表面等离激元基本原理

合集下载

(完整word版)表面等离激元

(完整word版)表面等离激元

(完整word版)表⾯等离激元表⾯等离⼦体共振波长1.共振波长的基本求解思路表⾯等离激元(SP)是指在⾦属和电介质界⾯处电磁波与⾦属中的⾃由电⼦藕合产⽣的振动效应。

它以振动电磁波的形式沿⾦属和电介质的界⾯传播,并且在垂直离开界⾯的⽅向,其振幅呈现指数衰减。

表⾯等离激元的频率与波⽮可以通过⾊散关系联系起来。

其垂⾄于⾦属和电解介质界⾯⽅向电磁场可表达为:式中表⽰离开界⾯的垂直距离,当时取+,时取⼀。

式中为虚数,引起电场的指数衰减。

波⽮平⾏于⽅向,,其中为表⾯等离⼦体的共振波长。

由表达式可见,当时,电磁场完全消失,并在时为最⼤值。

函数,以及电介质的介电常数来求解表⾯等离激元的的⾊散关系,由公式: ,可得到等离激元⾊散关系式为: ,如果假设和都为实数,且,则可获得⼀个较为复杂的⾊散关系式其中, (从实部可以计算SPPs 的波长'2/x SPP K λπ=,SPPs 的传播距离SPP δ主要决定于虚部''2SPP SPPs k δ=2. ⾦属表⾯等离体⼦频率的求解当波⽮较⼤或者时,的值趋向于21P SP ωωε=+ 对于⾃由电⼦⽓,,是⾦属体电⼦密度,是电⼦有效质量,是电⼦电荷。

因此,随增⼤⽽减⼩。

(1)具有理想平⾯的半⽆限⾦属全空间内电势分布满⾜拉普拉斯⽅程:由于在⽅向上介质和⾦属都是均匀的,所以可令解的形式为得拉普拉斯⽅程的解由以及边界条件:可以得到介质与⾦属相对电容率之间的关系:,假设介质的相对电容率为与频率⽆关的常数,由⾦属相对电容率的表⽰式可知因此⾦属表⾯等离体⼦频率为当介质为真空时,得到⾦属表⾯等离体⼦频率为(2)⾦属中存在着⼤量的价电⼦,它们可以在⾦属中⾃由地运动.由于价电⼦的⾃由移动性及电⼦间存在着库仑相互作⽤,所以在⾦属内部微观尺度上必然存在着电⼦密度的起伏.由于库仑作⽤的长程性,导致电⼦系统既存在集体激发(即等离体⼦振荡),也存在个别激发(即准电⼦).⽽在⼩波⽮近似下只存在集体激发,故可以将电⼦密度的傅⾥叶分量作为集体坐标来描述这种关联,在k ⼀0的极限下,有式中为单位体积内的电⼦数.由此⽅程可以得到⾦属内等离体⼦振荡频率从以上讨论及推导可以看出,⾦属等离体⼦振荡实际上是在库仑作⽤参与下的⾼粒⼦数密度系统中电⼦的集体运动,等离体⼦就是电⼦集体振荡的能量量⼦.由于库仑势场是纵场,因此等离体⼦是纵振动的量⼦.以上所讨论的情况没有考虑到⾦属边界的影响,即认为⾦属是⽆限⼤的,计算得到的频率为块状⾦属中的体相等离体⼦频率.3.⾦属介电常数的求解(1)另外,根据Drude ⾃由电⼦⽓模型,理想⾦属的介电⽅程可写为: 22()1p i ωεωωτω=-- ,p ω是等离⼦体振荡频率,,τ是散射速率描述电⼦运动遭遇散射⽽引起的损耗, 161311.210/, 1.4510p rad s s ωτ-=?=?对于银,。

