曲线与x轴之间的有向面积。
()A. 正确B. 错误答案:A2. 设函数f(x)在区间[a,b]上连续,则定积分∫[a,b]f(x)dx的值是唯一的。
()A. 正确B. 错误答案:A3. 定积分∫[a,b]kf(x)dx=k∫[a,b]f(x)dx,其中k为常数。
()A. 正确B. 错误答案:A二、填空题1. 设f(x)=x^2,计算定积分∫[0,1]x^2dx的值为____。
答案:1/32. 若∫[0,1]f(x)dx=2,则∫[0,2]f(x)dx=____。
答案:43. 设f(x)=2x,求定积分∫[1,2]2xdx的值为____。
答案:4三、解答题1. 计算定积分∫[0,π]sin(x)dx。
解:根据定积分的计算公式,我们有∫[0,π]sin(x)dx = [-cos(x)] | [0,π] = -cos(π) - (-cos(0)) = 2。
2. 设f(x)=x^3+3x^2+2x-1,求定积分∫[-1,1]f(x)dx。
解:首先计算不定积分F(x)=∫f(x)dx,得到F(x)=x^4/4+x^3+x^2-x+C。
然后计算定积分∫[-1,1]f(x)dx = F(1)-F(-1) = [(1)^4/4+(1)^3+(1)^2-1] - [(-1)^4/4+(-1)^3+(-1)^2-(-1)]= (1/4+1+1-1) - (1/4-1+1+1) = 0。
3. 求曲线y=x^2与x轴及直线x=1,x=2所围成的面积。
解:根据定积分的几何意义,所求面积为S = ∫[1,2]x^2dx = [x^3/3] | [1,2] = (2^3/3) - (1^3/3) = 7/3。
高三数学积分试题
高三数学积分试题1.定积分的值为()A.B.C.D.【答案】C【解析】,故选C.【考点】定积分.2.二项式()的展开式的第二项的系数为,则的值为( ) A.B.C.或D.或【答案】A【解析】∵展开式的第二项的系数为,∴,∴,∵,∴,当时,.【考点】二项式定理、积分的运算.3.(e x+2x)dx等于()A.1B.e﹣1C.e D.e2+1【答案】C1=e+1﹣1=e【解析】(e x+2x)dx=(e x+x2)|故选C.4.曲线y=x2和y2=x所围成的平面图形绕x轴旋转一周后,所形成的旋转体的体积为()A.B.C.D.【答案】A【解析】设旋转体的体积为V,1则=.故旋转体的体积为:.故选A.5. 2.=()A.B.C.D.【答案】A【解析】=∵,∴圆的面积的四分之一,即.6.设函数的定义域为,若对于给定的正数k, 定义函数则当函数时,定积分的值为【答案】【解析】由定义可知,当时,,即,则====.【考点】定积分的运算.7.定积分的值为____________.【答案】【解析】.【考点】定积分.8.定义F(x,y)=(1+x)y,x,y∈(0,+∞).令函数f(x)=F(1,log2(x2-4x+9))的图象为曲线C1,曲线C1与y轴交于点A(0,m),过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),设曲线C1在点A,B之间的曲线段与线段OA,OB所围成图形的面积为S,求S的值.【答案】9【解析】因为F(x,y)=(1+x)y,所以f(x)=F(1,log2(x2-4x+9))==x2-4x+9,故A(0,9),又过坐标原点O向曲线C1作切线,切点为B(n,t)(n>0),f'(x)=2x-4.所以解得B(3,6),所以S=(x2-4x+9-2x)dx=(-3x2+9x)=9.9.若S1=x2d x,S2=d x,S3=e x d x,则S1,S2,S3的大小关系为().A.S1<S2<S3B.S2<S1<S3C.S2<S3<S1D.S3<S2<S1【答案】B【解析】S1==;S2=ln x=ln 2<ln e=1;S3=e x=e2-e≈2.72-2.7=4.59,所以S2<S1<S3.10.若,,则、的大小关系为 .【答案】【解析】,,.【考点】积分的计算.11.二项式的展开式的第二项的系数为,则的值为()A.3B.C.3或D.3或【答案】B【解析】∵,第二项的系数为,∴,∴.【考点】1.二项展开式的系数;2.积分的计算.12.设,则的值为()A.B.C.D.【答案】C【解析】,选C.【考点】1.分段函数;2.定积分13.