天然气水合物的形成条件与分布规律
天然气水合物

一般来说, 人为地打破天然气水合物稳定存在的温压条件使其分解, 是目 前开采天然气水合物的主要途径。但是要考虑到天然气水合物作为储存 区地层的构成部分,在稳定该区域地层方面起着相当重要的作用。 众所周知, 二氧化碳是最重要的温室气体, 其在大气中含量增高是导致全 球气候变暖的主要原因之一。因此深海地层处置被认为是减少CO2排向 大气的有效手段。研究显示,当CO2 被收集起来并注入深海地层,将形 成CO2 水合物。 因此人们设想,若将CO2注入天然气水合物聚集层,既能将其中的CH4 置换出来, 又能有效减少CO2 向大气排放,还可以保持地层的稳定性 。由此Ebinuma及Ohgaki等于1996年提出了CO2 置换法开采天然气水 合物。
天然气水合物
天然气水合物简介
天然气水合物是在一定条件下由轻烃、二氧 化碳及硫化氢等小分子气体与水相互作用形 成的白色固态结晶物质,是一种非化学计量 型晶体化合物,或称笼形水合物,也称为可 燃冰、甲烷水合物、甲烷冰。
在自然界发现的天然气水合物多为白色、淡 黄色、琥珀色、和暗褐色,呈亚等轴状、层 状、小针状结晶或分散状。
形成原因
海洋生成
有两种不同种类的海洋存量。 最常见的绝大多数都是甲烷包覆于结构Ⅰ型的包合物,而且一般都 在沉淀物的深处才能发现。在此结构下,甲烷中的碳同位素较轻,因此 指出其是微生物由CO2的氧化还原作用而来。 在接近沉积物表层所发现较少见的第二种结构中,某些样本有较高 比例的碳氢化合物长链包含于结构Ⅱ型的包合物中。其甲烷的碳同位素 较重,据推断是由沉积物深处的有机物质,经热分解后形成甲烷而往上 迁移而成。
当存在游离水时,CO2 比CH4有更高的亲和势,更易使游离水形成水合 物,这有利于反应向正方向进行。 CO2与CH4的水合物均为结构Ⅰ型,发生在CO2与CH4水合物之间的置换 反应方程式为:
天然气水合物形成原因及影响因素分析

天然气水合物形成原因及影响因素分析作者:张庆杰来源:《管理观察》2010年第17期摘要:分析了实际产生水合物的试气资料及其形成原因,阐述了DQ油田徐家围子气田水合物形成的影响因素。
天然气水合物是天然气在一定温度和压力下形成的一种冰状笼形化合物。
在气井生产过程中,一旦压力、温度条件满足,天然气混合物中的某些气体组分便形成水合物,堵塞油管或输气管线。
天然气水合物是天然气在高压、低温环境下形成的,形成温度高于冰点。
关键词:天然气水合物影响因素一、水合物形成的原因及其影响因素分析1.1形成原因常压下,水的冰点为0℃,但在高压下,水的冰点就会高于0℃。
天然气水合物是天然气在高压、低温(高于0℃)环境下形成的。
在气井生产过程中,天然气从井底流向井口,沿程压力和温度逐渐降低,当压力降到某一数值时,温度降到水合物生成温度时,就形成了水合物。
1.2影响因素分析天然气水合物是在一定压力、温度下形成的,但是天然气水化物形成的压力、温度具体的数值很难确定。
因为影响水合物形成的因素是受天然气的组分不同、所处环境的不同、试气方式的不同等影响。
统计了约30口多井的试气资料,约有三分之一的井出现了不同程度的冰堵现象。
(1)试气方式。