表面等离极化激元(SPP)基本原理

表面等离极化激元(SPP)基本原理

c.双波模型[H.T.Liu and lanne,”Microscopic theory of the extraordinary optical transmission”Nature(London)452,728,2008]
现在讨论w>wp的情况。 当w很大时, wτ>>1,金属的介电函数可以忽略虚 部只考虑实部,可以近似为:
(
)
1
2 p
2
2 p2 K 2c2
当w>wp,则允许电磁波以群速度 vg=dw/dK<c在金属中传播。当w=wp时, epsilon(w)=0,它所对应的激发必然是电子的 集体纵振动。因为D=0,可以知道电场在wp 是一个纯粹的退极化场E=-P/epsilon0.其运 动状态可以想象为:离子是一块固定的正电
T (64 2 )( a )4 27
可以看出,一个明显的特征是,透射谱中出现了一系 列的峰、谷结构。除了 位于紫外(λ = 326nm,对应于体plasmon 频率)的 透射峰以外,在长波长的范 围内还有两组突出的透射极大(1000nm、1370nm) 和透射极小(900nm、1270nm)。尤其让人感到惊 奇的是,后一个透射峰位于1370nm;此波长约为小 孔直径的10倍。而且,其透射效率为4.4%;如果对 小孔的占空比(2.2%)进行归一化,则相对透射率 将达到2。这意味着,将有两倍于直接入射到小孔上 的光能够被透射;或者说,有一部分光即使没有入射 到小孔上也能被透射。而根据Bethe 的理论,这样大 的小孔,其透射效率充其量也不过3.4e−3。据此可知, 小孔阵列能够产生近600 倍的透射增强。
此外,他们还测试了透射谱对一些参数(如周期、孔径、膜厚及金属材料等) 的依赖关系,并发现了一些共同的特征。如:透射峰的位置决定于周期,而 与孔径、膜厚及金属的种类无关;透射峰的宽度决定于孔径与膜厚的比,孔径 越大、膜厚越小,则峰越宽;而且,透射峰的高度依赖于膜厚,膜越厚,则峰 越低。另外,至关重要的一点是,薄膜必须为金属膜;如果是非金属材料,则 无透射增强效应。

等离激元

等离激元

总结表面等离激元效应:金属表面的电子俘获外加光长形成构成具有独特性质的电子疏密波(SPPs),SPPs眼金属表面传播,受制于金属的趋肤效应,只有极少的光能量可以穿透,同时激发的SPPs更多的局限于金属表面(可能是应为电流的热效应)而不能向外辐射,传播距离只有微纳级。

当金属结构尺寸与传播距离相当,才可以把SPPs的作用最大发挥,因此金属薄膜不能太厚。

效应的应用:具有很强的局域场增强能力,可以束缚自由电子。

ZnO的基本性质:1.禁带:物体中存在着自由电子(存在于导带)和价层电子,价层电子的能级与导带中电子的能级之差称为禁带。

2.激子:电子从价层吸收能量激发到导带,同时在原来的位置形成空穴,空穴带正电,有有效质量,带电荷数与电子相同,又由于库仑力的作用,与电子束缚在一起形成不带电的集合——激子,激子可以在物体表面自由运动。

激子中的电子可以跃迁到对应空穴,产生光子。

3.束缚激子:等电子陷阱俘获自由电子,因为库伦力,所以同时会俘获空穴,形成束缚激子。

束缚激子越多,自由电子跃迁的概率越大,ZnO发光效率就越高。

4.ZnO的性质:a.ZnO晶体结构一般为六方纤锌矿、立方岩盐矿、闪锌矿等结构。

其中六方纤锌矿结构最为稳定,有很好的成膜特性,实用价值最理想。

以下数据以六方纤锌矿为主。

b.ZnO禁带宽,激子束缚能较大,禁带宽3.37eV,激子束缚能60meV,其电阻率较高,为0.01欧姆每厘米,熔点1970摄氏度,热稳定性好。

载流子浓度为10-17/cm-3。

向其中杂Al后,禁带宽度增加到4.54eV,电阻率降低到7.85*10-4欧姆每厘米。

c.ZnO薄膜具有压敏性。

ZnO压敏材料在外加电压的作用时,存在一个阀值电压(大致在0.1—1.0V)。

当外电压高于该值时,电压的微小变化会引起电流的激烈波动。

阀值电压与晶体界面有关,晶体界面数越多阀值电压越大。

增大晶体粒径或减小ZnO材料厚度都有利于减少晶体界面数,从而降低阀值电压。

表面等离激元

表面等离激元

表面等离激元介绍定义及原理:当光波(电磁波)入射到金属与介质分界面时,金属表面的自由电子发生集体振荡,电磁波与金属表面自由电子耦合而形成的一种沿着金属表面传播的近场电磁波,如果电子的振荡频率与入射光波的频率一致就会产生共振,在共振状态下电磁场的能量被有效地转变为金属表面自由电子的集体振动能,这时就形成的一种特殊的电磁模式:电磁场被局限在金属表面很小的范围内并发生增强,这种现象就被称为表面等离激元现象。

性质:表面等离激元是外界光场与金属中自由电子相互作用的电磁模,在这种相互作用下外界光场被集体振荡的电子俘获,构成了具有独特性质的SPPs 。

在平坦的金属/介质界面,SPPs 沿着表面传播,由于金属中欧姆热效应,它们将逐渐耗尽能量,只能传播到有限的距离,大约是纳米或微米数量级。

只有当结构尺寸可以与SPPs 传播距离相比拟时,SPPs 特性和效应才会显露出来。

随着工艺技术的不断进步,现今已经可以制作特征尺寸为微米和纳米级的电子元件和回路,在这个领域的研究也迅速开展起来。

表面等离激元主要具有如下的的基本性质:1. 在垂直于界面的方向场强呈指数衰减;2. 能够突破衍射极限;3. 具有很强的局域场增强效应;4. 只能发生在介电参数(实部)符号相反(即金属和介质)的界面两侧。