曲线与直线及所围成的封闭图形的面积为()A.B.C.D.【答案】D【解析】在同一直角坐标系中,作出,和的图像,如图所示,则阴影部分面积为S==.【考点】定积分的几何意义.14.由曲线,,直线所围成的区域的面积为___________【答案】【解析】画出这三条曲线可以看出,它们所围成的图形的面积为.【考点】定积分的几何意义.15.二项式的展开式的第二项的系数为,则的值为()A.B.C.或D.或【答案】C【解析】,所以,解得,当时,,当时, ,故选C.【考点】定积分的应用,二项式定理的应用,二项式定理的通项以及组合数的计算.16.曲线与直线及所围成的封闭图形的面积为( )A.B.C.D.【答案】D.【解析】如图,所求面积为阴影部分面积,其面积为四边形的面积减去不规则图形的面积,故,选D.【考点】定积分.17.已知.(Ⅰ)写出的最小正周期;(Ⅱ)求由,,,以及围成的平面图形的面积.【答案】(Ⅰ);(Ⅱ).【解析】1.解答第(Ⅱ)问,首先要正确画出示意图.2.要注意的是,当面积在轴上方的时候,定积分算出来是正数;当面积在轴下方的时候,定积分算出来是负数.很多考生没有注意到这一点而导致出错:.3.充分运用对称性,否则就要计算三个定积分了.试题解析:(Ⅰ)∵,∴.∴的最小正周期为.(Ⅱ)设由,,,以及围成的平面图形的面积为,∵,∴.∵,∴.∴由,,以及围成的平面图形的面积为.【考点】考查三角函数的化简计算、定积分的应用.18.一物体在力(单位:)的作用下沿与力相同的方向,从处运动到(单位:)处,则力做的功为焦.【答案】36【解析】把0到4的积分根据题意分成2段,再分别求积分,即.【考点】考查积分的运算.19.如图,设是图中边长为2的正方形区域,是函数的图象与轴及围成的阴影区域.向中随机投一点,则该点落入中的概率为( )A.B.C.D.【答案】B【解析】依题意,两个阴影部分的面积相等,即阴影部分的面积为:,向中随机投一点,则该点落入中的概率,故选B.【考点】微积分基本定理,几何概型.20.设的展开式中的常数项等于 .【答案】-160【解析】所以常数项为-160.【考点】定积分;二项式定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题(共16小题)1、(2011•湖南)由直线与曲线y=cosx所围成的封闭图形的面积为()A、B、1C、D、2、(2010•山东)由曲线y=x2,y=x3围成的封闭图形面积为()A、B、C、D、3、(2009•广东)已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为V甲和V已(如图所示).那么对于图中给定的t0和t1,下列判断中一定正确的是()A、在t1时刻,甲车在乙车前面B、t1时刻后,甲车在乙车后面C、在t0时刻,两车的位置相同D、t0时刻后,乙车在甲车前面4、由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为()A、B、2﹣ln3C、4+ln3D、4﹣ln35、从如图所示的正方形OABC区域内任取一个点M(x,y),则点M取自阴影部分的概率为()A、B、C、D、6、如图中阴影部分的面积是()A、B、C、D、7、由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()8、(2011•福建)(e x+2x)dx等于()A、1B、e﹣1C、eD、e2+19、(2010•湖南)dx等于()A、﹣2ln2B、2ln2C、﹣ln2D、ln210、(2009•福建)(1+cosx)dx等于()A、πB、2C、π﹣2D、π+211、已知则∫﹣a a cosxdx=(a>0),则∫0a cosxdx=()A、2B、1C、D、12、曲线y=x2+2与直线y=3x所围成的平面图形的面积为()A、B、C、D、113、下列计算错误的是()A、∫﹣ππsinxdx=0B、∫01=C、cosxdx=2cosxdxD、∫﹣ππsin2xdx=014、计算的结果是()A、4πB、2πC、πD、15、若∫0k(2x﹣3x2)dx=0,则k等于()A、0B、1C、0或1D、以上均不对16、如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是()二、填空题(共8小题)17、(2010•宁夏)设y=f(x)为区间[0,1]上的连续函数,且恒有0≤f(x)≤1,可以用随机模拟方法近似计算积分,先产生两组(每组N个)区间[0,1]上的均匀随机数x1,x2,…x