氮掺杂石墨烯制备及其应用研究进展

合集下载

石墨烯材料在农业领域的应用研究进展

石墨烯材料在农业领域的应用研究进展

櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄櫄[84]李晓莎,武 宁,刘 玲,等.不同秸秆还田和耕作方式对夏玉米农田土壤呼吸及微生物活性的影响[J].应用生态学报,2015,26(6):1765-1771.[85]PandeyD,AgrawalM,BohraJS.Greenhousegasemissionsfromricecropwithdifferenttillagepermutationsinrice-wheatsystem[J].Agriculture,Ecosystems&Environment,2012,159:133-144. [86]BhatiaA,PathakH,JainN,etal.Globalwarmingpotentialofmanureamendedsoilsunderrice-wheatsystemintheIndo-GangeticPlains[J].AtmosphericEnvironment,2005,39(37):6976-6984.[87]HuangS,ZengYJ,WuJF,etal.EffectofcropresidueretentiononriceyieldinChina:ameta-analysis[J].FieldCropsResearch,2013,154:188-194.[88]万淑红,田应兵,许昌雨,等.氮素调控对水稻黄华占生长发育及产量的影响[J].江苏农业科学,2020,48(6):68-72.[89]WangJZ,WangXJ,XuMG,etal.Cropyieldandsoilorganicmatterafterlong-termstrawreturntosoilinChina[J].NutrientCyclinginAgroecosystems,2015,102(3):371-381.[90]李廷亮,王嘉豪,黄 璐,等.秸秆还田替代化肥对土壤有机碳组分及冬小麦产量的影响[J].山西农业科学,2022,50(6):771-780.[91]严 君,韩晓增,邹文秀,等.长期秸秆还田和施肥对黑土肥力及玉米产量的影响[J].土壤与作物,2022,11(2):139-149.[92]李守华.长期秸秆还田对提高小麦—玉米轮作耕层土壤养分及产量分析[J].中国农学通报,2022,38(14):60-64.史大炜,伍 纲,杨其长,等.石墨烯材料在农业领域的应用研究进展[J].江苏农业科学,2023,51(7):39-48.doi:10.15889/j.issn.1002-1302.2023.07.006石墨烯材料在农业领域的应用研究进展史大炜1,2,伍 纲2,杨其长1,程瑞锋2(1.中国农业科学院都市农业研究所,四川成都610213;2.中国农业科学院农业环境与可持续发展研究所,北京100081) 摘要:石墨烯材料及其衍生物由于其电子效应迁移率高、导热性能良好、比表面积大、优良的生物相容性等特点,近年来成为材料领域的研究热点。

