光纤陀螺仪的发展及应用
光纤陀螺的原理及应用ppt课件

优势,因此各国都投入大量人力对其进行研究,相信在不久 的将来,R-FOG一定可以在惯性导航与制导等诸多领域得到 广泛应用。
布里渊型光纤陀螺( B— FOG)
或受激布里渊散射光纤环形激光陀螺( B— FRLG) 。
干涉式光纤陀螺仪(I-fog)
开环光纤陀螺是依据Sagnac原理,通过干涉光强的
变化直接检测干涉后的Sagnac相移。
优点: 明显非线性 精度差 输入范围小 电路简单
缺点: 非线性严重 精度低 动态范围窄
Company Logo
干涉式光纤陀螺仪(I-fog) 干涉式陀螺首次应于道尼尔328客机上,目前应用于波 音777飞机的姿态和空气数据系统(SAARU)
王巍 译 国防工业出版社
光纤陀螺仪的分类
干涉式光纤陀螺 ( I — FOG)
fibre optic gyroscope
谐振腔光纤陀螺 ( R— FOG)
布里渊型光纤陀螺( B— FOG)
干涉式光纤陀螺仪(I-fog)
干涉型光纤陀螺 ( I — F O G) 是研究开发最早 、 技术最为成熟的光纤陀
2
M CCW CCCW
M l
M ’
传输光程差
2 4 R L tc c
传输相位差
4 RL S 0c
(a)
(a)系统静止;(b)系统旋转
(b)
图1 理想环形光路系统中的Sagnac效应
国防工业出版社年 2012 . 2
[2 ]《工程光学》 西安工业大学 韩 军、刘 钧 编著
结构简单
光纤陀螺资料

美国在光纤陀螺的研究方面一直保持领先地位。目前美国国内已经有 多种型号的光纤陀螺投入使用。以斯坦福大学和麻省理工大学为代表 的科研机构在研究领域中不断取得突破,而几家研制光纤陀螺的大公 司在陀螺研制和产品化方面也做得十分出色。最著名的Litton公司和 Honeywell公司代表了国际上光纤陀螺的最高水平。
(4)生产规模化。成本的降低也是光纤陀螺能够为用户所接受的前提 条件之一。各类元件的生产规模化可以有力地促进生产成本的降 低,对于中低精度的光纤陀螺尤为如此。
谢谢 !
光纤陀螺仪
光纤陀螺仪的分类
按工作原理:
干涉型光纤陀螺仪(I—FOG),即第一代光纤陀螺仪,目前 应用最广泛。它采用多匝光纤圈来增强SAGNAC效应,一个 由多匝单模光纤线圈构成的双光束环形干涉仪可提供较高 的精度,也势必会使整体结构更加复杂;
谐振式光纤陀螺仪(R-FOG),是第二代光纤陀螺仪,采用 环形谐振腔增强SAGNAC效应,利用循环传播提高精度,因 此它可以采用较短光纤。R—FOG需要采用强相干光源来增 强谐振腔的谐振效应,但强相干光源也带来许多寄生效应, 如何消除这些寄生效应是目前的主要技术障碍。;
陀螺仪
3) 低精度陀螺仪 低精度陀螺仪指精度范围超过10-1 º/h的陀螺仪。目前有发展前景的
是微机械陀螺仪。虽然精度低,但低廉的价格使其具有广阔的应用前 景。微机械陀螺仪有望在一些新的领域中得到应用,如车载导航系统、 天文望远镜、工业机器人、计算机鼠标,甚至是玩具上。
光纤陀螺仪
微机械框架式陀螺仪的工作原理
随着光电技术、微米/纳米技术的发展,新型陀螺仪如激光陀螺、光 纤陀螺和微机械陀螺应运而生。它们都是广义上的陀螺仪,是根据近 代物理学原理制成的具有陀螺效应的传感器。因其无活动部件—高速 转子,称为固态陀螺仪。这种新型全固态的陀螺仪将成为未来的主导 产品,具有广泛的发展前途和应用前景。
光纤陀螺的原理及应用

光纤陀螺的原理及应用光纤陀螺是一种基于光纤的惯性导航装置,利用光纤的特性来测量物体在空间中的转动角速度。
它的核心原理是著名的光路差原理,即利用光在不同介质中传播速度不同的性质,通过测量光信号的相位差来推测陀螺的旋转情况。
光纤陀螺的主要构成部分包括光源、光分束器、光偏置器、光栅、光检测器等。
光源发出的光经过光分束器分成两束,依次通过光偏置器,其中一束光经过光栅与另一束光混合后通过光检测器检测。