统计发生冰堵现象的井大多都是采用系统试气方法、修正等时试气方法或一点法试气方法进行试采的井,采用定压方法进行试采的井基本上没有发生冰堵现象。
这可能是由于定压试采一般定井口油压为8MPa或6.4MPa,这样低的压力下,形成水合物需要的温度也较低,而试采过程中,气体从井底流到井口的流温大于水合物形成的温度,因此,定压试采方法一般不会形成水合物。
例如,达深4井,该井开始定产2.0×104m3生产,生产了约5天,油压降到22.72MPa,井口平均温度为15.70℃,井筒内产生水合物,造成距井口约100m附近的油管发生冰堵。
关井处理后,采用定井口油压8MPa试采方式试采,产气量一直下降,最后降至2.4×104m3左右,但一直未发生冰堵现象,分析原因,定井口油压试采过程中,井口油压一直保持在8MPa,而8MPa下形成水合物的温度一定低于油压为22.72MPa下的温度。
天然气水合物形成条件

04
深海环境中天然气水合物形成特 点
深海环境特征描述
01
02
03
高压低温
深海环境具有极高的压力 和相对较低的温度,这是 天然气水合物形成的基本 条件。
沉积物丰富
深海底部沉积物丰富,为 天然气水合物的形成提供 了充足的物质来源。
地质稳定
深海环境地质相对稳定, 有利于天然气水合物的长 期保存和聚集。
未来发展趋势预测
技术进步
随着天然气水合物勘探开发技术的不断进步,未来有望实现商业 化开发,降低开采成本,提高产量和效率。
环保要求
在环保要求日益严格的背景下,天然气水合物开发将更加注重环境 保护和可持续发展。
能源转型
在全球能源转型的大背景下,天然气水合物作为一种清洁、高效的 能源,有望在未来能源结构中占据重要地位。
可燃冰名称由来
01
因其外观像冰,遇火即燃,因此 被 称 为 “ 可 燃 冰”( Combustible ice )。
02
同时,这种天然气水合物又被 称 为“固体瓦斯”或“气冰” ,以 突出其可燃性和固态特征。
02
天然气水合物形成条件概述
高压低温环境要求
压力
天然气水合物的形成需要较高的压力,通常存在于深海沉积 物或高纬度地区的永久冻土中。在这些环境中,压力可以使 气体分子被压缩并接近水分子,从而形成水合物。
06
天然气水合物资源潜力及开发前 景
全球资源潜力评估
资源丰富
全球天然气水合物资源量巨大,据估算,其总有机碳储量是全球 已知煤、石油和天然气总储量的两倍以上。
分布广泛
天然气水合物分布于世界各大洋和陆地永久冻土带,其中海底天 然气水合物资源占主导地位。
天然气水合物

天然气水合物(Natural Gas Hydrate,简称Gas Hydrate)是分布于深海沉积物或陆域的永久冻土中,由天然气与水在高压低温条件下形成的类冰状的结晶物质。
因其外观象冰一样而且遇火即可燃烧,所以又被称作“可燃冰”或者“固体瓦斯”和“气冰”。
它是在一定条件(合适的温度、压力、气体饱和度、水的盐度、PH值等)下由水和天然气在中高压和低温条件下混合时组成的类冰的、非化学计量的、笼形结晶化合物(碳的电负性较大,在高压下能吸引与之相近的氢原子形成氢键,构成笼状结构)。
它可用mCH4·nH2O来表示,m代表水合物中的气体分子,n为水合指数(也就是水分子数)。
组成天然气的成分如CH4、C2H6、C3H8、C4H10等同系物以及CO2、N2、H2S等可形成单种或多种天然气水合物。
