信号源系统配置 (2)讲义资料
郑君里信号与系统讲义

1, t > 0 u (t ) = 0, t < 0
或
(1-11)
1, = u ( t ) 0, 1 2,
t >0 t<0 t =0
(1-12)
图 1-5 斜升函数 ☻ 符号函数:
图 1-6 单位阶跃函数
4
《信号与系统》讲义
第一章:绪论
1, t > 0 sgn ( t ) = −1, t < 0 或 1, t > 0 sgn ( t ) = −1, t < 0 0, t = 0 ☻ 门函数: G ( t ) = u ( t ) − u ( t − t0 ) , t0 > 0
☻ 采样函数:
= f ( t ) Sa = (t ) sin t t
(1-5)
注意与抽样信号 定义上的差别!
- 0.2122
图 1-3 采样信号 采样函数的性质(三点、三式) : ♦ 采样函数 Sa ( t ) 为偶函数,在 t 的正、负两方向振幅都逐渐衰减,当
±π , ±2π , , ± nπ 时,信号值为零。 t=
φ ( x)
《信号与系统》讲义
第一章:绪论
=
δ ( x − x0 ) /, f ′ ( x0 )
f ′ ( t0 ) δ ( t − t0 )
−1
φ ( x)
#证毕
即: = δ ( f (t ))
复合冲激函数的直观理解: ① δ ( f ( t ) ) = ∞ 的冲激位置在 f ( t ) =0,即在t 0 点;其余点为 0。 ② δ ( f ( t ) ) 的冲激强度不是 1,而是与 f ( t ) 的陡峭程度成反比。 上述第②条可以通过广义极限逼近的冲激函数来理解:若 f ( t ) 在 t 0 邻域内缓变 (斜率小) ,则 f ( t ) 的取值靠近 0,δ ( f ( t ) ) 的值就大;若 f ( t ) 在t 0 邻域内快变(斜率 大) ,则 f ( t ) 的取值就远离 0, δ ( f ( t ) ) 的值就小;是反比关系。 ☻ 若光滑函数 f ( t ) 满足: f ( t ) |t =t1 , t2 , = 0 ,且 f ′ ( ti ) ≠ 0,∀i = 1, 2,... ,则:
《信号与系统》课程讲义1-2

ii)抽样特性: (t ) f (t )dt f (0)
证明: (t ) f (t )dt ( ) f ( )d ( ) ( ) f 0 d f 0
iv)延时抽样: v)关系:
t t f t dt f (t )
1 t
-1 0 f(-t-2) 1 -3 -2 0 t 2 t
0 1
1 -1
2 3
f(-3t-2)
0
t
§1.3信号的运算
②已知f(t)定义域为[-1,4],求f(-2t+5)的定义域 解:
i)方法一:f(t)→f(-t) [-4,1];f(-t)→f(-t+5) [1,6];
ii)方法二: 1 2t 5 4 6 2t 1
f (t ) f 1 ( t ) f 2 ( t )
§1.3信号的运算
7.信号相乘 ① f (t ) f1 (t ) f 2 (t )
②常用在调制解调中 8.卷积
f (t ) f1 (t ) f 2 (t )
f1 ( ) f 2 (t )d
9.相关
a
Ke at (a 0)
③特性:微积分后仍为指数信号
§1.2 信号描述分类和典型示例
2.正弦信号 ①表达式:
f (t ) K sin(t )
②参数:K振幅, 角频率, 初相位 f(t) ③特性 i)周期信号, 0 2 1 T f ii)微积分后仍为正弦信号
3 8
t
t
f(t)
t
0 ln 2 2 ln 2 3 ln 2
3
练习
信号与系统(郑君里第二版)讲义第三章 傅里叶变换

t0
⎧0 ⎪T cos(mω1t )cos(nω1t )dt = ⎨ 1 ⎪2 ⎩T1
m≠n m=n≠0 m=n=0
∫
∫
t0 +T1
t0
0 ⎧ ⎪T sin (mω1t )sin (nω1t )dt = ⎨ 1 ⎪ ⎩2
m≠n m=n≠0
t0 +T1
t0
sin (mω1t )cos(nω1t )dt = 0 ,对于所有的 m 和 n
n =1
⎧ ⎪d 0 = a 0 ⎪ 2 2 ⎨d n = a n + bn ⎪ an ⎪θ n = arctan bn ⎩
n = 1,2,3,L n = 1,2,3,L