当光纤陀螺不发生旋转时,两束光的相位相同,检测器输出信号为零;当光纤陀螺发生旋转时,光栅会引起两束光之间的相位差随着陀螺旋转导致变化,通过检测器可以将转动的角速度转化为电信号输出。
光纤陀螺具有许多优势和应用前景。
首先,光纤陀螺具有高精度和高稳定性,可以测量微小的角速度变化,适用于高精度导航和姿态控制。
其次,光纤陀螺不受外部电磁干扰的影响,可以用于恶劣环境下的导航。
此外,光纤陀螺体积小、重量轻,便于安装和集成到各种设备中。
光纤陀螺广泛应用于航空、航天、航海、导弹、船舶、地质勘探以及工业自动化等领域。
在航空和航天领域,光纤陀螺可用于惯性导航系统,实现飞行器的精确定位、测速和姿态控制。
在导弹领域,光纤陀螺可以提供快速、精确的导航信息,有效支持导弹的制导和弹道控制。
在地质勘探中,光纤陀螺可以应用于油气勘探、地震监测等领域,提供地下结构和地震信号的测量。
在工业自动化中,光纤陀螺可用于机器人导航和姿态控制,提高自动化生产线的准确性和效率。
除了以上应用领域,光纤陀螺还具有许多潜在的应用前景。
例如,在虚拟现实和增强现实领域,光纤陀螺可用于实现更精确的姿态追踪和身体定位。
在医疗领域,光纤陀螺可以应用于体内导航和手术辅助等方面,提高手术精确度和安全性。
在车辆导航和自动驾驶领域,光纤陀螺可以用于精确定位和路径规划,提高车辆导航的准确性和安全性。
总之,光纤陀螺是一种基于光纤的惯性导航装置,利用光路差原理测量物体的转动角速度。
它具有高精度、高稳定性和抗干扰性强的特点,广泛应用于航空、航天、航海、导弹、船舶、地质勘探和工业自动化等领域。
光纤陀螺原理及应用课件

欢迎参加本课程!本课程将介绍光纤陀螺的定义、原理和应用领域,以及其 在惯性导航、航空航天和地震监测中的重要性。让我们开始吧!
光纤陀螺的定义和原理
光纤陀螺利用光纤中的轴向光束干涉现象实现精密测量。光纤陀螺原理基于 光的传播速度与光路长度的微小变化。
光纤陀螺的结构和工作方式
光纤陀螺由光源、光路、光探测器和信号处理器组成。通过检测光纤中的干 涉信号,确定旋转角速度。
光纤陀螺的发展前景及挑战
光纤陀螺具有广阔的应用前景,但也面临着技术创新、信号处理和成本降低等挑战。持续研究和发展将推动其应用 领域的拓展。
Hale Waihona Puke 光纤陀螺的应用领域惯性导航
光纤陀螺用于导航系统,提供高精度的姿态和位置测量,应用于航空、航海和地面交通领域。
航空航天
光纤陀螺在航空航天中用于飞行器姿态控制、飞行参数测量和导航系统,提高飞行安全性。
地震监测
光纤陀螺可用于监测地壳运动和地震活动,提供准确的地震测量数据,助力地震预警系统的 建设。
光纤陀螺在惯性导航中的应用
光纤陀螺在惯性导航系统中扮演关键角色,提供精确的旋转角速度测量,用于定位、姿态控制和目标追踪。
光纤陀螺在航空航天中的应用
光纤陀螺在飞行器控制、导航和引导系统中广泛应用。高精度的姿态测量和 导航数据提高了航空航天系统的性能和安全性。
光纤陀螺在地震监测中的应用
光纤陀螺通过监测地壳运动和地震活动,为地震学家提供准确的地震测量数 据,帮助预测和研究地震现象。
干涉式光纤陀螺仪

干涉式光纤陀螺仪引言自从1963年制造出第一个基于Sagnac效应的环形激光陀螺仪(RLG)以来,大量光学陀螺仪得到发展,同时其性能也得到验证,其中包括光纤陀螺仪(FOG)[1]。
从20世纪60年代末,位于华盛顿的美国海军实验室就开始研究光纤陀螺技术,目的是研制出比氦氖环形激光陀螺仪成本更低、制造流程更简单、精度更高的光纤角速率传感器。
经过近几十年各国学者开展的大量研究工作,光纤陀螺仪在航海、军事、空间和民用方面都有较大的应用价值。
本报告简单介绍了干涉式光纤陀螺仪原理,类型以及应用等方面。
