第四章电容器介质陶瓷反铁电体
铁电与反铁电的比较

集成铁电体的研究
1. 铁电薄膜与半导体的集成称为集成铁电体,近年来广泛开 展了此类材料的研究。铁电存贮器的基本形式是铁电随机 存取存贮器。早期以为主要研究对象,直至年实现了的商 业化。与五六十年代相比,当前的材料和技术解决了几个 重要问题。一是采用薄膜,极化反转电压易于降低,可以 和标准的硅或电路集成;二是在提高电滞回线矩形度的同 时,在电路设计上采取措施,防止误写误读;三是疲劳特 性大有改善,已制出反转次数达5*1012次仍不显示任何疲劳 的铁电薄膜。
铁电体的研究进展
第一性原理的计算
现代能带结构方法和高速计算机的反展使得对 铁电性起因的研究变为可能。通过第一性原理 的计算,对BaTiO3、PbTiO3、KNbO3和LiTaO3等铁 电体,得出了电子密度分布,软模位移和自发 极化等重要结果,对阐明铁电性的微观机制有 重要作用。
尺寸效应的研究
随着铁电薄膜和铁电超微粉的发展,铁电尺寸 效应成为一个迫切需要研究的实际问题。近年 来,人们从理论上预言了自发极化、相变温度 和介电极化率等随尺寸变化的规律,并计算了 典型铁电体的铁电临界尺寸。这些结果不但对 集成铁电器件和精细复合材料的设计有指导作 用,而且是铁电理论在有限尺寸条件下的发展。
钛酸钡的晶体结构图和铁电相变图
典型的反铁电材料
1. NH4H2PO4型(包括NH4H2AsO4及氘代盐等 ); 2. (NH4)2SO4型(包括NH4HSO4 及NH4LiSO4等 ); 3. (NH4)2H3IO6型(包括Ag2H3IO6 等); 4. 钙钛矿型(包括NaNbO3、PbZrO3、PbHfO3、Pb
第四章 电介质

第四章 电磁介质第一节 电介质一、电介质—绝缘介质1.电介质内没有可以自由移动的电荷 在电场作用下,电介质中的电荷只能在 分子范围内移动。
2.分子电矩·分子—电偶极子(模型)分子的正负电中心相对错开。
·分子电矩二、电介质的极化1.极性电介质的极化p 分+- 电介质分子(1) 极性分子·正常情况下,内部电荷分布不对称, 正负电中心已错开,有固有电矩p 分, ·极性分子:如HCl 、H 2O 、CO 等。
(2)无外电场时·每个分子p 分 ≠ 0·由于热运动,各p 分取向混乱·小体积∆V (宏观小、微观大,内有大量 分子)内 ∑ p 分= 0(3)有外电场时·各 p 分向电场方向取向(由于热运动,取向 并非完全一致)外有外电场 无外电场分 ·且外电场越强 ⇒ | ∑ p 分| 越大·这种极化称取向极化2.非极性电介质的极化(1)非极性分子·正常情况下电荷分布对称,正负电中心重 合,无固有电矩。
·非极性分子:如He 、 H 2、 N 2、 O 2、 CO 2等。
(2)无外电场时·每个分子 p 分 = 0·∆V 内∑ p 分 = 0 (3)有外电场时·正负电中心产生相对位移,p 分(称感应电矩) ≠ 0E 外分 ·且外电场越强 ⇒ | ∑ p 分| 越大·这种极化称位移极化三、电极化强度1.电极化强度·为描写电介质极化的强弱,引入电极化强度矢量。
·定义:单位体积内分子电矩的矢量和或·P 是位置的函数·单位: C/m 2·对非极性电介质,因各p 分相同,有 P = n p 分n ---单位体积内的分子数·综上,对极性、非极性电介质都有 无外电场时, P = 0 有外电场时,P ≠ 0且电场越强 ⇒ | P | 越大2.电极化强度和场强的关系·由实验,对各向同性电介质,当电介质中 电场E 不太强时,有·χe :电极化率(χe ≥ 0),决定于电介质性质。
6 功能陶瓷(2)电介质陶瓷