三、虚指数形式的傅里叶级数 任何周期信号 f (t ) 可以分解为
f (t ) =
n =−∞
∑ Fe
n
∞
jnω1t
傅里叶系数:
Fn = 1 t0 +T1 f ( t ) e − jnω1t dt ∫ t 0 T1
f (t )
E 2
−
T1 2
0
T1 2
t
奇函数的傅里叶级数展开式的系数为: a0 = an = 0
4 bn = T1
Fn = −
∫ f (t )sin (nω t )dt
1
T1 2 0
1 π jbn , ϕ n = − 2 2
6
奇函数的 Fn 为虚数。在奇函数的傅里叶级数中不会含有余弦项,只可能含 有正弦项。 3、奇谐函数(半波对称函数) 若波形沿时间轴平移半个周期并相对于该轴上下反转, 此时波形并不发生变 化,即满足 ⎛ T ⎞ f (t ) = − f ⎜ t ± 1 ⎟ 2⎠ ⎝ 这样的函数称为半波对称函数或称为奇谐函数。 奇谐函数的傅里叶级数展开式的系数为: a0 = 0 an = bn = 0 ( n 为偶数) ( n 为奇数)
郑君里《信号与系统》(第3版)【教材精讲+考研真题解析】讲义 第5章 傅里叶变换应用于通信系统——

3 2
c
j)2 (
3 2
c
)
2
| H ( j) | e
j ( )
| H ( j) |
1
[1
(
c
)
2
]2
(
c
)
2
(
)
arctan[
1
c
(c
)
2
]
h(t) F 1[H ( j)]
2 c 3
ct
e 2 sin(
3 2
ct
)
波形及频谱图:
6 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
衰减不能过于迅速;佩利-维纳准则是系统物理可实现的必要条件,而不是充分条件。
五、希尔伯特变换研究系统函数的约束条件
7 / 26
圣才电子书 十万种考研考证电子书、题库视频学习平台
希尔伯特变换对
R()
1
X
()
d
X
(
)
1
R( )
d
该变换对说明具有因果性的系统函数 H ( j) 的实部 R() 被已知的虚部 X () 唯一
轴上的相对位置产生变化;
(3)线性失真:幅度、相位变化,不产生新的频率成分;
(4)非线性失真:产生新的频率成分。
2.无失真传输条件
(1)无失真传输
系统的无失真传输是指响应信号与激励信号相比,只是大小与出现的时间不同,而无波
形 上 的 变 化 。 设 激 励 信 号 为 e(t) , 响 应 信 号 为 r(t) , 则 无 失 真 传 输 的 条 件 是 r(t) Ke(t t0) ,K 为常数, t0 为滞后时间,如图 5-1 所示。
信号与系统(郑君里)第二版讲义第二章

信号与系统(郑君⾥)第⼆版讲义第⼆章第⼆章连续时间系统的时域分析第⼀讲微分⽅程的建⽴与求解⼀、微分⽅程的建⽴与求解对电路系统建⽴微分⽅程,其各⽀路的电流、电压将为两种约束所⽀配: 1.来⾃连接⽅式的约束:KVL 和KIL ,与元件的性质⽆关。
2.来⾃元件伏安关系的约束:与元件的连接⽅式⽆关。
例2-1 如图2-1所⽰电路,激励信号为,求输出信号。
电路起始电压为零。
图2-1解以输出电压为响应变量,列回路电压⽅程:所以齐次解为:。
因激励信号为,若,则,将其代⼊微分⽅程:所以,从⽽求得完全解:由于电路起始电压为零并且输⼊不是冲激信号,所以电容两端电压不会发⽣跳变,,从⽽若,则特解为,将其代⼊微分⽅程,并利⽤起始条件求出系数,从⽽得到:⼆、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某⼀时刻的状态是⼀组必须知道的最少量的数据,利⽤这组数据和系统的模型以及该时刻接⼊的激励信号,就能够完全确定系统任何时刻的响应。
由于激励信号的接⼊,系统响应及其各阶导数可能在t=0时刻发⽣跳变,所以以表⽰激励接⼊之前的瞬时,⽽以表⽰激励接⼊以后的瞬时。
(2)起始状态:,它决定了零输⼊响应,在激励接⼊之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。
(3)初始状态:跳变量,它决定了零状态响应,在激励接⼊之后的瞬时系统的状态。
(4)初始条件:它决定了完全响应。
这三个量的关系是:。