形成天然气水合物的主要气体为甲烷,对甲烷分子含量超过99%的天然气水合物通常称为甲烷水合物(Methane Hydrate)。
到目前为止,已经发现的天然气水合物结构类型有三种,即I型结构、II型结构和H型结构。
I型结构气水合物为立方晶体结构,其在自然界分布最为广泛,其仅能容纳甲烷(C1)、乙烷这两种小分子的烃以及N2、CO2、H2S等非烃分子,这种水合物中甲烷普遍存在的形式是构成CH4·5.75H2O的几何格架。
II型结构气水合物为菱型晶体结构,除包容C1、C2等小分子外,较大的“笼子”(水合物晶体中水分子间的空穴)还可容纳丙烷(C3)及异丁烷(i-C4)等烃类。
H型结构气水合物为六方晶体结构,其大的“笼子”甚止可以容纳直径超过异丁烷(i-C4)的分子,如i-C5和其他直径在7.5~8.6A之间的分子(表2)。
H型结构气水合物早期仅见于实验室,1993年才在墨西哥湾大陆斜坡发现其天然形态。
II型和H 型水合物比I型水合物更稳定。
除墨西哥湾外,在格林大峡谷地区也发现了I、II、H型三种气水合物共存的现象。
天然气水合物的形成机理及防治措施

天然气水合物的形成机理及防治措施X刘 佳,苏花卫(中原油田分公司,河南濮阳 457061) 摘 要:天然气水合物是在天然气开采加工和运输过程中,在一定温度和压力下,天然气与液态水形成的冰雪状结晶体。
在天然气开采加工和运输过程中,会堵塞井筒管线阀门和设备,从而影响天然气的开采、集输和设备的正常运转。
本文通过分析天然气水合物的形成条件,得出了几条具有实际意义的水合物防治措施,对天然气的安全生产具有一定的现实意义。
关键词:天然气水合物;形成条件;防治措施 中图分类号:T E868 文献标识码:A 文章编号:1006—7981(2012)13—0049—02 天然气水合物是在天然气开采加工和运输过程中,在一定温度和压力下,天然气与液态水形成的结晶体,外观形似松散的冰或致密的雪,它的相对密度为(0.8~0.9)[1];天然气水合物是一种笼形晶状包络物,即水分子借氢键结合成晶格,而气体分子则在分子力作用下被包围在晶格笼形孔室中;天然气水合物极不稳定,一旦条件破坏,即迅速分解为气和水。
在天然气开采加工和运输过程中,在管道中形成的水合物能堵塞井筒管线阀门和设备,从而影响天然气的开采、集输和设备的正常运转。
只要条件满足,天然气水合物可以在管道井筒以及地层多孔介质孔隙中形成,这对油气生产和输送危害很大。
1 天然气水合物形成的条件1.1 水分生成水合物的首要条件是具有充足的水分[2],即管道内气体的水蒸气分压要大于气体-水合物中的水蒸气分压。
若气体中的水蒸气分压低于水合物中的水蒸气分压,则不能形成水合物,即使已经形成也会融化消失。
1.2 烃类及杂物研究表明,烃类物质并不是全部都可以形成水合物,直链烷烃中只有CH 4、C 2H 6、C 3H 8能形成水合物[3],支链烷烃中只有异丁烷能形成水合物。
此外,天然气中的杂质组分H 2S 、CO 2、N 2和O 2等也可促使水合物的生成。
通常,天然气组分中C 2以上烃类含量不高,它们主要形成I 形水合物。
天然气水合物的形成及处理

汇报完毕 谢谢大家!
