环氧树脂固化剂种类介绍
环氧树脂的种类

环氧树脂的种类环氧树脂是一种非常常见的高分子材料,具有优异的物理和化学性质,被广泛应用于各个领域。
根据不同的制备方法和化学结构,环氧树脂可以分为多种不同类型。
本文将介绍环氧树脂的种类,包括传统型环氧树脂、水性环氧树脂、高性能环氧树脂和UV固化环氧树脂。
传统型环氧树脂传统型环氧树脂是指由环氧树脂单体和固化剂组成的双组分体系。
其制备方法通常采用环氧化合物和酸酐或酸酐衍生物的反应,生成环氧树脂单体。
固化剂一般是脂肪族胺、芳香族胺和酸酐等,通过与环氧树脂单体反应形成网络结构。
传统型环氧树脂具有优异的机械性能、热稳定性和耐化学腐蚀性,广泛应用于涂料、粘合剂、复合材料等领域。
水性环氧树脂水性环氧树脂是一种新型的环氧树脂,其主要特点是含水性,可用水稀释和清洗。
其制备方法与传统型环氧树脂类似,但在反应中加入乳化剂或分散剂,使环氧树脂单体分散在水中,形成水性环氧树脂。
水性环氧树脂具有环保、低VOC、易于操作和清洗等优点,广泛应用于汽车、建筑、家具等领域。
高性能环氧树脂高性能环氧树脂是指在传统型环氧树脂基础上,通过改变单体结构、添加特殊功能单体或添加填料等方式,使环氧树脂具有更高的性能。
例如,添加碳纤维等填料可以提高强度和刚度;添加热稳定剂可以提高耐高温性能;添加阻燃剂可以提高耐火性能。
高性能环氧树脂具有广泛的应用前景,特别是在航空、航天、电子等高科技领域。
UV固化环氧树脂UV固化环氧树脂是指通过紫外线辐射将环氧树脂单体和光引发剂等混合物固化成为固体的一种环氧树脂。
UV固化环氧树脂具有固化速度快、无挥发性有机物、节能环保等优点,广泛应用于3D打印、印刷、涂料等领域。
总之,环氧树脂是一种非常重要的高分子材料,其种类繁多,各具特点。
随着科技的不断发展,环氧树脂的应用领域也将不断拓展。
环氧树脂的咪唑类固化剂有哪些

环氧树脂的咪唑类固化剂有哪些?咪唑是五环化合物,分子中含有两个氨原子,它是由乙二醛和氨合成的。
工业生产主要是在2,4位上引人取代基的一组化合物,其中重要的有2甲基咪唑、2一乙基一4甲基眯唑、2苯基咪唑等。
咪唑类固化剂是近几年发展起来的一类固化剂。
咪唑类化合物作为环氧树脂的新型固化剂和促进剂,具有独到之处:不需要高温固化,因为它的固化机理与叔胺相似,是阴离子型催化聚合,但没有叔胺那样的链转移需高温固化,所以中温固化就足够。
固化物的热变形温度高,其他性能与芳香族胺类固化剂比较大体相同。
眯唑类固化剂的碱性比较弱,挥发度低无臭味,毒性也较脂肪族、芳香族胺类小得多;热稳定性好,通常它们在250℃几乎不分解。
固化双酚A型环氧树脂的温度在80~I20。
|C范围内。
固化物有较好的机械强度,较低的挥发性和毒性,但不如芳香族胺类耐介质、湿热和老化破坏。
为了改进这些缺陷,又派生了一些改性眯唑固化剂。
常用的品种有:咪唑类固化剂是近几年发展起来的一类固化剂。
咪唑类化合物作为环氧树脂的新型固化剂和促进剂,具有独到之处:不需要高温固化,因为它的固化机理与叔胺相似,是阴离子型催化聚合,但没有叔胺那样的链转移需高温固化,所以中温固化就足够。
固化物的热变形温度高,其他性能与芳香族胺类固化剂比较大体相同。
眯唑类固化剂的碱性比较弱,挥发度低无臭味,毒性也较脂肪族、芳香族胺类小得多;热稳定性好,通常它们在250℃几乎不分解。
固化双酚A型环氧树脂的温度在80~I20。
|C范围内。