2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发⽣突变,即是连续的。
时不变:时变:例电路如图2-2所⽰,t=0以前开关位于"1"已进⼊稳态,t=0时刻,开关⾃"1"转⾄"2"。
(1)试从物理概念判断、和、。
(2)写出t>0时间内描述系统的微分⽅程式,求的完全响应。
图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。
信号与系统讲义-2

f (t) u 3 10
p
u pf (t) 2p 10
u(t) (Ae5t B)U(t)
2 du(t) 10u(t) df (t)
dt
dt
u(t) 5Ae5t U(t) (A B)(t)
2(A B) 1 B0
u(t) 1 e5tU(t)V 2
H
(
p)
2p2 8p 3 ( p 1)( p 3)2
求系统的响应 y(t)。
解: D(p) (p 1)(p 3)2 0 p1 1 p2 p3 3
y0 (t) K1e t K 2e3t K 3te3t
y0 (0 ) K1 K2 =2 y0 (0 ) K1 3K 2 K3=1
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us
R 2L
,
d
02 2 , 0
1 LC
4
三、 RLC串联电路全响应
d 2uc dt 2
R L
duc dt
1 LC
uc
1 LC Us
(二阶常系数线性非齐次微分方程)
t<0 , K在2,有 uc (0 ) U0
C
uc Aep1t Be p2t Us
2、重根:(临界阻尼) 即
R2
L C
(自然频率、固有频率)
uc (A Bt)ept Us
3、共轭复根:(欠阻尼) 即 R 2 L C
uc Aet cos(dt ) Us
R 2L
d 02 2
铁路通信电源系统讲义全
阀控式密封铅酸蓄电池以电解液的状态不同分为
贫液式电池和胶体电池.
40
二、阀控式密封铅酸蓄电池的结构 • 主要由正负极板、电解液和容器三部分组成
41
三、阀控式密封铅酸蓄电池的常用规格 1、2V单体蓄电池 容量:200Ah-3000Ah 在直流供电系统中,由24只单体电池串联成一组48V电池组 2、12V单体蓄电池 容量:200Ah及以下 在直流供电系统中,由4只电池串联成一组48V电池组
47
五、蓄电池的放电终止电压
0.1C10A~0.3C10A
48
六、蓄电池的浮充电压
U T℃=U25℃-<T-25>×0.003
C25 = Ct / 1+K <t -25> 式中:t 放电时的环境温度
K 温度系数,10小时率容量实验时K=0.006/℃ 3 小时率容量实验时K=0.008/℃
1 小时率容量实验时K=0.01/℃ 温度升高会损坏电池,降低电池的使用寿命. 长期运行,温度每升高10℃,使用寿命约降低一半.
46
四、蓄电池的寿命
由避雷针〔网、带、接地引下线、等电位连接、各级浪涌保护器 〔SPD>以及〔房屋、设备、线缆的屏蔽等组成. 〔五监控系统
由监控站设备〔各种采集设备、网络传输设备、监控中心设备〔服 务器、监控终端、网络传输设备、传输通道组成
5
第二节 通信设备供电标准及供电方式
一、铁路通信设备负荷等级划分及外部供电 要求
AC
UPS输出
AC
配电屏/箱
直流配电屏
DC
交流 负载
直流 负载
电池组
DC/DC 变换
DC
器
直流 负载
逆变器
AC
信号与系统(郑君里)第二版 讲义 第二章
第二章 连续时间系统的时域分析第一讲 微分方程的建立与求解一、微分方程的建立与求解对电路系统建立微分方程,其各支路的电流、电压将为两种约束所支配: 1.来自连接方式的约束:KVL 和KIL ,与元件的性质无关。
2.来自元件伏安关系的约束:与元件的连接方式无关。
例2-1 如图2-1所示电路,激励信号为,求输出信号。
电路起始电压为零。
图2-1解以输出电压为响应变量,列回路电压方程:所以齐次解为:。
因激励信号为,若,则,将其代入微分方程:所以,从而求得完全解:由于电路起始电压为零并且输入不是冲激信号,所以电容两端电压不会发生跳变,,从而若,则特解为,将其代入微分方程,并利用起始条件求出系数,从而得到:二、起始条件的跳变——从到1.系统的状态(起始与初始状态)(1)系统的状态:系统在某一时刻的状态是一组必须知道的最少量的数据,利用这组数据和系统的模型以及该时刻接入的激励信号,就能够完全确定系统任何时刻的响应。