天然气水合物容易堵塞的部位
• 如果是冰堵, 它应当处在低洼处最低点 下游距最低点较近的地方; 如果是水合物堵 塞, 应处在比冰堵远一点的地方, 但不会太 远。大的方位可通过听声音和看地形方式, 找出地势较为低洼容易积水的地方,以确定 管道发生水合物堵塞或冰堵的具体位置。
水合物解堵措施
• 1. 注入防冻剂法:一般可从支管、压力表短节、放空管等处注入防冻 剂, 降低水合物形成的平衡曲线。若管线或井筒内发生水合物堵塞, 可 注入甲醇、乙二醇、二甘醇等水合物抑制剂来解除堵塞。具体方法是 将水合物抑制剂加入井筒内, 溶解油管内的水合物, 并随产出气体流动, 解除管线内水合物的堵塞。 • 2. 加热法将天然气的流动温度升至水合物形成的平衡温度以上, 使已 形成的水合物分解。对于地面敷设的集气管线, 可采取在管外用热水 或蒸汽加热管线的方法, 但一般情况下应避免使用明火加热。实验研 究证明, 水合物与金属接触面的温度升至30℃~40℃就足以使生成的 水合物迅速分解 • 3. 降压解堵法卸压解堵的方法在现场应用较广泛。在井场,集气站或 集气管线已形成水合物堵塞时, 可将部分气体经放空管线放空, 使压力 在短时间内下降。当水合物的温度刚一低于管壁温度, 生成的水合物 立即分解并自管壁脱落被气体带出。
天然气水合物的危害
• 水合物在输气干线或输气站某些管段( 弯头) 阀 门、节流装置等处形成后, 天然气的流通面积减少, 从而形成局部堵塞, 其上游的压力增大, 流量减少, 下游的压力降低, 因而影响管道输配气的正常运行。 同时, 水合物若在节流孔板处形成, 还会影响天然 气流量计量的准确性。若不能及时清除水合物, 管 道会发生严重拥堵, 由此导致上游天然气压力急剧 上升, 造成设备损坏和人员伤害事故。 给天然气 的开采、集输和加工带来危害,造成流量下降同时 增加了能量的损耗,严重会使气流断面切断,处 理时很困难又费时。
天然气水合物的形成条件及成因分析

图1天然气水合物晶体结构模型Figure 1Crystal structure model of natural gas hydrate天然气水合物是以CH 4为主,含少量CO 2、H 2S 的气态烃类物质充填或被束缚在笼状水分子结构中形成的冰晶化合物。
在一个烃类气体分子的周围包围着多个水分子,水分子通过氢键紧密缔合成三维网状,将烃类气体分子纳入网状,体中形成水合甲烷,其晶体结构模型如图1。
这些水合甲烷象淡灰色的冰球,可以象酒精块或蜡烛一样燃烧,故称为“可燃冰”,其密度为0.905~0.91g/cm 3,化学式为CH 4·n H 2O ,只要把结构中的“水”去掉,就是一种理想的燃料。
从能源的角度看,天然气水合物可视为高度压缩的天然气。
理论上讲,1m 3的天然气水合物在标准大气压下(0.101MPa )可以释放出164m 3的天然气和0.8m 3的水,其能量密度是煤和黑色页岩的10倍左右,且燃烧几乎不产生有害污染物,是一种新型的清洁环保能源,是公认的地球上尚未开发的、巨大的能源宝库。
世界天然气水合物储量约为2×1016m 3,相当于地球上所有开采石油、天然气和煤的总量的2倍,约为剩余天然气储量(156×1012m 3)的128倍。
海底作者简介:蒋向明(1964—),男,教授级高级工程师,1986年毕业于湘潭矿业学院,中国矿业大学工程硕士。
责任编辑:樊小舟天然气水合物的形成条件及成因分析蒋向明(中国煤炭地质总局水文地质局,河北邯郸056004)摘要:从天然气水合物的晶体结构模型出发,说明了其组成成分及结构特征。
通过对温度—压力平衡条件的差异性分析,揭示了天然气水合物形成的基本条件,对其赋存类型及成因进行了分类,对我国及全球天然气水合物分布情况进行了说明,并以青海木里煤田为例,对天然气水合物的形成条件和成因进行了详细的论述,认为:变质作用及煤化作用使煤田内丰富的煤炭资源不断产生煤层气,当煤层气沿断层破碎带及裂隙运移至含水岩层或含水裂隙时,在温度和压力的作用下遇水形成天然气水合物。