固化物有较好的机械强度,较低的挥发性和毒性,但不如芳香族胺类耐介质、湿热和老化破坏。
为了改进这些缺陷,又派生了一些改性眯唑固化剂。
常用的品种有:(I)2乙基4甲基咪唑2一乙基4甲基咪唑,简称EMl 24、2E4M1。
广泛用于环氧树脂的固化剂或促进剂。
2乙基一4一甲基咪唑的特性如下:淡黄色低熔点(45。
C)固体;加热熔化后,可以冷却成一种过冷液体,与环氧树脂混合很方便。
环氧树脂2

H2NCH2CH2NHCH2CH2NHCH2CH2NH2
H2NCH2CH2NHCH2CH2NHCH2CH2NHCH2CH2NH2 (C2H5)2NCH2CH2CH2NH2 N,N-二乙氨基丙胺
NH2CH2CH2CH2NHCH2CH2CH2NH2
亚氨基双丙胺
烷二胺 N-氨乙基哌哔嗪
20
(1)阴离子型固化剂----路易士碱
种类: 叔胺类,如苄基二甲胺,DMP-10,DMP-30等部分仲胺, 如 咪唑类化合物
1. 固化原理 叔胺引发环氧树脂的聚合反应是典型的阴离子逐步聚合反 应,聚合物分子量随着反应的进行逐步增大; 链引发:叔胺首先引发环氧基开环,形成醇盐离子。
R 3N + H 2C O CH R 3N
3.4.2 环氧树脂的固化及其固化剂
环氧树脂本身是线性树脂,需要加入固化剂在一定温度下发 生交联固化发应,生成体型网状结构,才能显示出其固有的优良性 能。
固化剂的分类:
I 反应性固化剂: 可以同环氧树脂发生加成反应,通过逐步 反应的历程交联形成体型网状的结构,该类型固化剂一般含有活性 氢,反应中伴有氢原子转移,包括多元伯胺,多元羧酸,多元醇和 多元酚; II 催化性固化剂:可以引发树脂中环氧基团按照阴离子或者阳 离子历程进行固化反应,如胺类和三氟化硼络合物等。
12
主要品种:氨基聚酰胺,它是由二聚或三聚植物油脂肪酸和 脂肪族多元胺的反应物,结构如下:
13
(4)酚醛树脂
工业上较少用多元酚来固化环氧树脂,多用一阶或二阶酚醛 树脂作为环氧树脂的固化剂,实际得到的是两种树脂经嵌段或接 枝聚合后形成的非常复杂的体型结构产物,固化物兼具两种树脂 的性能,达到相互改性的目的。 用途:
聚酰胺环氧固化剂

聚酰胺环氧固化剂聚酰胺环氧固化剂是一种常用于环氧树脂体系中的固化剂,其在工业生产和科学研究中具有广泛的应用。
本文将从聚酰胺环氧固化剂的定义、特性、应用领域以及未来发展等方面进行介绍,旨在全面了解聚酰胺环氧固化剂的重要性和前景。
一、定义聚酰胺环氧固化剂是一种树脂固化剂,通常由多元胺和多酰胺组成。
其主要功能是与环氧树脂发生反应,形成具有良好力学性能和耐化学性能的固体材料。
聚酰胺环氧固化剂具有低毒、低挥发性、高效固化速度等特点,被广泛应用于涂料、胶黏剂、复合材料等领域。
二、特性1. 高效固化速度:聚酰胺环氧固化剂具有较快的反应速度,能够在较短的时间内完成固化过程,提高生产效率。
2. 良好的耐化学性能:聚酰胺环氧固化剂能够增强环氧树脂的耐化学性能,使其在酸碱、溶剂、水等恶劣环境下具有较好的稳定性。
3. 优异的力学性能:聚酰胺环氧固化剂可以提高环氧树脂的强度、硬度和耐磨性,使其在工程领域中有更广泛的应用。
三、应用领域1. 涂料领域:聚酰胺环氧固化剂可以用作涂料的固化剂,使涂层具有耐化学性、耐磨性和耐候性等优良性能。
2. 胶黏剂领域:聚酰胺环氧固化剂能够提高胶黏剂的粘结强度和耐久性,广泛应用于汽车、航空航天等工业领域。