由于激励信号的接入,系统响应及其各阶导数可能在t=0时刻发生跳变,所以以表示激励接入之前的瞬时,而以表示激励接入以后的瞬时。
(2)起始状态:,它决定了零输入响应,在激励接入之前的瞬时t=系统的状态,它总结了计算未来响应所需要的过去的全部信息。
(3)初始状态:跳变量,它决定了零状态响应,在激励接入之后的瞬时系统的状态。
(4)初始条件:它决定了完全响应。
这三个量的关系是:。
2.初始条件的确定(换路定律)电容电压和电感电流在换路(电路接通、断开、接线突变、电路参数突变、电源突变)瞬间前后不能发生突变,即是连续的。
时不变:时变:例电路如图2-2所示,t=0以前开关位于"1"已进入稳态,t=0时刻,开关自"1"转至"2"。
(1)试从物理概念判断、和、。
(2)写出t>0时间内描述系统的微分方程式,求的完全响应。
图2-2解(1)换路前电路处于稳态电感相当于短路,电感电流,电容相当于开路= 0,= = 0。
郑君里《信号与系统》(第3版)【教材精讲+考研真题解析】讲义(1-6章)【圣才出品】
圣才电子书 十万种考研考证电子书、题库视频学习平台
f t f (t nT ) n 0 , 1, 2 ,
b.非周期信号:在时间上不具有周而复始的特性。 ③连续信号与离散信号 a.连续信号:时间轴为连续时间变量; b.离散信号:时间轴为离散时间变量。 ④模拟信号、抽样信号、数字信号 a.模拟信号:时间幅度均连续的信号; b.抽样信号:时间离散,幅度连续的信号; c.数字信号:时间幅度均离散的信号。 3.信号的几种典型示例 (1)指数信号: f (t) Keat , a R ; (2)正弦信号: f (t) K sin(t ) ; (3)复指数信号: f (t) Kest Ke( j)t ; (4)抽样信号: Sa(t) sin t ;
(2)积分
十万种考研考证电子书、题库视频学习平台
òt f t( )dt -¥
3.两信号相加或相乘
信号的相加、相乘与代数运算无异。
四、阶跃信号和冲激信号 奇异信号是指函数本身有不连续点(跳变点)或其导数与积分有不连续点的信号,包括 斜变、阶跃、冲激和冲激偶四种信号。 1.单位斜变信号
(2)反褶
f (t) f (t) ,把 f (t) 的波形以 t 0 为轴反褶过来。
(3)尺度变换
f (t) f (at) ( a 为正实系数),若 a 1 ,则 f (t) 的波形沿时间轴被压缩;反之,则
被扩展。
2.微分和积分
(1)微分
f ¢(t) = d f (t) dt
5 / 136
圣才电子书
t (5)钟形信号(高斯函数): f (t) Ee(t/ )2 。
4 / 136
圣才电子书 十万种考研考证电子书、题库视频学习平台
2、信号系统资料
1 BE1-600/25 4
2 5
1
2
ZP.DFG-D
4
5
室外
1
2
ZP.DFG-D
4
5
1
2
ZP.DFZ1-D
3
4
室内
1
2
ZP.DFZ1-D
3
4
A30 A24
A32
A32 A10 FS A6
DYZ M.QFD-650 DYF
A20
C6
低频 信息 编码 条件
1
11
ZP.QS1
8 18 20 10
1 3 2 11
• 失调角β:轨道继电器轨道线圈上电压实际相位与理想相位 (90°)的差值。
l 有效电压:经轨道传输后加在轨道继电器轨道线圈上的电 压,其电压除以COSβ的值称为有效电压。
l 25Hz轨道电路的测试
(1)失调角β:0º~35°。
(2)调整状态最不利条件下,轨道继电器电压:15V~18 V 有效值。
三、50 Hz和25 Hz轨道电路叠加电码化介绍
1、非电化50Hz交流连续式(480)轨道 电路预叠电码化
包括非电化50Hz交流连续式轨道电路预 叠多信息电码化、非电化50Hz交流连续式轨 道电路预叠加ZPW-2000(UM系列、MPB2000G)电码化、非电化50Hz交流连续式轨 道电路叠加ZPW-2000A闭环电码化等。
MGL-F MGL-R MGFL-T