氮掺杂碳材料的制备及其在催化领域中的应用

氮掺杂碳材料的制备及其在催化领域中的应用

氮掺杂碳材料的制备及其在催化领域中的应用一、本文概述氮掺杂碳材料作为一种新型碳材料,因其独特的结构和性质,在催化领域展现出广阔的应用前景。

本文将对氮掺杂碳材料的制备方法进行详细介绍,包括物理法、化学法以及新兴的模板法等。

本文还将探讨氮掺杂碳材料在催化领域中的应用,如燃料电池、电解水、有机催化等。

通过对氮掺杂碳材料制备方法的深入研究和应用实例的分析,旨在为相关领域的研究人员提供有价值的参考,推动氮掺杂碳材料在催化领域的进一步发展。

二、氮掺杂碳材料的制备方法氮掺杂碳材料的制备方法多种多样,主要包括物理法、化学法以及物理化学结合法等。

这些方法的选择主要基于掺杂氮的种类、数量以及所需的碳材料结构。

物理法:物理法通常涉及高温处理含氮气体(如氨气、氮气等)与碳材料的过程。

在这个过程中,含氮气体在高温下与碳材料发生反应,从而实现氮的掺杂。

物理法的优点在于操作简单,易于实现大规模生产。

然而,由于氮的掺杂程度较低,且难以精确控制,因此物理法的应用受到一定限制。

化学法:化学法通常是通过化学反应将含氮前驱体引入碳材料中。

常用的含氮前驱体包括尿素、氨水、双氰胺等。

这些前驱体在适当的条件下与碳材料发生反应,生成氮掺杂的碳材料。

化学法的优点在于可以精确控制氮的掺杂量和种类,且掺杂程度较高。

然而,化学法通常需要较高的反应温度和较长的反应时间,且可能产生一些副产物,影响最终产品的性能。

物理化学结合法:为了克服物理法和化学法的缺点,研究者们提出了物理化学结合法。

这种方法结合了物理法和化学法的优点,既可以在较高温度下实现氮的高效掺杂,又可以精确控制氮的掺杂量和种类。

常用的物理化学结合法包括等离子体处理、水热法等。

这些方法不仅可以提高氮掺杂碳材料的性能,还可以实现大规模生产。

氮掺杂碳材料的制备方法多种多样,选择合适的制备方法需要根据具体的应用需求和掺杂要求来确定。

随着科技的不断进步,相信未来会有更多新颖、高效的制备方法被开发出来,推动氮掺杂碳材料在催化领域的应用更加广泛和深入。

氮掺杂石墨烯作为锂离子电池负极材料的电化学性能

氮掺杂石墨烯作为锂离子电池负极材料的电化学性能
B in nvri C e c leh ooy B on 00 9 C ia e i U i syo hmi cn l , e'g10 2 , h ) jg e t f aT g i n A s at r hn he G s aebe r a d f m nt a f k r ht b xdt n r i epni n b t c:Ga eeset S)hv enpe r o a r aega i yoi i , a d xas nad r p s( pe r ul l p e ao p o
( 北京化工 大学碳 纤维及功 能高分子教 育部重点实验 室,北京 10 2 ) 0 0 9
摘 要 :以天然石 墨为原料,通过氧化、快速热膨胀和超声分散制备石墨烯。 将氧化石 墨与三聚氰胺在氮气下 9 0℃ 5
反应合成氮掺杂石墨烯。通过扫描电子显微镜(E 、 S M) 透射电子显微镜(E 、 T M) X射线衍射(R ) X D 以及红外光谱(TR 、 F I) X射线能谱( I ) ) ) 等测试方法对氮掺杂石墨烯的形貌、结构进行分析。结果表明,该方法合成了薄层状氮掺杂石墨烯。 (s 采用恒流充放 电和循环伏安法等手段测试氮掺杂石墨烯、石墨烯和天然石墨作为锂离子电池负极材料的电化学性能,
比较研究了三者用作锂离子电池负极材料的电 化学性能, 结果表明氮掺杂石墨烯负极材料具有优异的电化学能 和独特
的储锂机制。
关键词 :氮掺杂石 墨烯 ;石 墨烯 ;锂离子 电池 ;负极材料 ;电化学性能
中图分类号 :O 1.1 6 37 ;066 4 文献标志码 :A 文章编号 :2 9 —2 8 (0 20 —0 1 —5 0 5 7 32 1)6 4 3
ut snc rame tG ah n xd GO) s te n ae th rsn eo me miea 9 0℃ adt n f rdit lao i et n. rp e eo ie( r t wa  ̄r r n elda te ee c f l n t 5 h a p a n a se e o r r n

石墨烯制备与改性的研究进展

石墨烯制备与改性的研究进展

—115—《装备维修技术》2021年第5期1 石墨烯的制备方法1.1 氧化还原法氧化还原法主要是利用强氧化剂和强酸对石墨实施氧化处理,从而在石墨的表面形成环氧、羟基以及羧基等多种含氧基团,进一步降低手摸层间的相互作用,增大石墨层间距离,制备出氧化石墨烯,其实也就是人们常说的GO ,之后再利用相应的化学方法或者高温作用还原GO ,将其表面附着的含氧基团去除,最终得到我们所需要的石墨烯。

这种制备方法具体操作过程中,由于GO 表面存在大量的含氧基团,其中中央区域分布最多的是环氧基团和羟基基团,羧基基团主要分布在GO 的边缘区域。

采用氧化还原法制备石墨烯,由于无法彻底消除各类含氧基团,造成最终制备的石墨烯存在一定的缺陷,但最大的优势就是制备成本低且操作简便,所以还是存在较为广阔的应用前景[1]。

1.2 GO 的还原GO 还原法包含了溶液热还原法、热还原法以及化学还原法三种。

下面就这三种制备方式进行简要论述。

首先,溶液热还原法具体操作步骤:先将GO 均匀分散在溶液当中,然后对溶液进行加热处理,在此环境下可以促使GO 表面的含氧基团去除干净,同时也可以在一定程度上抑制石墨烯片层的重新堆叠。