一、S agnac效应所有的光学陀螺仪的工作原理均基于Sagnac效应,即利用绕垂直于环面的轴旋转的环形干涉仪中两束相反传播的光信号间相移∆φ,或利用在光腔绕垂直于自身的轴旋转时,两个分别沿顺时针(CW)和逆时针(CCW)方向传播的谐振模式间的频移来实现陀螺仪的测量作用。
[1]为简便分析,首先考虑环形干涉仪内为真空的情况。
在光路中一点放置分光器,当光从该点进入干涉仪后,被分为沿顺时针和逆时针两个方向传播的信号。
当干涉仪相对于惯性坐标系静止时,沿相反方向传播的两束光光程相等,且传播速度均等于c(c为真空中光速)。
经过时间τr,两束光同时回到分光器位置,可求得传播时间τr为:τr =2πRc式中:R为环形干涉仪半径若环形干涉仪以角速度Ω顺时针旋转,则分光器在时间τr内的位移∆l=ΩRτr。
当光在干涉仪中完成一次往返运动时,由于干涉仪转动了一个小角度,环形干涉仪在顺时针方向光束(与Ω方向相同)的光程将略微大于2πR,而逆时针方向光束的光程就将稍小于2πR,顺时针光程L CW与逆时针光程L CCW间的光程差为∆L=L CW−L CCW=2∆l=2ΩRτr=4πΩR2c由于两束光的传播速度相同,均等于真空中的光速c,所以沿逆时针方向的光波先到达分光器处,两束光到达分光器处的时间差等于∆t=∆Lc=4πΩR2c2由干涉仪转动引起的两束光相移∆φ可表示为∆φ=∆t 2πcλ=8π2R2cλΩ式中:λ为光的波长当在有效折射率n eff >1的真实光纤中时,不能直接将c m =cn eff 代入上式。
光纤陀螺用途

光纤陀螺用途一、引言随着科技的不断发展,光纤陀螺作为一种新型的惯性导航技术,越来越受到人们的关注。
它具有高精度、高稳定性和长寿命等优点,在航空、航天、军事、海洋等领域得到了广泛应用。
本文将详细介绍光纤陀螺的用途。
二、光纤陀螺概述光纤陀螺是利用光学原理实现惯性导航的一种装置,其基本原理是利用磁悬浮技术将旋转体浮起,通过角速度传感器检测旋转体的旋转角速度,再通过信号处理电路计算出姿态信息。
与传统机械式陀螺相比,光纤陀螺具有更高的精度和稳定性。
三、航空领域1.民用飞机导航系统在民用飞机中,光纤陀螺被广泛应用于惯性导航系统(INS)中。
INS是一种独立于地面设施的全球定位系统(GPS)辅助导航系统,可以提供飞机在三维空间中的位置、速度和姿态信息,具有高精度、高可靠性和长时间稳定性等优点。
光纤陀螺作为INS中的核心部件,可以实现飞机在空中的准确导航。
2.军用飞机导航系统在军用飞机中,光纤陀螺也被广泛应用于INS中。
与民用飞机不同的是,军用飞机需要更高的安全性和隐蔽性。
光纤陀螺具有高精度、高稳定性和防干扰能力强等特点,可以满足军用飞机对导航系统的严格要求。
四、航天领域1.卫星姿态控制在卫星上,光纤陀螺可以作为卫星姿态控制系统(ACS)中的一部分,实现卫星在轨道上的精确定位和精确控制。
ACS可以通过调整卫星各个部分的姿态来实现多种功能,如通信、遥感、导航等。
光纤陀螺具有高精度、长寿命和抗辐射能力强等特点,在卫星姿态控制方面具有重要应用价值。
2.空间望远镜空间望远镜是一种用于观测天体的装置,需要具备高精度、高稳定性和长时间稳定性等特点。
光纤陀螺可以作为空间望远镜的姿态控制系统,实现望远镜的精确定位和精确控制,提高观测精度和可靠性。
五、军事领域1.导弹制导系统在导弹制导系统中,光纤陀螺可以作为惯性导航系统(INS)中的核心部件。
利用INS可以实现导弹的准确制导和打击目标。
光纤陀螺具有高精度、高稳定性和抗干扰能力强等特点,在军事领域具有重要应用价值。
光纤陀螺仪原理及应用

光纤陀螺仪原理及应用
光纤陀螺仪是一种对换向微调良好的光学传感器,被广泛用于传感器与控制系统中,
以测量非接触式的角度、速度和加速度。
光纤陀螺仪的测量可用于航天器的姿态控制,机
场的推进装置,为工业机械的定位、测控提供重要参考。
特点
光纤陀螺仪的优势在于可以同时取代多种传感器,例如陀螺仪、加速度计等,仅使用