3. 复合材料领域:聚酰胺环氧固化剂可以与碳纤维等增强材料进行复合,制备出具有高强度和轻质的复合材料,用于航空、航天、汽车等领域。
4. 电子领域:聚酰胺环氧固化剂可用于电子封装材料的固化,提高电子元器件的密封性和耐高温性。
四、未来发展随着科学技术的不断进步和人们对环境友好型材料的需求增加,聚酰胺环氧固化剂的研究和应用也在不断发展。
未来,聚酰胺环氧固化剂有望在以下方面得到进一步改进和应用:1. 绿色环保:研发更环保、低毒、低挥发的聚酰胺环氧固化剂,减少对环境和人体的影响。
2. 高性能:提高聚酰胺环氧固化剂的固化速度和力学性能,满足不同领域的需求。
3. 多功能性:研发具有多功能性的聚酰胺环氧固化剂,如具有自修复、自清洁等特性,提高材料的综合性能。
环氧树脂固化剂的固化速率_解释说明以及概述

环氧树脂固化剂的固化速率解释说明以及概述1. 引言1.1 概述环氧树脂是一种常用的高性能聚合物材料,广泛应用于涂料、粘接剂、复合材料等领域。
在实际应用中,环氧树脂通常需要通过与固化剂的反应来实现固化过程,并形成具有优异性能的固体材料。
而固化速率作为评估固化效果的重要指标之一,在工程实践中显得尤为关键。
1.2 文章结构本文将详细探讨环氧树脂固化剂的固化速率解释说明以及概述内容。
首先,我们会对固化速率进行定义并解释其背后影响因素;然后介绍常用的测试方法来评估环氧树脂固化剂的固化速率;接着,我们将对不同类型的环氧树脂固化剂及其特点进行概述,并分析不同环境条件下的固化速率变化;最后,我们将探讨固化速率与性能之间的关系。
1.3 目的本文旨在全面了解和研究环氧树脂固化剂的固化速率,并通过深入的解释和概述,帮助读者更好地理解和应用固化速率对于环氧树脂材料性能的影响。
通过本文的研究,我们可以为未来的研究方向提供有价值的参考,并展望环氧树脂固化剂固化速率在不同应用领域的潜在应用前景。
2. 环氧树脂固化剂的固化速率解释说明:2.1 固化速率定义:在环氧树脂固化过程中,固化速率指的是环氧树脂与固化剂反应形成交联网络结构的速度。
固化速率的快慢直接影响着材料的硬化时间和性能发展。
2.2 影响固化速率的因素:环氧树脂固化剂的固化速率受到多个因素的影响,包括但不限于以下几点:- 温度:温度是影响固化速率最重要的因素之一。
通常情况下,较高温度会加快固化反应速率。
- 固化剂类型:不同种类的环氧树脂固化剂具有不同的活性和反应特性,从而对固化速率产生影响。
- 固化剂含量:增加固化剂含量可以提高反应物浓度,从而促进反应进行并加快固化速率。
- 混合条件:充分混合和均匀分散环氧树脂及其固化剂可以更好地促使它们相互接触并进行反应,加快固化速率。
- 环境条件:如湿度、氧气含量等环境因素也会对固化速率产生影响。
2.3 固化速率测试方法:常用的测试方法用于确定环氧树脂固化剂的固化速率包括但不限于以下几种:- 动态热分析(DTA):通过测量材料随时间和温度变化的热流量来评估固化反应进程。
环氧树脂的固化机理及常用固化剂