相关学者研究表明,将GO 水悬浮液放置到180摄氏度的热反应器当中,静置六个小时之后可以得到纯度比较高的石墨烯。

而且通常情况下溶液的极性越大,GO 还原处理就越容易。

其次是热还原法,这种还原方式是在惰性气体保护环境下,将GO 温度升到230摄氏度,这样便能够有效去除GO 表面的含氧基团,由于是高温去除所以被人们称作热还原。

可是在热还原处理中会造成石墨烯片层的重新堆积,所以最终得到的通常为石墨结构,而不是预期的石墨烯结构。

只有GO 升温非常迅速情况下才有可能获得石墨烯结构[2]。

再次,化学还原法是利用一些强还原剂对GO 实施还原处理,采取这种方法可以获得质量比较好的石墨烯。

我国目前最常采用的强还原剂主要为水合肼。

研究发现,利用水合肼还原得到的石墨烯的电导性可以达到2420S/m ,通过对还原时间、温度和水合肼含量的调控实现了对GO 的可控还原。

掺氮石墨烯的制备及其ORR催化性能的研究

掺氮石墨烯的制备及其ORR催化性能的研究

掺氮石墨烯的制备及其ORR催化性能的研究李鹏飞;王升高;孔垂雄;杜祖荣;邓泉荣;王戈明【摘要】Some outstanding properties of nitrogen-doped graphene has attracted much attention.The most synthesis methods of nitrogen-doped graphene need high temperature and long time which wiil destroy the structure of graphene and weaken the performance. In this article,we propose nitrogen plasma discharge method for synthesis of N-doped graphene sheets by simultaneous N-doping and reduction of graphene oxide(GO)sheets. Meantime,various characterization tech-niques,such as Raman,TEM are introduced. Electrical measurements demonstrate that products have higher catalytic per-formance for Oxygen Reduction Reaction in an alkaline solution.%由于掺氮石墨烯具有优异的电化学性能,受到研究者的关注,然而在石墨烯掺氮的方法中大部分(热解法、烧结法)需要过高的温度(500~900℃)和较长的反应时间(2~3 h)[1-3]。