外形尺寸(长×宽×高) 300mm×100mm×155mm 202mm×116mm×202mm 282mm×100mm×155mm 120mm×80mm×170mm 180mm×90mm×165mm 282mm×100mm×155mm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
发射机输入也是平衡方式,出错会严重影 响音质与响度。
2020/8/20
13
11
11.智能化集成音频前端
将前端设备全部集成在一起,使系统变得简 单连接不易出错,易于操作。
系统人机界面良好,包含监听、监看、应急 处理和系统报警功能。
吸收了成熟的革新项目,使之智能化,减轻 了值班员的劳动强度。
2020/8/20
12
12.调频发射要求为立体声状态
各地卫星接受的音频广播主信号都为双声 道节目,注意节目的相位控制。
2020/8/20
7
7.音频前端的快速测试方法
主用信号通道( )语 输入信号1V、200Hz正旋波,波形1 输出电平 正端与地 mv、显示波形2 ; 负端与
地 mv、显示波形3。 显示两臂波形相差180º 判断:输出信号两臂电平差值应小于30%。
输出信号两端波形相位差是否正确。 透过现象查找本质,是我们技术维护者应该具备的 职业素养,不断在实践中提高判断能力和一丝不苟 的工作精神是事业发展的基础保证。
3、天线地网系统的可靠与否是定性判断天线的效率的主要方面之一。
2020/8/20
9
9.集成前端的构想
随着技术管理与技术维护水平的不断提高, “三满”播出逐年在提高,到一定的时期“三 满”指标会到一个瓶颈阶段,技术革新与创新 是突破瓶颈的重要手段。
2020/8/20
10
10.智能化集成音频前端
2020/8/20
广播发射技术 (音频前端)
节目传输中心 肖辉
2020/8/20
1
1.中波发射机要求输入信号为平 衡方式
a.平衡方式的特点:共模抑制强,适合较长 距离传输信号。600中阻适合大多数电路的 匹配。 b.但对于机柜内链路设备而言,平衡方式增 加了连接点反而成了前端出错的主要原因。
2020/8/20
2
2.不要认为匹配就是阻抗匹配
3
4.音频前端的快速测试方法
发射机音频输入板要引起重视,用万用排 除厂家生产工艺的一个问题。 当音频处理器的压缩电平使用到10dB以 上时或者用了2级音频处理器时,发射机依 然频频掉高压,除了排除网络匹配问题还 要重视前端系统是否正常等因素。 监听发射的广播节目是非常好的工作习惯
2020/8/20
2、为了使镜像振子清晰,就需要加入导电性良好的地网。如果地面是像一块 金属板的良好导体的话,我们根本就不用铺设地网,而直接把电缆接到地 里面就可以了。但是实际上大地不是像金属一样的良导体。因此,需要人 工增强地面的导电性,就需要铺设所谓的地网。因此地网是中波天线的一 部分。本来地网的铺设面需要无穷大的,但是,人们发现当地网的长度是 1/4波长奇数倍时,流入该频率高频电流最大,也就是说对于这个频率的 高频来说接地电阻最小,也就相当于接地效果最好,所以,没有那么傻非 要把地网无限地铺设,而是偷工减料地把地网只铺设1/4波长的长度就可 以了。
1.匹配有阻抗、电压、功率、电平等多种方式。信号通 道讲电平的匹配。
2.匹配就是将信号有效率,不失真的调配到下一级的过 程。
3.无源和有源电路之间多讲阻抗的匹配
有源设备之间往往分析信号的电平匹配,电平匹配要 尽可能的使上级设备输出在线形区域和最大幅值在三 分之二左右以提高工作效能和信噪比指标。
2020/8/20
5
5.音频前端的快速测试方法
2020/8/20
6
6.音频前端的快速测试方法
仪器:信号发生器 示波器
测试方法:信号发生器送200Hz(想想为什 么)正旋波信号从接收机去下一设备的输入 口接入(此时已经断开接收机的输出连线、 为非平衡信号),信号幅度约1Vp-p作为参 考输入电平;在发射机音频输入板接线夹子 处用示波器测量电平值与波形(发射机的输 入信号线不用脱开)。第一次测正端与地之 间,第二次测负端与地之间。接法如图所示 :
2020/8/20
8
8.地网是中波天线的重要部分
1、为什么中波天线只用竖在地上的一根振子呢(少占地方)?其实根据理论天 线是由两条对称的振子构成的,只不过除了我们看见的竖在地上的一根有 形的铁塔振子之外,由于地面的导电性对电波形成镜像效应,形成一条隐 藏在地下的虚拟振子,代替了真实的振子完成电波的辐射。