表面等离激元的激发:由于表面等离激元在界面附近的电场方向与界面垂直,要激发表面等离激元,光波必须具有与界面垂直的电场分量。

此外,在激发表面等离激元的过程中,还需要满足波矢匹配条件。

相同频率下,金属与介质界面的表面等离激元与光波的波矢关系可以表示为:2/121210)(εεεε+=k k spp ,其中spp k 是表面等离激元波矢,0k 是光波波矢。

一般来说,对于介质01>ε;而对于金属,212;0εεε<<且。

相同频率时,表面等离激元的波矢大于光波波矢,所以用平面光波无法直接激发出表面等离激元。

要想实现光激发,就必须通过特殊方法来补偿光波损失,使波矢匹配条件成立。

表面等离激元技术在传感领域中的应用

表面等离激元技术在传感领域中的应用

表面等离激元技术在传感领域中的应用随着科技的不断进步,传感器技术的广泛应用改变了我们的生活方式。

作为一种新兴而且快速发展的技术,表面等离激元技术在传感领域中的应用也越来越受到人们关注。

本文将介绍表面等离激元技术的基本原理和应用于传感领域中的优势,以及目前一些典型的传感器的实际应用情况。

一、表面等离激元技术的基本原理表面等离激元技术是一种基于表面等离子体共振原理的物理现象。

在这种现象中,当电磁波遇到一种金属表面时,它会产生一系列了相干的电子激发状态,并产生等离子体波。

这种表面等离激元简称为SPP。

SPP具有在金属表面上存在,垂直于表面传播的性质。

表面等离激元技术通过利用这种现象,使电磁波与金属表面上的等离激元相互作用,从而可实现高灵敏度的传感。

表面等离激元技术主要通过两种方法实现:基于与表面等离激元耦合的光学激发和基于表面等离激元共振的物理激发。

二、表面等离激元技术在传感领域中的优势由于其高灵敏度、快速响应、非侵入性和选择性等特点,表面等离激元技术成为了传感器领域中非常重要的技术手段。

相比于传统的机械传感器和电磁传感器,表面等离激元传感器具有以下几个优势。

1.高灵敏度:表面等离激元技术可以实现纳米级别的检测精度。

当波长与SPP的共振波长相等时,SPP将在表面被激发,从而产生强烈的电磁场信号。

这种特性可以被用来检测非常小的物质变化或者微小的物理特性变化。

2.非侵入性:表面等离激元技术可以通过非侵入性的方法实现检测。

相比于传统的传感器,表面等离激元传感器无需直接接触被检测样本,因此对样本的污染小、损伤少。

3.快速响应:表面等离激元技术在感应作用下产生了强烈的电磁场信号,可以快速响应物质的变化。

响应速度比传统传感器更快。

4.选择性:表面等离激元技术可以通过合适的表面修饰、特定的感光层和吸附层的选择等手段实现特定样品的选择性识别。

三、表面等离激元技术已经被广泛应用于生物医学、环保、军事和食品安全等领域。

以下将介绍一些典型的传感器的实际应用情况。

表面等离激元共振原理

表面等离激元共振原理

表面等离激元共振原理
表面等离激元共振是一种在表面等离激元中发生共振现象的物理现象。

表面等离激元是一种在金属和介质界面上产生的电磁波模式,它是金属中的自由电子与光子之间的耦合模式。

表面等离激元共振原理可以通过以下步骤进行解释:
1. 当电磁波入射到金属-介质界面时,部分能量会被金属吸收,而另一部分能量会被反射。

2. 当入射角度和波长满足一定的条件时,进入金属表面的光子能够与自由电子耦合形成表面等离激元。

这些电子和光子之间的耦合形成了新的电磁波模式,即表面等离激元。

3. 表面等离激元的形成导致了共振现象,即当入射角度和波长符合表面等离激元的共振条件时,能量将得到最大的能量传递。

4. 共振产生的电磁波能够在金属表面上传播,形成波浪或驻波模式,具有较高的局部电场强度。

表面等离激元共振具有很多重要的应用,包括传感器、光学器件、太阳能电池等领域。

通过调控和利用表面等离激元共振现象,可以实现更高效的能量传输、灵敏的传感器探测以及更高分辨率的成像等。

表面等离激元共振

表面等离激元共振
表面等离激元共振在生物医学领域中 可用于实现高分辨率、高灵敏度的成 像与诊断,有助于疾病的早期发现和 治疗。
表面等离激元共振在太阳能电池等领 域中,可以提高光电转换效率,促进 可再生能源技术的发展。
表面等离激元共振的历史与发展
早期研究