环氧树脂的固化机理及其常用固化剂反应机理酸催化反应机理催化剂:质子给予体,促进顺序:酸>酚>水>醇固化剂分类1反应型固化剂▪可与EP分子进行加成,通过逐步聚合反应交联成体型网状结构▪一般含有活泼氢,反应中伴随氢原子转移,如多元伯胺、多元羧酸、多元硫醇和多元酚2催化型固化剂▪环氧基按阳离子或阴离子聚合机理进行固化,如叔胺、咪唑、三氟化硼络合物常见固化剂▪脂肪胺固化剂▪芳香族多元胺▪改性多元胺▪多元硫醇▪酸酐类固化剂1脂肪胺固化剂脂肪胺固化特点:▪活性高,可室温固化▪反应剧烈放热,适用期短▪一般需后固化,室温7d再80-100℃2h ▪固化物热形变温度低,一般80-90℃▪固化物脆性大▪挥发性及毒性大2芳香族多元胺芳香族多胺特点:▪固化物耐热性好,耐化学性机械强度均优于脂肪族多元胺▪活性低,大多加热固化▪氮原子因苯环导致电子云密度降低,碱性减弱,以及苯环位阻效应▪多为固体,熔点高,工艺性差▪液化,低共熔点混合,多元胺与单缩水甘油醚加成3改性多元胺a、环氧化合物加成:▪加成物分子量变大,沸点粘度增加,挥发性与毒性减弱,改善原有脆性b、迈克尔加成:▪丙烯腈与多元胺▪胺的活泼氢对α,β不饱和键能迅速加成▪腈乙基化物降低活性,改善与EP相容性特别有效c、曼尼斯加成:曼尼斯反应(Mannich reaction)为多元胺和甲醛、苯酚缩合三分子缩合。
▪产物能在低温、潮湿、水下施工固化EP▪典型产品T-31:二乙烯三胺+甲醛+苯酚▪适应土木工程用于混凝土、钢材、瓷砖等材料▪粘结的快速修复和加固d、硫脲-多元胺缩合:▪硫脲与脂肪族多元胺加热至100℃缩合放出氨气▪能在极低温下(0℃以下)固化EPe、聚酰胺化:▪9,11-亚油酸与9,12-亚油酸二聚反应▪然后2分子与DETA(二乙烯三胺)进行酰胺化反应挥发性毒性很小▪与EP相容性良好,化学计量要求不严▪固化物有很好的增韧效果▪放热效应低,适用期长,固化物耐热性较低,HDT为60℃左右4多元硫醇▪类似于羟基▪聚硫醇化合物(液体聚硫橡胶)就是典型多元硫醇,单独使用活性很低,室温反应及其缓慢几乎不能进行▪适当催化剂作用下固化反应以数倍多元胺速度进行▪在低温固化更为明显5酸酐类固化剂▪反应速率很慢,不能生成高交联产物,一般不作为固化剂▪低挥发性,毒性低,刺激性低▪反应缓慢,放热量小,适用期长▪固化物收缩率低,耐热性高▪固化物机械强度高,电性能优良▪需加热固化,时间长▪EP常用固化剂,仅次于多元胺主要酸酐:▪顺酐>苯酐>四氢苯酐>甲基四氢苯酐▪六氢苯酐>甲基六氢苯酐▪甲基纳迪克酸酐▪均苯四甲酸二酐▪改性酸酐▪酸酐分子中负电性取代基则活性增强阴/阳离子型催化剂▪催化剂仅仅起催化作用,本身不参与交联▪用量主要以实验值为准▪催化环氧开环形成链增长1常用阴离子催化剂1、叔胺类多用DMP-10(二甲氨基苯酚),DMP-30,酚羟基显著加速树脂固化速率,放热量大适用期短,EP快速固化(24h/25℃)2、咪唑类多用液态2-乙基-4-甲基咪唑(仲胺活泼氢和叔胺),适用期长(8-10h),中温固化,热形变温度高,与芳香胺耐热水平(100℃)相当阳离子型固化剂,路易斯酸链终止于离子对复合2常用阳离子催化剂▪路易斯酸:BF3,SnCl4,AlCl3等,为电子接受体▪BF3使用最多,具有腐蚀性,反应活性非常高一般与胺类或醚类络合物,如三氟化硼-乙胺络合物, BF3:400,为87℃结晶物质,室温稳定,离解温度90℃,离解后活性增大环氧树脂固化的三个阶段▪液体-操作时间:树脂/固化剂混合物仍然是液体适合应用▪凝胶-进入固化:混合物开始进入固化相(也称作熟化阶段),这时它开始凝胶或“突变”成软凝胶物。
德固赛公司环氧固化剂简介
OH
November 2006
CO-CL-AT 2
Slide 13
环氧树脂体系固化剂-胺 (技术部分)
November 2006
CO-CL-AT 2