N和y1,y2,…y N,由此得到N个点(x i,y i)(i=1,2,…,N),再数出其中满足y i≤f(x i)(i=1,2,…,N)的点数N1,那么由随机模拟方案可得积分的近似值为_________.18、如图所示,计算图中由曲线y=与直线x=2及x轴所围成的阴影部分的面积S=_________.19、由曲线y2=2x 和直线y=x﹣4所围成的图形的面积为_________.20、由曲线和直线y=x﹣4,x=1,x=2围成的曲边梯形的面积是_________.21、(2010•陕西)从如图所示的长方形区域内任取一个点M(x,y),则点M取自阴影部分部分的概率为_________.22、(2008•山东)设函数f(x)=ax2+c(a≠0),若,0≤x0≤1,则x0的值为_________.23、(2002•天津)求由三条曲线y=x2,4y=x2,y=1 所围图形的面积.24、若y=f(x)的图象如图所示,定义,则下列对F(x)的性质描述正确的有_________.(1)F(x)是[0,1]上的增函数;(2)F′(x)=f(x);(3)F(x)是[0,1]上的减函数;(4)∃x0∈[0,1]使得F(1)=f(x0).三、解答题(共6小题)25、(1977•福建)求定积分∫10(x+x2e2)dx.26、(1977•黑龙江)求曲线y=sinx在[0,π]上的曲边梯形绕x轴旋转一周所形成的旋转体的体积.27、(1977•河北)利用定积分计算椭圆所围成的面积.28、(2008•江苏)请先阅读:在等式cos2x=2cos2x﹣1(x∈R)的两边求导,得:(cos2x)′=(2cos2x﹣1)′,由求导法则,得(﹣sin2x)•2=4cosx•(﹣sinx),化简得等式:sin2x=2cosx•sinx.(1)利用上题的想法(或其他方法),结合等式(1+x)n=C n0+C n1x+C n2x2+…+C n n x n(x∈R,正整数n≥2),证明:.(2)对于正整数n≥3,求证:(i);(ii);(iii).29、(1977•江苏)求不定积分.30、已知y=e﹣x sin2x,求微分dy.答案与评分标准一、选择题(共16小题)1、(2011•湖南)由直线与曲线y=cosx所围成的封闭图形的面积为()A、B、1C、D、考点:定积分在求面积中的应用。
专题:计算题。
分析:为了求得与x轴所围成的不规则的封闭图形的面积,可利用定积分求解,积分的上下限分别为与,cosx即为被积函数.解答:解:由定积分可求得阴影部分的面积为S=cosxdx==﹣(﹣)=,所以围成的封闭图形的面积是.故选D.点评:本小题主要考查定积分的简单应用、定积分、导数的应用等基础知识,考查运算求解能力,化归与转化思想、考查数形结合思想,属于基础题.2、(2010•山东)由曲线y=x2,y=x3围成的封闭图形面积为()A、B、C、D、考点:定积分在求面积中的应用。
专题:计算题。
分析:要求曲线y=x2,y=x3围成的封闭图形面积,根据定积分的几何意义,只要求∫01(x2﹣x3)dx即可.解答:解:由题意得,两曲线的交点坐标是(1,1),(0,0)故积分区间是[0,1]所求封闭图形的面积为∫01(x2﹣x3)dx═,故选A.点评:本题考查定积分的基础知识,由定积分求曲线围成封闭图形的面积.3、(2009•广东)已知甲、乙两车由同一起点同时出发,并沿同一路线(假定为直线)行驶.甲车、乙车的速度曲线分别为V甲和V已(如图所示).那么对于图中给定的t0和t1,下列判断中一定正确的是()A、在t1时刻,甲车在乙车前面B、t1时刻后,甲车在乙车后面C、在t0时刻,两车的位置相同D、t0时刻后,乙车在甲车前面考点:定积分在求面积中的应用;函数的图象。
专题:数形结合。
