煤层气基本特性
煤层气概述

煤层气的开采方式
3.即是现有的垂直井,也存在井斜严重、全角 变化率大的情况,也需要无杆泵排采。 综合上述原因,利用目前常规的抽油机设备越 来越受到限制,有时考虑到一次性投资少,勉 强使用,会加大维修成本。螺杆泵有一定的长 处,比抽油机贵很多,也存在加大维修成本的 问题。每年作业2-4次,作业费用10万左右,不 断更换磨损的油管和抽油杆,一年维护正常生 产费用应是10-20万元。一是造成排采经济效益 低,二是在排采过程频繁的停抽、修井,最易 造成储层伤害。
煤层气特征及用途
井下抽采的煤层气(瓦斯)目前一般将甲 烷(CH4)含量调整到40.8%后利用,此时 瓦斯的热值为:(在0℃, 101.325kPa下) 低热值:14.63MJ/m3(约3494 kcal/ Nm3) 高热值:16.24 MJ/m3(约3878 kcal/ Nm3)
煤层气特征及用途
煤层气储量
煤层气是煤层本身自生自储式的非常规天 然气,世界上有74个国家蕴藏着煤层气资 源,全球埋深浅于2000米的煤层气资源 约为240万亿立方米,是常规天然气探明 储量的两倍多,中国煤层气资源量达36.8 万亿立方米,居世界第三位。 目前,中国煤层气可采资源量约10万亿立 方米,累计探明煤层气地质储量1023亿 立方米,可采储量约470亿立方米。
(5)根据个井出煤粉和砂的情况,定期和不定期进行 不间断的稀释工作。 (6)液晶显示屏显示主页面:电压、电流、频率、井 下液面、井下温度、井口温度、液体排量、总排液量、 产气量、管线阀门开度、平衡阀门开度。 (7) 根据用户要求,配置无线数据远程传输及监控系统。 煤层气井智能排采设备是一种全自动的电潜泵排采系统, 隶属无杆泵,可实现一年以上不检泵、不修井。是丛式 井和井身质量差的垂直井排采的最佳设备。特别是针对 水平分支井,采用该设备可直接利用目前的工程井进行 排采,无需施工生产井。
能源地质学-10-2-煤层气组成与性质资料

煤层气的物理性质
气体 CH4 CO CO2 H2S SO2
NO2
H2
味
无
微有 甜
略带 酸味
臭味
酸味 硫磺味
有刺激 味
无
无无
无
色
无无
无 褐红色
相对 比重 0.554 0.97 1.52 1.19
水溶性 难溶 微溶 易溶 易溶
爆炸性 5~16 12.5~ 不爆 4.3~4
吸气
99.85 0.47 0.38 30.87
非烃 微量 微量
微量
三、煤层气的同位素特征
1、煤层甲烷稳定碳同位素分布
煤层甲烷稳定碳同位素的地域分布(据叶建平等,1998)
2、煤层气的鉴别标志
1)相同成熟度
Ro,max=0.50~2.5% δ13C1>-43‰是煤型气, δ13C1 ≤-43%~-55‰是油型气。
1.269
1.48
相对密度(15.5℃)
0.554
0.967
1.519
1.038
1.178
热值/KJ·m-3
37.62
不可燃 不可燃
65.90
23.73
溶解系数 m3/m3·atm 0.033
0.016
0.87
0.047
2.58
H2 2.016 -239.90 1.297 -252.70
0.069 12.07
同位素δ13C、δD(‰)
δ13C1 δ13C2 δ13CCO2 δD1 -32.20 -20.80 28.40 -193 -30.20 -23.70 -17.00 -154 -32.00 -24.80 -15.80 -145 -31.90 -21.90 -17.20 -157 -33.00 -19.50 -12.70 -159 -32.60 -18.50 23.20 -172 -31.20 -16.80 -12.50 -152