Slide 14
合成环氧固化剂的胺类化合物 常温固化体系中非常重要的一类
1. 基础胺 2. 混合物 (标准胺) 3. 络和物 (与环氧树脂反应) 4. 酚醛胺类 5. 聚酰胺类
November 2006
CO-CL-AT 2
☺
Slide 27
高温固化体系
通常高温固化体系有以下几个部分组成 二元胺或者二元胺的混合物 环氧树脂 促进剂 颜料, 其他助剂
November 2006
CO-CL-AT 2
Slide 28
环氧固化剂-二元胺或标准二元胺
高温固化
VESTAMIN IPD
化学原理: 先加入部分环氧树脂提前与胺反应 如, 胺: 树脂 = 100 : 20 pbw
特性: • 改善吸潮现象防止第一步反应中形成氨基甲酸盐 • 外观光滑
如, 改善TMD体系的油面现象 • 减低蒸汽压 • 黏度适中
控制环氧树脂的量以防黏度增加
November 2006
CO-CL-AT 2
Slide 20
CH3
三甲基己二酸
三甲基己二醇
异佛尔酮 丙酮
November 2006
CO-CL-AT 2
VESTAMIN TMD 三甲基己二胺
三甲基己二异氰酸酯
Slide 3
几种基础的环氧固化剂
H2N
与IPD有直接竞争,可 以和IPD混合使用;性能 优越;供应商日本三菱, 中 国上海泰和、江苏天音
环氧树脂固化剂 原理
环氧树脂固化剂原理一、交联反应环氧树脂的固化过程是一种典型的交联反应,通过这种反应,环氧树脂由线型结构转变为网状结构。
固化过程中,环氧树脂中的环氧基与固化剂中的活泼氢发生反应,生成羟基。
这些羟基进一步相互反应,形成三维网状结构。
这种网状结构使得环氧树脂变得坚硬和耐热,从而实现了从液态到固态的转变。
二、固化剂种类环氧树脂的固化剂种类繁多,根据其性质和应用需求有多种分类方式。
根据固化机理,可以分为胺类、酸酐类、聚合物类等。
胺类固化剂如脂肪胺、芳香胺等,反应速度快,但耐热性较差;酸酐类固化剂如邻苯二甲酸酐、顺丁烯二酸酐等,耐热性好,但反应速度较慢;聚合物类固化剂如聚酰胺、酚醛树脂等,具有良好的综合性能。
三、温度与时间环氧树脂的固化过程受温度影响较大。
在室温下,固化反应速度较慢,需要较长时间才能完全固化。
提高温度可以加快固化反应速度,缩短固化时间。
但温度过高可能导致固化过度,产生裂纹或变形。
因此,选择合适的温度和时间是实现环氧树脂良好固化的关键。
四、催化剂在环氧树脂的固化过程中,催化剂起到了加速反应的作用。
催化剂的种类和用量对固化速度和固化产物的性能都有重要影响。
常见的催化剂有酸、碱、过渡金属化合物等。
选择合适的催化剂可以提高固化速度,改善固化产物的性能。
五、填料与改性为了改善环氧树脂的力学性能、电性能和热性能等,常常需要添加填料进行改性。
填料的选择和用量应根据具体的应用需求而定。
常用的填料有硅微粉、玻璃纤维、碳纤维等。
填料的加入可以降低成本、提高耐磨性、增强刚性等。
同时,填料还可以通过表面改性来改善与环氧树脂的相容性,进一步提高复合材料的性能。
环氧树脂固化剂
环氧树脂固化剂环氧树脂固化剂是一种被广泛应用于工业领域的材料。
它是一种能够使环氧树脂在一定条件下发生反应,从而形成具有特定性能的固体材料的物质。
环氧树脂固化剂在自动化生产中扮演着重要的角色,并且具有广泛的应用领域。
接下来将介绍环氧树脂固化剂的特性、分类、应用和未来发展前景。
首先,环氧树脂固化剂具有固化速度快、高强度、耐化学腐蚀等优点。