采用微波等离子体对氧化石墨进行还原改性制备掺氮石墨烯,在低功率条件下反应时间只需20 min就得到了催化活性良好的掺氮石墨烯。

高电化学性能三维网状氮掺杂石墨烯的制备

高电化学性能三维网状氮掺杂石墨烯的制备

高电化学性能三维网状氮掺杂石墨烯的制备钟文斌;谭兮亦【摘要】3D nitrogen‐doped graphene (NRG) was prepared in the hydrothermal method with graphene oxide (GO) as the raw material and melamine as the nitrogenous source and reducing agent .Scanning electron microscopy , X‐ray photoelectron spectroscopy ,Raman spectroscopy ,nitrogen adsorption‐desorption analysis and electrochemical measurements were used to characterize the morphology ,structure ,components and supercapacitor performance of as‐prepared electrode materials .The results showed that GO could be reduced efficiently by melamine and realized N‐do‐ping at the sametime .The 3D structure was built due to the strong interaction between graphene sheets .Its content of nitrogen atoms was 4 .37% .The electrochemical performance was measured through electrochemical tests .When the mass ratio of GO and melamine was 1∶2 (NRG‐2) ,the highest specific capacitance of 296 F/g can be achieved at the current density of 1 A/g ,which was higher than the capacitance of other mass ratios of GO and melamine .88 .5%of the capacitance of NRG‐2 remained after 1000 cycles ,which meant that NRG‐2 had a long life cycle .%以氧化石墨烯(GO)为原料,三聚氰胺为还原剂和氮掺杂剂,经过水热法制备出了氮掺杂石墨烯(NRG)三维网络.通过扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、拉曼光谱(Raman)、氮气吸脱附分析和电化学表征等测试手段对样品的形貌、结构和电化学性能进行表征.结果表明:三聚氰胺在水热的条件下有效地将GO还原并实现氮掺杂,三聚氰胺将氧化石墨烯还原之后,使得石墨烯之间的相互作用力增强,从而使石墨烯搭建出三维网络结构,其氮含量可达4.37%.电化学测试表明,当GO与三聚氰胺质量比为1∶2(NRG‐2)时,在1A/g时其最大比电容值达到了296F/g,这个比电容值高于其他不同GO与三聚氰胺质量比所制备出的氮掺杂石墨烯的比电容值.NRG‐2还显示出优良的循环寿命,经过1000次恒电流充放电循环后比电容保留量为88.5%.【期刊名称】《湖南大学学报(自然科学版)》【年(卷),期】2016(043)006【总页数】5页(P53-57)【关键词】石墨烯;三聚氰胺;氮掺杂;水热法;超级电容器【作者】钟文斌;谭兮亦【作者单位】湖南大学材料科学与工程学院,湖南长沙 410082;湖南大学材料科学与工程学院,湖南长沙 410082【正文语种】中文【中图分类】TB34;O613.71超级电容器(supercapacitors)也叫电化学电容器(electrochemical capacitors EC),相对于传统电容器具有更高的比能量,相对于二次电池具有更高的比功率,以及更长的循环寿命,它的循环寿命大于105次[1].因而,超级电容器能够储存更多能量以提供给电力消耗设备和汽车,是一种绿色环保,性能优秀的新型储能器[1-2].石墨烯是由碳原子以 sp2杂化连接组成的一层二维平面,碳原子位于石墨烯网络中的蜂巢晶体点阵上.因而,石墨烯是世界上最薄的二维材料, 它的厚度只有0.35 nm[3].由于这种特殊的结构使其具有许多独特性质,比如大的比表面积,优异的电学性能和高的载流子迁移率,同时也是制备超级电容器电极的理想材料[4-5].然而结构完整的石墨烯化学性质十分稳定,表面没有任何基团,呈现出惰性状态,使得石墨烯在许多方面的研究和应用受到了极大的限制.现阶段,解决这个问题的主要途径是对石墨烯进行改性,比如化学修饰、共价键功能化改性、化学掺杂等[6-8].而由于氮原子与碳原子具有相似的原子半径,氮原子掺杂后可作为电子供体,能使氮掺杂石墨烯显示出相对于单纯石墨烯更多的优异性能,因此,对于氮原子掺杂石墨烯有广泛的研究[8].目前,制备氮掺杂石墨烯的主要方法有化学气相沉积法[9]、电弧放电法[10]、氨气等离子法[11]等.Xue[12]等人曾以吡啶为氮源,在300 ℃的温度下,通过化学气相沉积法制备出了含氮量高达16.7%的单层氮掺杂的n型石墨烯.Sheng[13]等人曾将三聚氰胺与氧化石墨烯在固相的状态下研磨均匀后,在Ar气氛保护下高温焙烧制备出氮掺杂石墨烯.此外,氨气[5]、乙腈[14]、尿素[15-16]等含氮化合物均是制备氮掺杂石墨烯的常用氮源.由于三聚氰胺含氮量高,价格低廉,是作为制备氮掺杂石墨烯的理想氮源[13].本文先将三聚氰胺溶解于乙醇和去离子水的混合溶剂中,再与氧化石墨烯分散液配成混合溶液,经水热反应后制备出了氮掺杂石墨烯,并对其进行了结构和电化学性能分析.1.1 氧化石墨烯(GO)制备称取10 g石墨,5 g NaNO3于三颈瓶中,搅拌,在冰水浴下加入230 mL 98%浓硫酸,搅拌10 min,向三颈瓶中加入30 g KMnO4,5 min加完,搅拌2 h,将三颈瓶置于35 ℃水浴锅中,保持搅拌3 h,用恒压漏斗向三颈瓶加入460 mL去离子水,升温至95 ℃,搅拌1 h,加入720 mL去离子水,搅拌10 min,用恒压漏斗加入80 mL 30% 双氧水,用砂型漏斗抽滤,将滤饼溶于1 000 mL 5mol/L 盐酸中,再抽滤除去锰离子,重复用1 000 mL 5 mol/L 盐酸洗3次.