煤层气

一、名词解释1煤层气:是指煤层生成的气体经运移、扩散后的剩余量,包括煤层颗粒基质表面吸附气,割理、裂隙游离气。
2煤型气:是相对于油型气的概念,是煤成气和煤层气的总和。
3割理:是指煤层中近于垂直层面的天然裂隙。
4构造煤:是指煤层中分布的软弱分层,是煤层在构造应力作用下发生破碎或强烈的韧、塑性变形及流变迁移的产物。
5煤层气吸附平衡:当吸附和解吸两种作用速度相等(单位时间内被固体颗粒表面吸留的气体分子数等于离开表面的分子数)时,颗粒表面上的气体分子数目就维持在某一定量,称为吸附平衡。
6煤层气藏:是指在地层压力(水压和气压)作用下保有一定数量气体的同一含煤地层的煤岩体,具有独立的构造形态;是在煤层演化作用过程中形成的,在后期构造运动中未被完全破坏,呈层状产出。
7煤层气地质储量:是指在原始状态下,赋存于已发现的具有明确计算边界的煤层气藏中的煤层气总量。
8煤成气:是煤层和煤系中分散有机质在热演化过程中生成的气态烃,经运移到煤系中或煤系以外的储层中聚集的煤型气。
9瓦斯突出煤体:构造严重破坏并具有发生瓦斯突出的瓦斯能(即含有大量瓦斯)介质条件的煤体称为瓦斯突出煤体。
10坚固性系数:用于表示岩石抗冲击能力的大小或破坏时破碎功的大小。
11瓦斯放散初速度△P:是指煤在0.1MPa压力吸附瓦斯的条件下,向一固定体积的真空空间放散时,某一时间段内所散放的瓦斯量。
12原生结构煤:指煤原生构造未受构造变动,保留原生沉积结构和构造特征,每层原生层理完整、清晰,仅有少量内、外生裂隙发育,煤体呈块状的煤;原生结构煤的煤岩成分、结构、构造与内生裂隙清晰可辨。
13煤与瓦斯突出:采煤生产过程中,在一瞬间(几秒钟)采煤工作面或巷道某处突然被破坏,迅速放出大量瓦斯,同时抛出大量的煤、岩碎块和煤粉,这种现象称为煤与瓦斯突出。
14吸附等温线:按照气体解吸特性描述的煤的响应性曲线称为吸附等温线二填空题1煤层气形成阶段:原生生物气生成阶段、热降解气生成阶段、热裂解气生成阶段和次生生物气生成阶段。
煤层气的成因

• 煤层气的定义与特性 • 煤层气的成因机理 • 煤层气的形成过程 • 煤层气形成的影响因素 • 煤层气勘探与开发
01
煤层气的定义与特性
煤层气的定义
01
煤层气:指赋存在煤层中以甲烷为主要成分的烃类气体,有时 也包含少量乙烷、丙烷和丁烷。
02
煤层气俗称“瓦斯”,是一种清洁能源,具有高热值和低污染
生成气体的组成
煤层气主要由甲烷组成,还含有少量的一氧化碳、 二氧化碳、氮气等气体。
煤层气的富集阶段
气体扩散作用
在煤化作用和煤层气的生成阶 段,气体通过扩散作用向煤层
孔隙中聚集。
气体吸附作用
煤层中的孔隙具有吸附作用, 能够将气体吸附在孔隙表面。
压力作用
随着煤层中气体的聚集,压力 逐渐升高,促使气体向邻近的 砂岩层和石灰岩层扩散和运移 。
盖层封闭性能
盖层的封闭性能对煤层气的保存和聚 集具有重要作用。盖层封闭性能越好, 煤层气越容易在煤层中聚集。
05
煤层气勘探与开发
煤层气勘探技术
01
02
03
地球物理勘探技术
利用地震、电法等物理方 法探测煤层气的分布和储 量。
钻井勘探技术
通过钻井获取煤层气样品, 分析其成分和储层参数。
遥感技术
利用卫星或无人机遥感技 术监测煤层气分布和动态 变化。
化学成因
煤层气是在高温高压条件下,煤中的有机质通过化学反应转化生成的气体。这 种反应可以在水或干燥条件下进行,生成的气体可以是烃类气体或非烃类气体。
影响因素
温度、压力、气体组分和气体运移条件等。
03
煤层气的形成过程
煤化作用阶段
煤化作用