电容器瓷
6.2.1.1 电介质陶瓷
6.2.1概述
极化(polarization) 在外电场作用下,电介质内部沿电场方向产生感应偶极矩,在 电介质表面出现极化电荷的现象叫作电介质的极化。
6.2.1.1 电介质陶瓷
介电常数( permittivity )
6.2.1概述
介质在外加电场时会产生感应电荷而削弱电场,原外加电 场(真空中)与最终介质中电场比值即为介电常数
单晶
6.2.2电绝缘瓷
6.2.2.2莫来石
一次莫来石的生成
二次莫来石的生成
6.2.2电绝缘瓷
6.2.2.3镁质瓷
介电损耗小,用于一般高频无线电设备 中,如雷达、电视机等 介质损耗低,且随频率变化小;比电阻 大,且在高温下保持很高的数值;但是 热膨胀系数高,热稳定性差。
滑石瓷
镁橄榄石瓷
尖晶石瓷
介质损耗低于滑石,介电常数稍高,化 学稳定性良好,作为低压高频电容器、 感应线圈的骨架等。 膨胀系数低,热稳定性好,作为耐热冲 击的绝缘材料。
堇青石瓷
6.2.2电绝缘瓷
6.2.2.3镁质瓷
滑石瓷( Mg3Si4O10(OH)2 ) 镁橄榄石瓷( Mg2SiO4 )
Si blue, O red, Mg green
6.2.2电绝缘瓷
6.2.2.3镁质瓷
尖晶石(MgAl2O4) 堇青石 ( (Mg,Fe)2Al4Si5O18 )
O red, Al blue, Mg yellow
介电常数
真空介电常数
= r 0 = (1 + ) 0
相对介电常数 极化率
r=Q/Q0=C/C0
6.2.2电绝缘瓷
6.2.2.1概念
高电阻率 性 能 要 求 介电常数小
探究电容器的电介质

探究电容器的电介质电容器是一种用来储存电荷的电子元件,其中的电介质在电场作用下可以极大地影响电容器的性能和特性。
本文将探究电容器的电介质的作用、种类及其对电容器性能的影响。
一、电介质的作用电介质是电容器中的一种非导电材料,其存在使得电容器能够存储电荷。
与导电材料相比,电介质具有较高的电阻,可以阻止电荷在电介质内部的自由移动。
电介质在电场作用下,会产生极化现象,即使内部的正负电荷分离。
通过这种极化,电介质在电场中建立了与外电场相反的电场,从而增加了电容器的电容量。
二、电介质的种类电容器中常用的电介质种类繁多,包括但不限于空气、纸介质、陶瓷、塑料以及复合电介质等。
不同的电介质材料具有不同的特性,适用于不同的电容器应用场景。
1. 空气介质空气作为一种常见的电介质,广泛应用于小型电容器中。
它具有优异的绝缘性能和低损耗,但其体积较大,适用于低电容量的应用。
2. 纸介质纸介质是电容器早期常用的一种电介质,其性能相对较差。
纸介质容易受潮,导致电容器性能损失或短路。
由于技术的进步,纸介质现在已被更先进的材料所取代。
3. 陶瓷陶瓷电介质具有较高的介电常数和稳定性,适用于高频率和高电压应用。
常见的陶瓷电介质有氧化铝陶瓷和钛酸锶陶瓷等。
4. 塑料塑料作为电介质被广泛应用于电容器中。
它具有良好的绝缘性能、低损耗和高稳定性。
常见的塑料电介质有聚乙烯(PE)、聚丙烯(PP)以及聚四氟乙烯(PTFE)等。
5. 复合电介质复合电介质是由多种电介质材料复合而成的复合材料。
它综合了各种电介质的优点,具有较高的介电常数、低损耗和良好的稳定性。
复合电介质常用于高性能电容器,如电力电容器和高频电容器等。
三、电介质对电容器性能的影响电介质的性能对电容器的性能有着重要的影响。
不同的电介质具有不同的介电常数、介电损耗和击穿电压等参数,会直接影响电容器的电容量、频率响应和耐压特性。
1. 介电常数介电常数是电介质的重要参数之一,它反映了电介质对电场的响应能力。
4-2陶瓷的铁电性与铁电陶瓷教程