分析:利用定积分求面积的方法可知t0时刻前甲走的路程大于乙走的路程,则在t0时刻甲在乙的前面;又因为在t1时刻前利用定积分求面积的方法得到甲走的路程大于乙走的路程,甲在乙的前面;同时在t0时刻甲乙两车的速度一样,但是路程不一样.最后得到A正确,B、C、D错误.解答:解:当时间为t0时,利用定积分得到甲走过的路程=v甲dt=a+c,乙走过的路程=v乙dt=c;当时间为t1时,利用定积分得到甲走过的路程=v甲dt=a+c+d,而乙走过的路程=v乙dt=c+d+b;从图象上可知a>b,所以在t1时刻,a+c+d>c+d+b即甲的路程大于乙的路程,A正确;t1时刻后,甲车走过的路程逐渐小于乙走过的路程,甲车不一定在乙车后面,所以B错;在t0时刻,甲乙走过的路程不一样,两车的位置不相同,C错;t0时刻后,t1时刻时,甲走过的路程大于乙走过的路程,所以D错.故答案为A点评:考查学生利用定积分求图形面积的能力,以及会观察函数图象并提取有价值数学信息的能力,数形结合的数学思想的运用能力.4、由曲线xy=1,直线y=x,y=3所围成的平面图形的面积为()A、B、2﹣ln3C、4+ln3D、4﹣ln3考点:定积分在求面积中的应用。
专题:计算题。
分析:由题意利用定积分的几何意义知,欲求由曲线xy=1,直线y=x,y=3所围成的平面图形的面积曲边梯形ABD 的面积与直角三角形BCD的面积,再计算定积分即可求得.解答:解:根据利用定积分的几何意义,得:由曲线xy=1,直线y=x,y=3所围成的平面图形的面积:S=(3﹣)dx+=(3x﹣lnx)+2=3﹣ln3﹣1+2=4﹣ln3.故选D.点评:本题主要考查定积分求面积.用定积分求面积时,要注意明确被积函数和积分区间,属于基本运算.5、从如图所示的正方形OABC区域内任取一个点M(x,y),则点M取自阴影部分的概率为()A、B、C、D、考点:定积分在求面积中的应用;几何概型。
专题:计算题。
分析:欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式易求解.解答:解:可知此题求解的概率类型为关于面积的几何概型,由图可知基本事件空间所对应的几何度量S(Ω)=1,满足所投的点落在叶形图内部所对应的几何度量:S(A)==.所以P(A)=.故选B.点评:几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A的基本事件对应的“几何度量”N(A),再求出总的基本事件对应的“几何度量”N,最后根据P=求解.6、如图中阴影部分的面积是()A、B、C、D、考点:定积分在求面积中的应用。
专题:计算题。
分析:求阴影部分的面积,先要对阴影部分进行分割到三个象限内,分别对三部分进行积分求和即可.解答:解:直线y=2x与抛物线y=3﹣x2解得交点为(﹣3,﹣6)和(1,2)抛物线y=3﹣x2与x轴负半轴交点(﹣,0)设阴影部分面积为s,则==所以阴影部分的面积为,故选C.点评:本题考查定积分在求面积中的应用,解题是要注意分割,关键是要注意在x轴下方的部分积分为负(积分的几何意义强调代数和),属于基础题.7、由曲线y=,直线y=x﹣2及y轴所围成的图形的面积为()A、B、4C、D、6考点:定积分在求面积中的应用。
专题:计算题。
分析:利用定积分知识求解该区域面积是解决本题的关键,要确定出曲线y=,直线y=x﹣2的交点,确定出积分区间和被积函数,利用导数和积分的关系完成本题的求解.解答:解:联立方程得到两曲线的交点(4,2),因此曲线y=,直线y=x﹣2及y轴所围成的图形的面积为S=.故选C.点评:本题考查曲边图形面积的计算问题,考查学生分析问题解决问题的能力和意识,考查学生的转化与化归能力和运算能力,考查学生对定积分与导数的联系的认识,求定积分关键要找准被积函数的原函数,属于定积分的简单应用问题.8、(2011•福建)(e x+2x)dx等于()A、1B、e﹣1C、eD、e2+1考点:定积分。
专题:计算题。
分析:求出被积函数的原函数,将积分的上限代入减去将下限代入求出差.解答:解:∫10(e x+2x)dx=(e x+x2)|01=e+1﹣1=e故选C.点评:本题考查利用微积分基本定理求定积分值.9、(2010•湖南)dx等于()A、﹣2ln2B、2ln2C、﹣ln2D、ln2考点:定积分。
专题:计算题。
分析:根据题意,直接找出被积函数的原函数,直接计算在区间(2,4)上的定积分即可.解答:解:∵(lnx)′=∴=lnx|24=ln4﹣ln2=ln2故选D点评:本题考查定积分的基本运算,关键是找出被积函数的原函数,本题属于基础题.10、(2009•福建)(1+cosx)dx等于()A、πB、2C、π﹣2D、π+2考点:定积分。