随着地壳运动和沉积环境的变化,煤层经历了从泥炭到无烟煤的演 化过程,这个过程中煤的化学成分和物理性质发生了变化。
瓦斯

瓦斯
瓦斯存在于煤层及周围岩层中,是井下有害气体的总称,学名煤层气,主要成分为甲烷,具有易燃易爆特性。
据中国工程院院士周世宁介绍,我国46%的煤矿属于高瓦斯矿,瓦斯含量大,煤层透气性低,不易在开采前抽放,加之地质构造复杂、断层多、地应力大,采掘时极易发生瓦斯爆炸现象。
有关统计显示,我国2000米以内浅煤层气资源储量在30万亿至35万亿立方米,相当于450亿吨标准煤,居世界第3位,与全国常规天然气资源量相当。
瓦斯发电的效益相当显著。
如果是1立方米含量100%的瓦斯,可以发出3.2—3.3度电,如果是30%含量的1立方米瓦斯可以发出1度电。
如果我国瓦斯抽放量达到42亿立方米并全部被利用,相当于增加570万吨标准煤,可缓解能源紧张局势,可增加产值15亿元以上;同时还可减排二氧化碳6750万吨,极大的减少大气污染。
如果将这笔资金投入到煤矿安全设施改造以及技术研发升级中,则煤矿安全的现状将会极大地改善。
瓦斯的抽排有3种方式:地面钻井开采、通过井下瓦斯抽放系统和地面输气系统进行抽放、通过煤矿通风排出。
煤层气基础知识

1、煤层气:是指赋存在煤层中以甲烷为主要成分、以吸附在煤基质颗粒表面为主并部分游离于煤孔隙中或溶解于煤层水中的烃类气体;煤层气爆炸范围为5—15%2、煤层气的主要成分甲烷、二氧化碳、氮气3、煤层气储层是(基质)孔隙、裂隙双重介质结构4、煤层气的赋存状态吸附态(80-90%),游离态(20%-10%)、水溶态(5%以下)。
游离态煤层气以自由气体状态储积在煤的割理和其他裂缝空隙中,在压力的作用下自由运动5、煤层气的产出机理:通过抽排煤储层的承压水,降低煤储层压力,使吸附态甲烷解吸为大量游离态甲烷并运移至井口。
即排水-降压-解析-扩散-渗流煤层气的运移方式:微孔-大孔-微裂纹-裂隙-裂缝6、在煤体的大孔和裂隙中,煤层气流动是以压力梯度为动力,其运移遵循达西定律;而在微孔结构中,煤层气流动是以浓度梯度为动力,运移遵循菲克定律。
7、井底压力:是指煤层气井储层流体流动压力8、压降漏斗:由于排水降压,供水边界到井底洞穴形成压差,其压差形状为漏斗状曲面,该曲面被称为压降漏斗,由于洞穴压力最低,煤层气定向解析,扩散,渗流和运移至洞穴。
排采时间越长,压降漏斗有效半径越大,其影响范围逐渐增加。
9、吸附:煤层气分子由气相赋存到煤体表面的过程。
10、煤中自然形成的裂缝称为割理;割理中的一组连续性较强、延伸较远的称面割理;另一组仅局限于相邻两条面割理之间的、断续分布的称端割理11、达西定律:Q=KA△h/L式中Q为单位时间渗流量,A为过水断面面积,△h为总水头损失(高度差),L 为渗流路径长度,I=h/L为水力坡度,K为渗流系数。
关系式表明,水在单位时间内通过多孔介质的渗流量与渗流路径长度成反比,与过水断面面积和总水头损失成正比。
从水力学已知,通过某一断面的流量Q等于流速v与过水断面A的乘积,即Q=Av。
菲克定律:菲克就提出了:在单位时间内通过垂直于扩散方向的单位截面积的扩散物质流量(称为扩散通量Diffusion flux,用J表示)与该截面处的浓度梯度(Concentration gradient)成正比,也就是说,浓度梯度越大,扩散通量越大12、临界解吸压力:对于未饱和煤层气藏,只有压力下降到含气量吸附等温线上,气体才开始解吸,该压力称为临界解吸压力。
煤层气与常规天然气比较

煤层气与常规天然气比较一、特点比较1、相同点①气体成分大体相同:煤层气主要由95%以上的甲烷组成,另外5%的气体一般是CO2或氮气,;而天然气成分也主要是甲烷,其余的成分变化较大。