表面等离激元共振的研究始于20世纪初,但直到近年来随 着纳米技术的快速发展,才得到了广泛关注和应用。
受介质影响
当表面等离激元遇到不同介质时 ,会发生反射、折射或耦合等现 象。
表面等离激元的共振条件
波矢匹配
当入射光波的波矢与表面等离激元的波矢相匹 配时,会发生共振增强效应。
能量守恒
入射光能量与表面等离激元的能量必须相匹配, 才能实现共振。
动量守恒
入射光与表面等离激元必须满足动量守恒定律。
03
表面等离激元共振的应用
光电探测器
用于检测共振产生的光信号,如光电流或光 电压。
激光器
提供共振所需的光源,通常选用可见光波段 的激光。
金属纳米结构
制备具有特定形貌和尺寸的金属纳米结构, 如纳米颗粒、纳米棒、纳米片等。
实验步骤与操作
样品制备
在玻璃基底上制备金属纳米结 构样品,可以采用物理气相沉
积、化学合成等方法。
光学显微镜观察
THANK YOU
实验验证难度
表面等离激元共振的实验验证是另一个技术挑战。由于表面等离激元共振的特性,实验验证需要高精度的测量设备和 复杂的实验条件,这增加了实验验证的难度。
理论模型的不完善
目前对表面等离激元共振的理论模型仍不完善,这限制了对表面等离激元共振的深入理解和应用。需要 进一步发展理论模型,提高理论预测的准确性和可靠性。
调控光电流
通过表面等离激元共振,可以调控太阳能电池中的光电流方向和大 小,优化能源利用效率。

表面等离激元的激发及探测

表面等离激元的激发及探测

表面等离激元的激发及探测表面等离激元是一种位于金属表面的电磁波,可以激发金属表面的电子形成共振,产生强烈的电磁场,具有极高的局域化和增强性质。

在生物分子、化学分析、光学传感等领域中,表面等离激元技术得到了广泛的应用。

本文将介绍表面等离激元的激发及探测方法,并讨论该技术在化学和生物研究中的应用。

一、表面等离激元的激发方法表面等离激元的激发方法主要有三种:光学激发、电学激发和粒子束激发。

其中,光学激发是最为常见的激发方式,它通过在金属表面正入射激光束来产生表面等离激元。

当入射激光与金属表面的电子相互作用时,电子自由波和表面等离激元耦合,从而形成表面等离激元波。

二、表面等离激元的探测方法表面等离激元的探测方法主要有两种:光学探测和电学探测。

其中,光学探测是最为常用的探测方式。

在光学探测方法中,激发表面等离激元的激光通过光学系统导入与表面等离激元耦合的探测光纤或另一探测器上,以测量表面等离激元的共振谱。

在电学探测中,可以通过测量表面等离激元场的局部电流或电势,来间接测量表面等离激元的特性。

三、表面等离激元在化学研究中的应用表面等离激元在化学分析领域中有着广泛的应用。

例如,在表面等离激元拉曼光谱(SERS)中,表面等离激元与修饰金属表面上的分子共振,从而增强了分子的拉曼散射信号,可以对弱信号化合物进行高灵敏度和高选择性的检测。

此外,表面等离激元还可以通过测量表面等离激元感应荧光(SEF)来实现生物分子的检测。

利用表面等离激元产生的强烈电磁场,可以将荧光分子的荧光增强数千倍以上,从而实现对极低浓度的生物分子的检测。

四、表面等离激元在生物研究中的应用表面等离激元技术在生物学研究中也有广泛的应用。

例如,在蛋白质结构研究中,表面等离激元可以用来研究蛋白质的自组装过程以及蛋白质分子之间的相互作用;在单分子检测中,表面等离激元可以将单个分子的激发局限在一特定区域内,从而实现对单个分子的定位和监测,为分析和理解生物分子的自组装、相互作用和反应提供了新的手段;同时表面等离激元还可用于测量细胞膜的介电常数,从而实现对细胞膜性质的非侵入式测量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
表面等离子体激元(SPPs)是光与物质相互作用的一种特殊形式,表现为金属表面电子的集体振荡与光波的耦合状态。文档详细阐述了SPPs的基本原理和性质,包括其色散关系和特性。在金属中,自由电子被视为高密度电子液体,其纵向密度波动形成等离子体振荡。当光波与这种振荡耦合时,形成等离子体激元。根据麦克斯韦理论,电磁波表面波可以沿金属表面以广泛的固有中的应用,特别是在表面等离子体光子学领域,该技术利用传播的表面等离子体激元和局域等离子体激元。这也被称为等离子体光学或等离子体光子学,涉及的研究领域包括局域共振和局部场增强等,尤其在纳米粒子中有重要应用。
相关文档
最新文档