固化剂可以通过调节比例和温度来控制固化速度,提高生产效率。
由于环氧树脂固化剂能够与环氧树脂发生化学反应,可以形成具有高强度的固体材料。
此外,这种固化剂还具有良好的耐化学腐蚀性能,能够在各种恶劣环境下使用。
根据固化机理的不同,环氧树脂固化剂可以分为两类:热固化剂和光固化剂。
热固化剂是指在一定的温度下,通过热量促进环氧树脂与固化剂之间的反应。
这种固化方式适用于需要在较高温度下进行固化的情况,例如汽车制造和航空航天领域。
光固化剂是指通过紫外线或可见光的照射来引发固化反应。
这种固化方式具有固化速度快、操作简单的特点,适用于表面固化和光学材料。
环氧树脂固化剂在工业生产中有着广泛的应用。
首先,它被广泛应用于粘接材料的制备。
环氧树脂固化剂能够与各种基材发生固化反应,形成强度高、抗剪切能力强的结合界面,适用于金属、陶瓷、塑料等多种材料的粘接。
其次,环氧树脂固化剂还可用于电子封装材料的制备。
由于其优异的电绝缘性能和封闭性能,可以用于电子元件的灌封和封装,提高产品的可靠性和稳定性。
此外,环氧树脂固化剂还被广泛应用于复合材料的制备、涂层材料的制备等领域。
环氧树脂固化剂的未来发展前景十分广阔。
随着工业自动化水平的提高,对于固化剂的要求也越来越高。
未来,环氧树脂固化剂可能向着高效、环保、低成本方向发展。
例如,可以研发出更快速固化的固化剂,提高生产效率。
同时,可以探索使用更环保的固化剂替代传统的有机固化剂,减少对环境的影响。
此外,还可以通过改变固化剂的配方和工艺来降低制备成本,提高竞争力。
综上所述,环氧树脂固化剂是一种在工业领域广泛应用的材料。
环氧胺固化剂的种类及其特点
环氧胺固化剂的种类及其特点1.胺类固化剂的特点环氧树脂胺类固化剂是指分子中含有氮原子的路易斯碱,且氮原子能够参与环氧树脂交联反应,最终形成高度交联的热固性环氧塑料。
胺类固化剂具有价廉易得、反应活性高、性能多变等特点,其用量最大,约占有整个固化剂市场50%的份额,其中,脂肪胺、脂环胺和芳香胺固化剂的使用范围最广、用量最大,对它们的研究也最为广泛、深入。
伯胺进攻环氧基并使之开环。
形成仲羟基和仲胺基;随后,仲胺基进一步与环氧基反应,形成一个叔胺基和另一个仲氨基。
需要注意的是:环氧一胺体系的反应还将被能提供质子的某些化合物所催化。
例如,水、醇和酚类等质子给予化合物都能明显地催化环氧一胺的开环反应。
(1)脂肪胺固化剂及改性脂肪胺固化剂脂肪胺固化剂主要包括:乙二胺、己二胺、二乙烯三胺、三乙烯四胺和四乙烯五胺等。
初级脂肪胺与环氧树脂反应速度快,可在室温下较好地固化环氧树脂。
尽管初级脂肪胺可单独作为环氧固化剂来使用,但在实际应用当中,常被用作制备改性脂肪胺固化剂的原料,以克服其毒性大、蒸汽压高、刺激性强、反应速度太快和放热很集中等问题,同时还能达到调节其反应活性,增大与环氧树脂的混合计量比,降低成本,提高某些特定性能等目的。
改性的脂肪胺固化剂被广泛应地应用于室温固化环氧涂料、胶粘剂和灌封料等领域。
改性脂肪胺固化剂一般是以低分子量的初级脂肪胺为原料(主要为二乙烯三胺(DETA)),经一定的化学改性所得到的胺类加合物。
改性脂肪胺固化剂的分子量较高、伯胺含量较低,同时又能改善初级脂肪胺的味臭,易吸收二氧化碳和水汽,与环氧树脂计量要求严格等不足,从而大大拓宽了其应用范围。