② 用途相同:两种气体均是优质能源和化工原料,可以混输混用。
2、不同点① 煤层气基本不含碳二以上的重烃,产出时不含无机杂质,天然气一般含有含碳二以上的重烃,产出时含无机杂质;② 在地下存在方式不同,煤层气主要是以大分子团的吸附状态存在于煤层中,而天然气主要是以游离气体状态存在于砂岩或灰岩中;③ 生产方式、产量曲线不同。
煤层气是通过排水降低地层压力,使煤层气在煤层中解吸-扩散-流动采出地面,而天然气主要是靠自身的正压产出;煤层气初期产量低,但生产周期长,可达20-30年,天然气初期产量高,生产周期一般在8年左右;④ 煤层气又称煤矿井斯,是煤矿生产安全的主要威胁,同时煤层气的资源量又直接与采煤相关,采煤之前如不先采气,随着采煤过程煤层气就排放到大气中,据有关统计,我国每年随煤炭开采而减少资源量190亿m3以上,而天然气资源量受其他采矿活动影响较小,可以有计划地控制。
二、储藏方式比较常规气藏煤层气储层1、埋深有深有浅,一般大于1500米一般小于1500米2、资源量计算不可靠较可靠3、勘探开发开发模式滚动勘探开发或先勘探后开发滚动勘探开发4、储气方式圈闭,游离气吸附于煤系地层中(大部分)5、气成分烃类气体,主要是C1—C495%以上是甲烷6、储层孔隙结构多为单孔隙结构,双孔隙结构,微孔和裂隙发育7、渗透性渗透率较高,对应力不敏感渗透率较低,对应力敏感8、开采范围在圈闭范围内大面积连片开采9、井距大,可采用单井,一般用少量生产井开采小,必须采用井网,井的数量较多10、储层压力超压或常压欠压或常压11、产出机理气体在自然压力下向井筒渗流,井口压力大需要排水降压,气体在压力下降后解吸,在微孔中扩散,然后经裂隙渗流到井筒12、初期单井产量高低13、增产措施一般不需要一定需要14、钻井及生产工艺较简单较复杂,需要人工提升排水采气。
煤层气

煤层气煤层气(Coalbed Methane)储层参数,主要包括煤的等温吸附特性参数、煤层气含量、渗透率、储层压力、原地应力,以及有关煤岩煤质特征的镜质组反射率、显微组分、水分、灰分和挥发分等,相应的测试分析技术有:煤的高压等温吸附试验(容量法)、煤层气含量测定、煤层气试井和煤岩煤质分析等。
煤的高压容量法等温吸附实验,是煤层气资源可采性评价和指导煤层气井排采生产的关键技术参数,等温吸附数据测定准确性,直接关系到煤层气开发项目的成败和煤层气产业的发展。
许多研究表明,煤是具有巨大内表面积的多孔介质,象其它吸附剂如硅胶、活性碳一样,具有吸附气体的能力。
煤层气以物理吸附方式储存在煤中,主要证据有:甲烷的吸附热比气化热低2—3倍(Moffat &Weale,1955;Y ang &Saunders,1985),氮气和氢气的吸附也与甲烷一样,这表明煤对气体的吸附是无选择性的;大量试验也证明,煤对气体吸附是可逆的(Daines,1968;Maver 等,1990)。
结合国内外资料,推荐吸附样粒度为60—80目。
煤的平衡水分—当煤样在温度30℃、相对湿度96%条件下,煤中孔隙达到水分平衡时的含水量。
测试平衡水平的主要目的是:恢复储层条件下煤的含水情况,为煤的吸附实验做准备。
煤层气含量—指单位重量煤中所含的标准状态下(温度20℃、压力101.33kpa)气体的体积,单位是cm3/g或m3/t。
它是煤层气资源评价和开发过程中计算煤层气资源量和储量、预测煤层气井产量的重要煤储层参数之一。
煤层气含量的测定方法大体上可分为两类:直接法(解吸法)和间接法(包括等温吸附曲线法和单位体积密度测井法)。
在直接法中,保压取心解吸法是精确获得原地煤层气含量最好的方法。