再将滤饼溶于2 000 mL去离子水中,静置1 d,倒掉上层清液,再加入去离子水,重复换水10次左右直至氧化石墨液的pH值大于4,将氧化石墨超声,离心,最后得氧化石墨烯分散液.1.2 氮掺杂石墨烯的制备分别将20 mg,40 mg,80 mg三聚氰胺溶解于10 mL乙醇和5.7 mL去离子水中,加入4.3 mL 4.7 mg/mL的氧化石墨烯,配成三聚氰胺:氧化石墨烯质量比分别为1∶1,2∶1,4∶1的溶液,用高压反应釜反应,反应温度180 ℃,反应时间8 h,再用稀盐酸洗涤所得固体,用去离子水洗去稀盐酸,冷冻干燥后得到所需样品.所得样品名称分别为NRG-1,NRG-2和NRG-4.不加入三聚氰胺,保持其他实验条件相同,则可制得空白样RG.1.3 电极制作方法样品研细后经100目不锈网筛过筛.将样品,碳黑,聚四氟乙烯乳液(50%)按质量比8∶1∶2配制成泥浆状.称量空电极的质量M0,涂电极,再用10 MPa压片2 min,90 ℃烘箱烘干,称电极质量M,则样品电极质量m=0.8(M-M0).制备好的电极在1 mol/L 稀硫酸电解液中浸泡12 h以上,再测电化学.1.4 材料表征与性能测试扫描电子显微镜(SEM, 日本Hitachi公司的S-4800),X光电子能谱分析(XPS,美国Thermo Scientific公司的250Xi),激光拉曼光谱仪(Raman,美国Varian公司的LR-3)用于材料的形貌、元素组成、结构表征.对于材料的电化学性能测试是采用上海辰华仪器公司的CHI 660C型电化学工作站.所用测试体系为三电极体系,其中,铂片电极为对电极,饱和甘汞电极为参比电极,电解液为1 mol/L稀硫酸.测试窗口电压为-0.2~0.8 V.利用恒电流充放电测试计算比电容,所用公式为:C=It/(ΔVm)交流阻抗测试所用的频率范围为0.01~105Hz.在循环寿命测试中用恒电流充放电循环测试1 000次,测试电流密度为10 A/g.从低倍的SEM图(图1(a))中可看出NRG-2中石墨烯在三聚氰胺的作用下相互交联,形成了三维网络结构.在高倍的SEM图(图1(b))中可明显看出石墨烯片无规则排列,片与片的边界相互交联,最终形成网络.三聚氰胺与氧化石墨烯通过水热反应,使氧化石墨烯被还原.由于氧化石墨烯上的含氧基团部分被去除,增强了石墨烯片层之间的π-π相互作用力,最终形成三维网络结构[17].正是这种网络的存在,有利于离子的扩散,减小了扩散电阻,从而改善了电化学性能.经XPS分析,NRG-2的氮含量为4.37%.如图2(a)所示,将其N 1s峰进行分峰,可得3个不同氮类型的氮峰,分别为吡啶型氮(398.5 eV),吡咯型氮(399.6 eV)和石墨型氮(400.1 eV)[18].通过3种氮峰的峰面积计算可知,吡啶型氮,吡咯型氮和石墨型氮占总氮掺杂量的百分比分别为29.21%,55.68%和15.11%.对于氮掺杂石墨烯电极材料而言,其赝电容主要来源于吡啶型氮和吡咯型氮,石墨型氮则主要是提高电极材料的导电性[19],而NRG-2中的氮元素绝大部分是以前两种类型的氮掺杂于石墨烯片中.因此,通过氮掺杂,NRG-2的比电容能够得到较大程度的提高.在拉曼谱图(图2(b))中,NRG-2主要存在两个波带,分别为D带(1 324 cm-1)和G带(1 582 cm-1).D带表示的是石墨区域上的结构缺陷,G带代表结构完整的碳结构.ID/IG可表示材料的无序化程度,ID/IG比值越大表明石墨区域上的缺陷越多[17].计算得出NRG-2和RG的ID/IG比值分别为1.35和1.21,NRG-2的ID/IG 比值增大可认为氮原子掺杂于石墨烯中引起晶格畸变,从而产生更多缺陷[1].通过对NRG-2进行氮气吸脱附测试可反映材料的孔结构.NRG-2的比表面积为22.9 m2/g,孔径主要集中在2~50 nm,孔类型为介孔.NRG-2,NRG-1,NRG-4和RG在扫描速率为1 mV/s时的循环伏安(CV)图如图3所示.从图中看出,RG的循环伏安图形近似为矩形,说明RG的比电容主要由双电层电容提供.而NRG-2的循环伏安图在0.2 V左右存在明显的氧化还原峰,这是由于吡啶型氮和吡咯型氮在电化学测试中发生了氧化还原反应,从而产生了赝电容[1,19].循环伏安图的积分面积可以反映材料的比电容大小,从图3中看出NRG-2的积分面积最大,RG的最小,NRG-1和NRG-4的介于中间,即NRG-2比电容最大,RG比电容最小.该现象表明,样品的比电容大小与三聚氰胺是否加入,以及加入量有关.对于RG,由于没有三聚氰胺加入,没有氮掺杂,使得它的比电容最小;当三聚氰胺的量过少时,氮掺杂量少,限制了比电容的提高;而当三聚氰胺的量过多时,影响了石墨烯的网络结构,从而没有有效提高比电容值.图4(a)为NRG-2,NRG-1,NRG-4和RG在1A/g的电流密度下的恒电流充放电(GCD)图.由图可看出,RG的充放电曲线是直线,显示出双电层电容特性.而NRG-2,NRG-1和NRG-4的充放电曲线则是带有一点弯曲的弧线,说明由于氮元素的存在使得它们在充放电测试过程中存在氧化还原过程[19].NRG-2,NRG-1,NRG-4和RG在不同电流密度下的恒电流充放电比电容比较图如图4(b)所示.在电流密度为1 A/g时NRG-2的比电容可达296 F/g,在电流密度提高至10 A/g时,其比电容仍有246 F/g.而RG在1 A/g时的比电容值仅为163 F/g.在电流密度为1 A/g时,NRG-2的比电容值与RG的相比提高了81.6%,又根据循环伏安测试结果,可认为掺入石墨烯中的氮元素所产生的赝电容使NRG-2的电容值提高了81.6%,NRG-1和NRG-4的比电容值介于中间,与循环伏安测试结果相一致.通过比电容值对比,说明了NRG-2具有较高的比电容和倍率性能,这主要归功于两方面:一方面是氮掺杂提供了赝电容,提高了NRG-2的比电容值;另一方面是NRG-2的三维网络结构有利于离子扩散,减少了材料电阻,提高了NRG-2的倍率性能.由交流阻抗测试所得的Nyquist曲线(图5(a))可以很清楚地了解样品的电子转移特点和离子扩散情况.在曲线的低频区,NRG-2和RG的图像呈近似直线,说明它们的电容行为是较为理想的双电层电容行为[19].Warburg电阻表示电解质与电极之间的界面电阻,用沿着低频区的切线与X轴的夹角表示,角度越小说明其电阻越小[19].由图可看出NRG-2的Warburg电阻小于RG的,这是由于氮原子掺杂使得NRG-2的亲水性增强,降低了界面电阻.曲线高频区半圆弧的直径可代表电极材料的电荷转移电阻[1].NRG-2和RG的电荷转移电阻分别为1.3 Ω和2.4 Ω.NRG-2的电荷转移电阻较小可能是由于一部分氮原子以石墨型氮的形式掺杂于石墨烯中,而这种类型的氮能提高导电性[17],使得NRG-2的电荷转移电阻减小.在10 A/g电流密度下,NRG-2和RG经过1 000次循环之后,比电容保留量分别为88.5%和84.5%(见图5),说明NRG-2有良好的充放电结构稳定性,从而具有优秀的循环寿命.本文将三聚氰胺与氧化石墨烯经过180 ℃水热反应成功制备出了具有三维网络结构的氮掺杂石墨烯.经XPS分析,NRG-2有4.37%的含氮量,且氮的类型主要是吡咯氮和吡啶氮.通过电化学测试表明NRG-2具有高的电化学性能,在1 A/g时,比电容可达296 F/g,并且具有优秀的循环稳定性,在1 000次循环后比电容保留量仍有88.5%.。