一部份元件就能够测量姿态和力矩,大大降低系统成本,增加系统灵活性。
此外,光纤陀
螺仪具有微小体积、低损耗等优点。
工作原理
光纤陀螺仪的结构,由多侧封装在一起的小型横向光纤芯绞在一起组成一个悬链结构,使其具有一定的弹性。
当绞线外力的作用下产生位移,。
2023年光纤陀螺仪行业市场调研报告

2023年光纤陀螺仪行业市场调研报告一、行业概况光纤陀螺仪是利用光路中的传感器、激光器和光纤等元器件相结合的装置,可以检测和测量旋转、角加速度等物理量。
它广泛应用于惯性导航、车辆导航、卫星通信、气象探测、地震勘探、水下探测等领域。
相比传统机械陀螺仪,光纤陀螺仪具有高精度、高灵敏度、低功耗、长寿命、体积小、重量轻等优点,市场前景广阔。
二、市场规模当前,光纤陀螺仪主要集中在三大市场:航空航天、国防安防和工业自动化。
其中,航空航天占据光纤陀螺仪市场最大份额,预计占比将在2025年达到37%。
国防安防和工业自动化市场也将成为光纤陀螺仪主要应用领域。
根据“全球光纤陀螺仪市场调研报告 2020-2025”数据显示,未来几年光纤陀螺仪市场仍将保持稳步增长,2025年全球市场规模预计将达到59亿美元,年复合增长率达到7.5%。
三、市场竞争格局现在,光纤陀螺仪市场主要被美国、英国、德国等发达国家主导。
在国际市场上,美国公司型如Honeywell、Northrop Grumman、KVH等、英国公司型如Sagem、FLIR Systems等、德国公司型如iXBlue、Gyroptic Systems、AT-Automation Technology等企业,在技术上已占据了相当程度的市场份额。
中国大陆地区较有名气公司有 Sunny Optical Technology Group、安阳鑫达等。
四、技术发展趋势自2000年以来,光纤陀螺仪技术的发展经历了几个重要的里程碑。
其中最重要的是将被动环型陀螺仪(PBG)转变为主动环型陀螺仪(FBG),这种陀螺仪使用电控制光栅,可以扫描光纤以达到精准的控制。
此外,光纤陀螺仪的新型式应用场景也逐渐扩大,其中医疗设备和智能音箱等智能家居产品,暗藏人们行动的数据,据《全球光纤陀螺仪市场调研报告 2020-2025》显示,到2025年,智能手机等消费电子市场将占据市场份额的12%。
五、市场机遇与挑战随着光纤陀螺仪技术的不断发展和应用的扩大,市场机遇越来越多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤陀螺仪的发展及应用
摘要:
作为光纤传感器的一种,光纤陀螺仪具有了更多的优点,它具有结构紧凑,灵敏度高,工作可靠等等优点,就是因为这些优点,光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。
本文主要介绍了光纤陀螺仪的工作原理,特点,分类,应用及发展现状。
关键词:
光纤传感器,陀螺仪,光纤陀螺仪,导航系统。
Abstract:
As one of the fiber sensors,FOG has more advantages.It has a compact structure,high sensitivity,high reliability and so on.Just because of these advantages,FOG nearly replace all the traditional mechanical gyroscopes and become the critical component of modern navigational instruments.This paper introduces the working principle,the features,sorts,usage and statues of development of the FOG.