天然气水合物

天然气水合物开发现状及研究进展天然气水合物(NGH),也称气体水合物,是由天然气与水分子在高压(>10MPa)和低温(0~10℃)条件下合成的一种固态结晶物质。
因天然气水合物中80%~90%的成分是甲烷,故也称甲烷水合物。
天然气水合物多呈白色或浅灰色晶体,外貌类似冰雪,可以象酒精块一样被点燃,所以,也有人叫它“可燃冰”。
一、天然气水合物的形成条件及分布天然气水合物的形成有三个基本条件,缺一不可。
首先温度不能太高;第二压力要足够大,但不需太大;0℃时,30个大气压以上就可生成;第三,地底要有气源。
天然气水合物受其特殊的性质和形成时所需条件的限制,只分布于特定的地理位置和地质构造单元内。
一般来说,除在高纬度地区出现的与永久冻土带相关的天然气水合物之外,在海底发现的天然气水合物通常存在于水深300~500m以下(由温度决定),主要附存于陆坡、岛屿和盆地的表层沉积物或沉积岩中,也可以散布于洋底以颗粒状出现。
这些地点的压力和温度条件使天然气水合物的结构保持稳定。
深海钻探发现,天然气水合物以冰状或更多地以水合物胶结的火山灰和细砂产出,其时代为晚中新世—晚上新世。
天然气水合物与火山灰或火山砂共存,暗示了其形成与火山喷发有某种联系。
天然气水合物形成于低温高压条件下,分布限于极地地区,深海地区及深水湖泊中。
在极地地区天然气水合物通常与大陆和大陆架上的永冻沉积物有关;在海洋里,天然气水合物主要分布于外大陆边缘和洋岛的周围,水深超过大约300 m。
天然气水合物的稳定温度为1~21.1℃,分布的最大下限深度不超过海底下2000m[2]。
深海钻探已经表明天然气水合物既可以产于被动大陆边缘,也可产于活动大陆边缘。
但大多数天然气水合物样品来自于活动边缘[2]。
据估计,陆地上20.7%和大洋底90%的地区,具有形成天然气水合物的有利条件。
绝大部分的天然气水合物分布在海洋里,其资源量是陆地上的100倍以上。
在标准状况下,一单位体积的天然气水合物分解可产生164单位体积的甲烷气体,因而是一种重要的潜在未来资源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、天然气水合物的形成条件
天然气水合物是一种在极低温和高压下形成的天然气和水的复合物。
它主要形成于海底或极寒地区的冰层下方,具体的形成条件主要包括
以下几个方面:
1.温度条件:天然气水合物的形成需要极低的温度,在摄氏零下10度至零下20度左右的温度范围内,水分子能够与天然气分子形成结晶结构,形成水合物。
2.压力条件:高压也是天然气水合物形成的重要条件。
海底深层的
巨大压力能够促进水合物的形成,使得天然气分子和水分子更容易结合。
3.适宜的气体组成:天然气水合物的形成需要适宜的气体成分,一
般为甲烷等轻烃类气体。
不同的气体组成会影响水合物的形成过程和
稳定性。
二、天然气水合物的分布规律
天然气水合物主要分布在全球的冷海域和极寒地区,其分布规律主
要受以下几个因素影响:
1.海底地质构造:海底地质构造是影响天然气水合物分布的重要因
素之一。
裂陷盆地、深海扇、海底隆起等不同地质构造对水合物的分
布和储量都有一定影响。
2.沉积环境:海底沉积环境的不同也会对水合物的分布产生影响。
例如富营养的海域、富有机质的沉积环境更有利于水合物的形成。
3.气候环境:气候环境对水合物的分布同样有一定影响,寒冷气候和丰富降水的地区更容易形成水合物。
4.地球动力学作用:地球内部的构造和地质运动也会对水合物的形成和分布产生一定影响。
三、结语
天然气水合物的形成条件和分布规律是一个复杂而又有待深入研究的课题。
随着人们对海底资源的深入挖掘,天然气水合物的开发利用将成为未来的重要方向。
对于天然气水合物的形成条件和分布规律的深入研究,不仅能够为天然气水合物资源的有效勘探和开发提供理论依据和技术支持,同时也对于保护海洋环境、促进海洋科学研究和应对气候变化等方面具有重要意义。