Ps=0
Ps (001)
(011) Ps
(111) Ps T< -90℃
三 角 三 晶 方 系
-90℃ <T<5 ℃
‹#›/228
§4-2 陶瓷的铁电性与铁电陶瓷
外加机械力的作用,将使BaTiO3的转变温度变化。 P
P
P
P
单晶 BaTiO3
Tc=TC0-5.71×10-8H
‹#›/228
§4-2 陶瓷的铁电性与铁电陶瓷
等静压的压缩力,有利于保留 小体积。体积膨胀型相变温度 升高,体积收缩型相变温度降 低。 120℃:四方→立方, V↓,Tc ↓ -90℃:三角→正交,V↑,T ↑ 0℃:正交→四方转变例外,V ↑T↓
BaTiO3单晶转变温度与等静压的关系
‹#›/228
§4-2 陶瓷的铁电性与铁电陶瓷
与单晶一样,压力增大, 居里温度降低
•利用铁电晶体的铁电效应实现数 据的存储:中心Ti4+的两个可能位 置保存“1”和“0”
•无电场作用下,可保持中心Ti4+ 位置不变,因此FRAM保存数据 不需要电压
‹#›/228
§4-2 陶瓷的铁电性与铁电陶瓷
(4) 电畴结构及其运动方式
A2 A3 B1
A1 A4
E=0
B2 E≠0
四方BaTiO3中的180°与90°畴壁
‹#›/228
§4-2 陶瓷的铁电性与铁电陶瓷
氧八面体空隙越大,中心阳离子半径越小,电价越高, 晶体越容易产生自发极化。 但并不是所有含氧八面体的晶体都会出现自发极化。 氧八面体以共顶方式连接构成氧-高价阳离子直线(B-OB)是非常重要的条件。 如金红石晶体中没有 Ti-O-Ti离子直线,极化无法产生 连锁反应向前扩展而形成电畴,故不能产生自发极化。
第4章电磁介质

电r位移矢量r r D=e0E+P
Ñ ur 0
q0
S内
q'
Ñ SPdS S内q'
( ) r r r
ò Ñ å Se0E+P?dS
q0
S
òÑ å r r D?dS S
q0
有电介质时 的高斯定理
S
r
rr
相对介电常量
D=(1+ce)e0E= ee0E e = 1+c e (相对电容率)
解 (1)
E1 0
(r R0)
E2
Q
4π 01r 2
(R0 rR1)
E3
Q
4π 0 2 r 2
(R1rR2)
E4
Q
4π 0r 2
(r R2 )
R2 Q
R1 R0
r
ε1
ε2
(2) 紧贴导体球表面处的极化电荷
1 Q' (1 )Q
1
E1 0
(r R0)
E2
Q
4π 01r 2
(R0 rR1)
E3
Q
四 有电介质时的高斯定理 电位移
在有电介质存在的电场中,高斯定理仍成立, 但要同时考虑自由电荷和束缚电荷产生的电场
总电场
自由电荷
极化电荷
Ñ S ErdSr 10
q0
S内
q'
上式中由于极化电荷一般也是未知的,用其求解电
场问题很困难,为便于求解,引入电位移矢量,使
右端只包含自由电荷。
ε 0´
r
r
P=cee0E
质的击穿场强均为EM 。当电压升高时,哪层介质先击穿?此 时电压是多少?
外层介质先被击穿
【精选】电子材料物理第四章.幻灯片

电介质材料的特点:
➢ 不存在载流子,是绝缘体,绝缘电阻率>109Ω.cm ➢ 具有介电常数 ➢ 部分介质具有特殊功能(压电性、铁电性、热释电性)
❖ ε是反映电介质极化行为的宏观物理量;极化能力越强,介电 常数越大。
❖ 用介质电容器可以作为储能元件,储能密度大小可以表示为
ω=1/2ε0εrE2
5
(2)电偶极矩
➢偶极子的产生:
在电场的作用下,正负电荷重心的分离
➢电偶极矩的定义
ql
l
-q
+q
E
方向为从负电荷指向正电荷
介质中的极性分子可看作偶极子(在电场的作用下极性 分子发生转向)
设想一个质量为m,带电为-e的粒子,为一带正电 +e的中心所束缚,弹性恢复力为-kx。这里k是弹性回 复系数,x表示粒子的位移。我们考虑它在交变电场下运
动,电场用复数表示: Eloc E0eit
电荷的运动方程
2x m
t2
kxeE0eit
e
m
e2
02 2
静态极化率
e
e2
m
2 0
(ω0趋于0)
6
(3)极化率():
单位电场强度下,质点的电偶极矩的大小。
E loc
其中:Eloc为作用在微观质点上的局部电场。 (它与宏观外电场并不一定相同)
极化率表征材料极化能力的微观物理量,只与材
料的性质有关,其单位为F·m2(法拉·米2)
7
(4)极化强度(矢量):单位体积内电偶极矩的矢量和
常用电容按介质区分