Key words:
fiber sensors,gyroscopes,FOG,navigation system.
引言:
现代陀螺仪是一种能够精确地确定运动物体的方位的仪器,它是现代航空,航海,航天和国防工业中广泛使用的一种惯性导航仪器,
它的发展对一个国家的工业,国防和其它高科技的发展具有十分重要的战略意义。
传统的惯性陀螺仪主要是指机械式的陀螺仪,机械式的陀螺仪对工艺结构的要求很高,结构复杂,它的精度受到了很多方面的制约。
自从上个世纪七十年代以来,现代陀螺仪的发展已经进入了一个全新的阶段。
光纤陀螺仪是新一代无惯性陀螺仪,它可以保障未来现代技术的发展和国防以及民用领域采用新的技术措施。
现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。
1.光纤传感技术的介绍
光纤传感技术是20世纪70年代伴随着光导纤维及光纤通信技术的发展而发展起来的一种以光为载体、光纤为煤质,感知和传输外界信号的新型传感技术。
其基本原理是将光源的光经入射光纤送人调制区,光在调制区内与外界被测参数相互作用,使光的光学性质(如强度、波长、频率、相位、偏正态等)发生变化而成为被调制的信号光,再经出射光纤送入光探测器、解调器而获得被测参数。
光纤传感器与常规传感器相比的最大优点是对电磁干扰的高度防卫度,而且它可以制成小型紧凑的器件,具有多路复用的能力,以及可以制成分布式的传感器结构等,不少光纤传感器与对应的常规传感器相比,在灵敏度、动态范围、可靠性等方面也具有明显的优势。
2.陀螺仪的概述
陀螺仪是一种既古老而又很有生命力的仪器,从第一台真正实
用的陀螺仪器问世以来已有大半个世纪,但直到现在,陀螺仪仍在吸引着人们对它进行研究,这是由于它本身具有的特性所决定的。
陀螺仪最主要的基本特性是它的稳定性和进动性。
人们从儿童玩的地陀螺中早就发现高速旋转的陀螺可以竖直不倒而保持与地面垂直,这就反映了陀螺的稳定性。
研究陀螺仪运动特性的理论是绕定点运动刚体动力学的一个分支,它以物体的惯性为基础,研究旋转物体的动力学特性。
陀螺仪的原理就是,一个旋转物体的旋转轴所指的方向在不受外力影响时,是不会改变的。
人们根据这个道理,用它来保持方向,制造出来的东西就叫陀螺仪。
陀螺仪在工作时要给它一个力,使它快速旋转起来,一般能达到每分钟几十万转,可以工作很长时间。
然后用多种方法读取轴所指示的方向,并自动将数据信号传给控制系统。
3.光纤陀螺仪
光纤陀螺仪光纤传感器的一种,光纤陀螺仪是新一代无惯性陀螺仪。
它可以保障未来现代技术的发展和国防以及民用领域采用新的技术措施。
由于光纤陀螺仪具有结构紧凑,灵敏度高,工作可靠等等优点,所以目前光纤陀螺仪在很多的领域已经完全取代了机械式的传统的陀螺仪,成为现代导航仪器中的关键部件。
3.1 光纤陀螺仪的工作原理
现代光纤陀螺仪包括干涉式陀螺仪和谐振式陀螺仪两种,它们都是根据塞格尼克的理论发展起来的。
塞格尼克理论的要点是这样的:当光束在一个环形的通道中前进时,如果环形通道本身具有一个转动
速度,那么光线沿着通道转动的方向前进所需要的时间要比沿着这个通道转动相反的方向前进所需要的时间要多。
也就是说当光学环路转动时,在不同的前进方向上,光学环路的光程相对于环路在静止时的光程都会产生变化。
利用这种光程的变化,如果使不同方向上前进的光之间产生干涉来测量环路的转动速度,这样就可以制造出干涉式光纤陀螺仪,如果利用这种环路光程的变化来实现在环路中不断循环的光之间的干涉,也就是通过调整光纤环路的光的谐振频率进而测量环路的转动速度,就可以制造出谐振式的光纤陀螺仪。