三维独立氮掺杂石墨烯气凝胶可作为增强钠储存的钠离子电池负极材料

三维独立氮掺杂石墨烯气凝胶可作为增强钠储存的钠离子电池负极材料

三维独立氮掺杂石墨烯气凝胶可作为增强钠储存的钠离子电池负极材料钠离子电池与锂离子电池有类似的工作机理,都是通过钠或者锂离子的脱嵌机制实现其充放电过程。

钠离子电池最大的优势就是资源丰富,但其缺陷也很明显,除了“沉”之外,最主要就是其能量密度和电化学性能受到钠离子扩散动力学的阻碍。

为解决上述问题,科研人员想到了“石墨烯”,石墨烯气凝胶的三维多孔网络结构具有足够的间隙,可允许钠离子快速和可逆的插层与去插层;且当氮掺杂在石墨烯片上引入缺陷,还可以实现大型钠离子的运输。

有鉴于此,Zhang等人通过水热反应制备了独立的氮掺杂石墨烯气凝胶来作为钠离子电池的潜在负极材料。

氮掺杂石墨烯气凝胶的制备首先,GO粉末通过超声波均匀地分散在蒸馏水中;然后经过水热反应,还原的石墨烯氧化物片组装形成黑色圆柱形水凝胶;第三步将其冷冻干燥以形成3D多孔石墨烯气凝胶;最后,通过使用碳酸氢铵作为氮源在经过退火处理来实现石墨烯气凝胶中的氮掺杂。