常用电容按介质区分有纸介电容、油浸纸介电容、金属化纸介电容、云母电容、薄膜电容、陶瓷电容、电解电容等。
图1 电容的外形
表1 常用电容的结构和特点
电容器上标有的电容数是电容器的标称容量。
电容器的标称容量和它的实际容量会有误差。
常用固定电容允许误差的等级见表2。
常用固定电容的标称容量系列见表3。
表2 常用固定电容允许误差的等级
表3 常用固定电容的标称容量系列
电容长期可靠地工作,它能承受的最大直流电压,就是电容的耐压,也叫做电容的直流工作电压。
如果在交流电路中,要注意所加的交流电压最大值不能超过电容的直流工作电压值。
表4是常用固定电容直流工作电压系列。
有*的数值,只限电解电容用。
表4 常用固定电容的直流电压系列
由于电容两极之间的介质不是绝对的绝缘体,它的电阻不是无限大,而是一个有限的数值,一般在1000兆欧以上。
电容两极之间的电阻叫做绝缘电阻,或者叫做漏电电阻。
漏电电阻越小,漏电越严重。
电容漏电会引起能量损耗,这种损耗不仅影响电容的寿命,而且会影响电路的工作。
因此,漏电电阻越大越好。
电容的种类也很多,为了区别开来,也常用几个拉丁字母来表示电容的类别,如图2所示。
第一个字母C表示电容,第二个字母表示介质材料,第三个字母以后表示形状、结构等。
上面的是小型纸介电容,下面的是立式矩开密封纸介电容。
表5列出电容的类别和符号。
表6是常用电容的几项特性。
图2
表5 电容的类别和符号
表6 常用电容的几项特性
图表 1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反铁电介质陶瓷以PbZrO3或以 PbZrO3为基的固溶体为主晶相
一 反铁电体的晶体结构
线性介质的微观结构特征是没有自发极化; 铁电介质微观结构特征是具有很强的自发极化。
C1
B1
A1
反铁电体宏观特征:具有双电滞回线
低压时:P与E呈线性关系 高压时: P与E呈明显的非线性关系
线——强迫相变
2 反铁电介质陶瓷用途
(1)优良的储能材料,利用反铁电相-铁 电相的相变可作储能电容器应用;
(2) 以PbZrO3 为基的反铁电材料相变 场强较高,一般为40-100KV/cm可用于 制作高压陶瓷电容器 ;
(3) 反铁电相-铁电相的相变形变, 可作电-机换能器,不需要共振频率。
三 反铁电陶瓷的组成、性质和生产工艺
反铁电体微观结构特征:
居里温度以上为立方相 居里温度以下为反铁电相 PbZrO3Tc=230℃
反铁电体是这样一些晶体,晶体结构与同型铁
电体相近,但相邻离子沿反平行方向产生自发极
化 单位晶胞中总的自发极化为零
居里温度以上为立方相
(001)面投影 居里温度以下 转为反铁电相
反铁电体晶格特征:
1 离子有自发极化,以偶极子的形式存在; 2 偶极子成对的反平行排列,且两部分偶极
电滞回线斜率为介
电系数
反铁电体介电系数和电容量随电场强度
的变化规律:
E<E临:定值 E临<E<E饱和:先
逐渐增大Байду номын сангаас再逐 渐减低
E饱和<E:定值
反铁电体与铁电体的主要不同:
当外电场降至零时,反铁电体没有剩余极化, 而铁电体则有剩余极化。
反铁电体与铁电体
注意:除外电场外,温度、压力也能诱
导反铁电相向铁电相转变,呈现双电滞回
反铁电陶瓷由PbZrO3或以PbZrO3为基
的固溶体为主晶相而组成。
反铁电体锆酸铅临界电场与温度的关系
KV
目前反铁电储能陶瓷材料的组成是以
Pb(Zr,Ti,Sn)O3固溶体为基础的, 用La3+替代部分Pb2+,以及用Nb5+替代部 分(Zr,Ti,Sn)2+,获得两个系列的材 料,供实际应用。
子大小相等,方向相反(P1=-P2),单位 晶胞中总的自发极化为零。
二 反铁电介质陶瓷的特性和用途
反铁电体的宏观 特征:具有双电 滞回线
1 反铁电介质陶瓷特征:具有双电滞回线
E<E临:P与E呈线性关系
E临<E< E饱和:电滞回线
E饱和 E临
E> E临反铁电相被迫转 变为铁电相—强迫相变
E> E饱和:线性