希望在未来能够有更多科研人员投入到天然气水合物的研究中,为人类社会的可持续发展做出更大的贡献。
四、天然气水合物的形成机制
天然气水合物的形成机制涉及到天然气和水在特殊条件下的化学反应过程。
在海底或极寒地区的极低温和高压环境下,天然气分子和水分子发生相互作用,从而形成天然气水合物。
具体来说,天然气水合
物的形成过程包括以下几个步骤:
1. 水合物种类:天然气水合物主要包括结构I和结构II两种类型。
其中,结构I是在低温和高压下形成的,结构II则是在较高温度和压
力下形成的。
不同的水合物种类对应着不同的形成条件。
2. 天然气溶解:天然气水合物的形成首先涉及到海水中的溶解气体。
天然气中的甲烷等气体在海水中会溶解并形成带电荷的分子。
3. 水合物核形成:在极低温和高压的环境下,带电荷的甲烷分子会
与水分子发生相互作用,形成水合物的晶核。
这个过程是水合物形成
的关键步骤之一。
4. 晶体生长:晶核形成后,水合物晶体会随着时间的推移逐渐生长,吸收更多的天然气分子,从而形成完整的水合物结构。
5. 稳定性:天然气水合物的稳定性取决于温度、压力和气体成分等
因素。
合适的温度和压力能够保持水合物的稳定性,而环境条件的改
变可能导致水合物的解离。
五、世界天然气水合物资源分布
世界范围内,天然气水合物主要分布在北冰洋、南冰洋、东亚的日
本海、南海、美国的墨西哥湾、挪威的挪威海等地区。
其中,北极地
区是天然气水合物资源最为丰富的地区之一。
据估计,全球天然气水
合物资源储量远超过其他常规天然气储量,具有巨大的开发潜力。
1. 北冰洋地区:北冰洋地区是天然气水合物资源最为丰富的地区之一。
俄罗斯、加拿大、挪威等国家在北极地区发现了大量的水合物资源,尤其是俄罗斯亚马尔半岛地区的水合物资源储量居全球之首。
2. 日本海和南海地区:东亚的日本海和南海地区也是天然气水合物
资源的重要分布区域。
日本、我国等国家在这一地区展开了水合物资
源的勘探和开发工作。
3. 美国和加拿大地区:美国的墨西哥湾及加拿大的大陆架地区也被
认为是天然气水合物资源丰富的地区。
六、天然气水合物资源的开发利用
天然气水合物是一种重要的新型清洁能源资源,对于缓解能源危机、促进经济可持续发展和减缓气候变化具有重要意义。
然而,由于天然
气水合物的开发利用存在诸多技术难题和环境风险,所以在开发利用
过程中需要注意以下几个方面:
1. 技术挑战:天然气水合物的开采技术相对成熟的油气开采技术要
复杂得多。
因为水合物本身稳定性很差,一旦离开特殊的温度和压力
环境就会分解,开采难度大、成本高。
2. 环境风险:水合物开采会对海洋生态环境产生一定的影响,比如地质变动、海底生态系统破坏、气候变化等。
在开采过程中需要加强环境保护意识,采取有效的环境保护措施。
3. 综合利用:天然气水合物资源的开发利用需要与清洁能源技术相结合,实现煤炭、石油等传统能源向清洁能源的转型,推动能源结构优化升级。
七、未来展望
随着能源需求的不断增长和地球资源的不断枯竭,天然气水合物这一新型的清洁能源资源将会成为未来能源发展的重要方向。
未来的研究方向主要包括以下几个方面:
1. 环境保护技术:加大环境保护技术研究力度,推动天然气水合物资源的可持续开发利用,减少对海洋生态环境的影响。
2. 工程技术创新:加强天然气水合物开采利用技术的研发,降低开采成本,提高资源回收率,确保开采利用的安全和可持续性。
3. 国际合作:加强国际合作,共同推动天然气水合物资源的勘探开发和利用,推动该领域的国际合作与交流。
天然气水合物的形成条件和分布规律是一个涉及到地质学、化学、气象学等多学科知识的复杂课题,其深入研究对于资源勘探开发、环境保护、清洁能源和气候变化等领域具有重要意义。
希望在未来能够有更多的科研人员投入到这一领域的研究中,为全球可持续发展做出更大的贡献。