从这个简单的介绍可以看出,干涉式陀螺仪在实现干涉时的光程差小,所以它所要求的光源可以有较大的频谱宽度,而谐振式的陀螺仪在实现干涉时,它的光程差较大,所以它所要求的光源必须有很好的单色性。
光纤陀螺仪具有很高的精度和灵敏度。
现在比较先进的光纤陀螺仪已经达到0.01度/hr。
比较典型的光纤陀螺应该具有量程宽,精度高,响应快,灵敏度高,,模拟和数字输出,坚固可靠,不受电磁,震动影响等特点.因此光纤陀螺已成为准确控制,高精度角速度测量的首选应用。
3.2 光纤陀螺仪的分类
光纤陀螺根据其工作方式可分为干涉型和环形谐振腔型两大类。
干涉式光纤陀螺(Ⅱ-FOG):
在线圈面积一定的条件下,通过增加线圈匝数可以增强塞格尼克效应。
干涉式光纤陀螺就是利用多匝低耗单模光纤构成的双波环形干涉仪。
通过改变光纤线圈的面积和匝数改变光纤陀螺的工作范围,可以得到不同性能要求的产品,满足不同用户的需要,这也是光纤陀
螺相对于传统机电陀螺的一大优点。
目前干涉型光纤陀螺技术已经非常成熟,世界各国开发的使用产品几乎都是干涉型光纤陀螺。
谐振式光纤陀螺(R-FOG ):
谐振式光纤陀螺是利用塞格尼克效应,通过检测旋转非乎易性造成的顺、逆时针两行波的频率差来测量角速度。
图1 谐振式光纤陀螺原理图
相干光经定向耦合器C4分成两路,分别经过耦合器C2,C3传至C1并从两端注入光纤环形谐振腔,形成相向传播的相干光束。
当谐振腔满足谐振条件并达到稳态时,环形腔中的光强达到最大。
当陀螺旋转时,两束光的谐振频率分裂产生频差;
A 为环形谐振腔包围的面积,L 为光纤的长度,λ为光波长。
谐振式光纤传感器克服了干涉型光纤陀螺的诸多缺点,具有很
大的发潜力。
目前还处于实验室研究阶段,离实用化还有一定的距离。
4.光纤陀螺仪的应用及发展现状
自从1976年美国犹他大学的VALI 和SHORTHILL 等人成功研制第Ω
=-=∆L A f f f ccw cw λ/4
1个光纤陀螺(fiber-optic gyroscope, FOG)以来,光纤陀螺已经发展了30多年。
在30多年的发展过程中,许多基础技术如光纤环绕制技术等都得到了深入地研究。
光纤陀螺仪的突出特点使其在航天航空、机载系统和军事技术上的应用十分理想,因此受到用户特别是军队的高度重视,以美、日、法为主体的光纤陀螺仪研究工作已取得很大的进展。
光纤陀螺仪研究工作大部分集中在干涉式,只有少数公司仍在研究谐振式光纤陀螺。
光纤陀螺的商品化是在上世纪90年代初才陆续展开,中低精度的光纤陀螺(特别是干涉式光纤陀螺)己经商品化,并在多领域内应用,高精度光纤陀螺仪的开发和研制正走向成熟阶段。
光纤陀螺成本低、维护简便,正在许多已有系统上替代机械陀螺,从而大幅度提高系统的性能、降低和维护系统成本。
现在,光纤陀螺已充分发挥了其质量轻、体积小、成本低、精度高、可靠性高等优势,正逐步替代其他型陀螺。
5.结论
到目前为止,光纤陀螺已从供战术应用的低精度型向导航用的中精度和高精度型发展,以光纤陀螺为基础的惯性系统也开始在越来越多的场合得到应用。
今后光纤陀螺的研究趋势有: (1)采用三轴测量代替单轴,研发多功能集成光学芯片、保偏技术等,加大光纤陀螺的小型化、低成本化力度;(2)深入开发中、低精度光纤陀螺的应用,特别是民用惯性导航技术;(3)加强精密级光纤陀螺的技术与应用研究,开发新型的
光纤陀螺B-FOG和FRLG等。
参考文献:
【1】许江宁,朱涛,卞鸿巍.海军工程大学学报.2006.
【2】王惠文,等.光纤传感器技术与应用[M].北京:国防工业出版社,1996.
【3】王巍,张桂才,杨清生.光纤陀螺仪及其工程化技术研究[J].导航与控制,2002,1(1).
【4】何慧灵,赵春梅,陈丹,赵晓峰,阮昊.激光与光电子学进展,2004.。