图1 氮掺杂石墨烯气凝胶的合成路线(a)氧化石墨烯悬浮液;(b)还原得石墨烯水凝胶;(c)冷冻干燥处理示意图;(d)3D多孔石墨烯气凝胶;(e)氮掺杂石墨烯气凝胶;(f)三种氮掺杂类型氮掺杂氧化石墨烯气凝胶的表征掺杂通常是提高特定的容量和能量密度常见的方法,尤其是氮掺杂。

首先,氮掺杂被认为可通过降低导电间隙来增加导电率;其次,掺杂区域周围的电负性较高,可能会吸引大量的正离子,进而增加石墨烯的比容量;第三,氮掺杂可在石墨烯片中引入缺陷,降低扩散屏障,进而促进离子的扩散。

图2 3D氮掺杂石墨烯气凝胶的FESEM表征(a,b)氮掺杂石墨烯气凝胶FESEM图;(c)氮掺杂石墨烯气凝胶的TEM图和SAED图(插图);(d,e)氮掺杂石墨烯气凝胶HRTEM图像;(f)氮掺杂石墨烯气凝胶等温线图和BJH孔分布(插图)由图2(a,b)可明显的看到,氮掺杂的石墨烯纳米片互连,被扭曲并随机交联以组装成具有开放的介孔结构的3D框架。

微波固相法快速制备氮掺杂石墨烯

微波固相法快速制备氮掺杂石墨烯
mi c r o wa v e s s t r o n g l y , p r o d u c i n g s u p e r h e a t i n g w h i c h r e s u l t s i n d e c o mp o s i n g t h e g r a f t e d ED A mo l e c u l e s a n d i n — s i t u d o p i n g g r a p h e n e s h e e t s .T h e mo r p h o l o g y , s t r u c t u r e ,a n d c o mp o n e n t s o f t h e a s — p r o d u c e d g r a p h e n e we r e
掺 杂 石 墨 烯 。 利用 扫 描 电 子 显 微 镜 ( S E M) 、 透 射 电 子 显微 镜 ( T E M) 、 傅 里叶变换红外光谱( r r m) 、 X 射 线 光 电子 能 谱 ( x P s ) 、 X射 线 衍射( x R D ) 、 X 射 线 能谱 ( E D S ) X  ̄ 品 的形 貌 、 结构 和组 成 进 行 了表 征 。 结果表明 : 该 合 成 途 径 能 成 功 实 现 对 氧 化石 墨烯 的还 原 和
W ANG Ka i
J I Bi n g — C h e n g 2 HAN Me i — J i a L I L i — We i
( S c h o o l o f A u t o m a t i o n E n g i n e e r i n g , Q i n g d a o U n i v e r s i t y , Q i n g d a o , S h a n d o n g 2 6 6 0 7 1 , C h i n a )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Hans Journal of Nanotechnology 纳米技术, 2019, 9(1), 17-31 Published Online February 2019 in Hans. http://www.hanspub.org/journal/nat https://doi.org/10.12677/nat.2019.91003

文章引用: 康婉文, 全海燕, 黄永浩, 罗品, 梁耀恒, 钟碧琪, 李政, 朱武青, 莫昌泳, 吴基平, 廖宏杰, 王晓文, 陈东初, 张敏, 户华文. 氮掺杂石墨烯制备及其应用研究进展[J]. 纳米技术, 2019, 9(1): 17-31. DOI: 10.12677/nat.2019.91003

Recent Advances in the Synthesis and Applications of Nitrogen-Doped Graphene

Wanwen Kang1*, Haiyan Quan1*, Yonghao Huang1, Pin Luo1, Yaoheng Liang1, Biqi Zhong1, Zheng Li1, Wuqing Zhu1, Changyong Mo1, Jiping Wu1, Hongjie Liao1, Xiaowen Wang1,

Dongchu Chen1, Min Zhang1, Huawen Hu1,2#

1College of Materials Science and Energy Engineering, Foshan University, Foshan Guangdong

2Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou

Guangdong

Received: Feb. 1st, 2019; accepted: Feb. 15th, 2019; published: Feb. 22nd, 2019

Abstract As the focus of much attention in multi-disciplinary fields such as physics, chemistry, biomedicine, and materials science, graphene has the following limitations which impede their widespread ap-plications: 1) the gapless electronic structure of graphene would retard their optoelectronic ap-plications, 2) the high surface energy of graphene nanosheets causes them to readily aggregate, consequently losing their unique properties, and 3) the inert surface of graphene makes it difficult to combine with other materials. In order to realize more widespread applications of graphene, it is essential to functionalize graphene physically or chemically, and graphene functionalization is a broad subject being undergoing an intense study. This is because the functionalization cannot only retain the unique intrinsic properties of graphene to a certain extent but also impart new struc-tures and properties to the functionalized graphene. Doping with heteroatoms is one of the most hot-topic research areas regarding the functionalization of graphene, which leads to the breakage of the original symmetry and ordered honeycomb structure and to the rearrangement of the crys-tal structure of graphene. Compared to other non-metal heteroatoms, nitrogen has a size closer to carbon, revealing a higher compatibility of nitrogen with the lattice structure of graphene. Hence, nitrogen can be more easily doped into the graphene lattices, producing nitrogen-doped graphene (NG) that is more stable in comparison with other heteroatom-doped graphene. More importantly, the incorporation of nitrogen would enhance the electronegativity of graphene materials, attri-buted to the generated N-C bond where the adjacent carbon atoms are endowed with more posi-tive charges. The enhancement of the electronegativity facilitates catalytic redox reactions. These characteristics of NG lead the research and applications of NG to become an important direction in various fields. This review article summarizes various NG preparation methods in recent years, and compares the merits and demerits of these preparation methods. In addition, the applications of NG in catalysis, supercapacitors, photocatalysis, biosensing, and antibacterial, etc., are reviewed, and the bottleneck in the current stage and the future prospect are also pointed out. The review paper presented here paves the way for the development of more high-performance NG-based materials for addressing both fundamental and technical problems and challenges in both scien-tific and industrial communities.

*第一作者。

#通讯作者。 康婉文 等 DOI: 10.12677/nat.2019.91003 18 纳米技术

Keywords Nitrogen-Doped Graphene, Graphene Oxide, Modification, Functionalization, Heteroatom

氮掺杂石墨烯制备及其应用研究进展 康婉文1*,全海燕1*,黄永浩1,罗 品1,梁耀恒1,钟碧琪1,李 政1,朱武青1,莫昌泳1, 吴基平1,廖宏杰1,王晓文1,陈东初1,张 敏1,户华文1,2#

1佛山科学技术学院,材料科学与能源工程学院,广东 佛山

2广东省新能源和可再生能源研究开发与应用重点实验室,广东 广州

收稿日期:2019年2月1日;录用日期:2019年2月15日;发布日期:2019年2月22日 摘 要 石墨烯作为物理、化学、生物医药、材料科学等学科领域的一大研究热点,它存在以下几个方面的局限性而在一定程度上限制了它的广泛应用:1) 理想石墨烯材料具有的零带隙电子结构限制了它在光电领域的应用,2) 具有高表面能的石墨烯片层极易团聚而致使其散失所特有的诸多优异性能,3) 由于与其它材料的界面结

合牢度不够,表面呈现惰性的石墨烯片层不易与其它材料复合。为了使石墨烯材料获得更加广泛的应用,功能化改性处理一直都被作为一个研究热点而被广泛深入研究。功能化石墨烯不仅可以利用石墨烯诸多本征优异性能,还可以赋予其新的结构及功能,从而实现更广泛的应用。调控石墨烯物理化学性质的热门方法之一是通过利用像无机非金属原子等异质原子进行掺杂处理,使石墨烯重组子晶格结构,打破其原有的对称性和规则嵌套结构。氮原子具有相比于其它无机非金属原子更接近碳原子的大小,故与石墨烯有着更好的相容性,易于掺杂进入石墨烯的晶格中而获得稳定的氮掺杂石墨烯(NG)材料。更重要的是,氮元素的掺入将会产生N-C键,其中毗邻N原子的C原子将会带有更多的正电荷,从而能有效增强石墨烯材料的电负性,这种电子吸附性的增强可为氧化还原反应创造更佳的催化条件,这些特性使得NG的研究及应用成为了各领域的重要方向。本论文综述了近几年NG的制备方法,分析比较了各制备方法的优缺点,并对其现阶段研究瓶颈问题和在催化、超级电容器、光催化、生物传感、抗菌等应用方向进行了总结性展望。本综述论文将为开发更多高性能NG基材料用于解决各科技和工业领域基础理论和实际技术问题和挑战具有一定参考价值。

相关文档
最新文档