直接法的基本原理煤心煤样的煤层气总量由三部分气体量构成:一是损失气(lost gas),二是实测气(measured gas),三是残余气(residual gas)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章煤层气基本特性
煤层气是赋存在煤层中的天然气体,其化学成分以甲烷为主,也含有数量不等的其他烃类和杂质气体。
第一节主要内容:
煤层气的主要化学组分包括:甲烷、二氧化碳和氧气,含少量的重烃气(乙烷、丙烷、丁烷、戊烷)、氢气、一氧化碳、二氧化碳、硫化氢以及微量的稀有气体(氦气、氖气、氩气、氪气等)。
通常,将甲烷与烃气之百分比定义为干燥系数。
干燥系数大于95%的煤层气称为干气,小于95%的为湿气。
煤层气化学组成的垂向变化:从地表至煤层气风化带下限深度,依次形成了二氧化碳—氮气带、氮气—甲烷带和甲烷带。
其中二氧化碳—氮气带、氮气—甲烷带通称煤层气风化带。
(在层气风化带内的煤层气资源,通常缺乏开发利用价值,不列入资源计算。
)
第二节主要内容:
煤层气基本物理性质:
煤层气中往往含有微量的芳香族碳氢化合物气体,常常伴有一些苹果的香味。
煤层气的热值是指单位体积煤层气燃烧时所产生的热量,也称煤层气的燃烧热。
甲烷的爆炸极限:5.3%—14.0%。
在地层条件下,煤层气密度随储层压力的增高而加大,随储层稳定的升高而减小。
由于空气的密度等于1.2928,故煤层气的密度(质量)与相对密度大不相同(见下表)。
煤层气化学组分的密度和相对密度
组分密度相对
密度组分密度相对
密度
组分密度相对
密度
甲烷0.7166 0.5543 戊烷 3.2159 2.4872 硫化氢 1.5392 1.1906 乙烷 1.3561 1.0488 二氧化碳 1.9768 1.5921 水蒸气0.7680 0.5941 丙烷 2.0918 1.5617 氮气 1.2505 0.9673 空气 1.2928 1.0000 丁烷 2.6720 2.0665 氧气 1.4289 1.1053 氦气0.1782 0.1380
黏度是流体运动时,其内部质点沿接触面相对运动、产生内摩擦力以阻抗流体变形的性质,常用动力黏度系数(流体内摩擦切应力与切应变率的比值)来表示。
煤层气黏度是确定其扩散运移特性的重要参数。
当压力超过40kg/cm2时,压力才对煤层气黏度有明显影响。
压力升高,黏度增大。
煤层气在水中具有溶解性,不同气体的溶解性差别很大。
甲烷溶解度对压力的变化十分敏感,压力增大,溶解度增加。
第三节主要内容:
煤层气类型:
1、按赋存状态:①游离气
②吸附气
③水溶气
2、按物质来源:①有机气
②无机气
3、按演化阶段和化学作用分类:①生物成因气
②热成因气
在地层条件下,煤层气一般以吸附态为主。
煤层气开采中的所谓“排水降压”,实质上是通过排水方式在井孔附近形成压力差,使得煤层气产生定向解吸、扩散、渗流与运移。
煤对气体吸附势能因气体化学成分以及煤的孔隙结构、物质组成、煤级等而异。
一般来说,煤级增高(镜质组反射率小于4.5%时)、微孔比表面积增大,煤的吸附势能增强。
分子偏心因子不同所造成的分子极性差异,形成了煤对不同流体分子吸附能力的大小顺序:水>二氧化碳>烃气>氮气。
第四节主要内容:
煤中有机质的演化具有阶段性。
第一次跃变发生在长焰煤后期阶段,镜质组反射率在0.6%左右。
第二次跃变发生在焦煤初期阶段,镜质组反射率在1.3%左右。
第三次跃变发生于贫煤与无烟煤的分界线附近,镜质组反射率在2.5%左右。
第四次跃变发生在低级无烟煤阶段末期,镜质组反射率在3.7%左右。