用丁基缩水甘油醚改性二乙烯三胺(DETA),得改性脂肪胺固化剂(DETA一BGE),如国产593固化剂,可赋子环氧树脂较好的粘接和延展性能;DETA与甲醛形成的加合物(如β一羟甲基二乙烯三胺),由于其分子中含有具有催化作用的羟基,因此可用于室温快速环氧固化体系;DETA与丙烯睛(AN)的迈克尔加成产物(如国产591固化剂),固化环氧树脂的速度较慢、适用期较长、放热平缓,与环氧树脂相容性好,且具有耐溶剂性能优良等优点,因此常用来制造大型环氧树脂浇铸体;DETA可与酚和醛化合物进行曼尼期〔Mannich〕加成反应,从而制得相应的曼尼期胺固化剂,它们可在较低温度下快速固化环氧树脂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 1文档收集于互联网,如有不妥请联系删除. 环氧树脂固化剂种类介绍 固化剂--- 脂肪多元胺 环氧树脂固化物具有优良的机械性能、电器性能、耐化学药品性能,因而得到广泛的应用。固化剂是环氧树脂固化物必需的原料之一,否则环氧树脂就不会固化。为适应各种应用领域的要求,应使用相应的固化剂。固化剂的种类很多,现介绍于下:
乙二胺 EDA H2NCH2CH2NH2 分子量60 活泼氢当量15 无色液体 每100份标准树脂用6-8份 性能:有毒、有剌激臭味,挥发性大、粘度低、可室温快速固化。用于粘接、浇注、涂料。
该类胺随分子量增大,粘度增加,挥发性减小,毒性减小,性能提高。但它们放热量大、适用期短。一般而言它们分子量越大受配合量影响越小。长期接触脂肪多元胺会引起皮炎,它们的蒸汽毒性很强,操作时须十分注意。
二乙烯三胺 DETA H2NC2H4NHC2H4NH2 分子量103 活泼氢当量20.6 无色液体 每100份标准树脂用8-11份。固化:20℃2小时+100℃30分钟或20℃4天。性能:适用期50克25℃45分钟,热变形温度95-124℃,抗弯强度1000-1160kg/cm2,抗压强度1120kg/cm2,抗拉强度780kg/cm2,伸长率5.5%,冲击强度 0.4尺-磅/寸洛氏硬度99-108。介电常数(50赫、23℃)4.1 功率因数(50赫、23℃)0.009 体积电阻2x1016 Ω-cm 常温固化、毒性大、放热量大、适用期短。
三乙烯四胺 TETA H2NC2H4NHC2H4NHC2H4NH2 分子量146 活泼氢当量24.3 无色粘稠液体 每100份标准树脂用10-13份 固化:20℃2小时+100℃30分钟或20℃7天。性能:适用期50克25℃45分钟,热变形温度98-124℃,抗弯强度950-1200kg/cm2,抗压强度1100kg/cm2,抗拉强度780kg/cm2,伸长率4.4%,冲击强度 0.4尺-磅/寸 洛氏硬度99-106。常温固化、毒性比二乙烯三胺 稍低、放热量大、适用期短。
四乙烯五胺 TEPA H2NC2H4(NHC2H4)3NH2 分子量189 活泼氢当量27 棕色液体 每100份标准树脂用11-15份 性能同上。
多乙烯多胺 PEPA H2NC2H4(NHC2H4)nNH2 浅黄色液体 每100份标准树脂用14-15份 性能:毒性较小,挥发性低、适用期较长、价廉。
二丙烯三胺 DPTA H2N(CH2)3 NH(CH2)3NH2 分子量131 活泼氢当量26 浅黄色液体 每100份标准树脂用12-15份 性能 同TETA。
二甲胺基丙胺 DMAPA (CH3)2N (CH2)3NH2 低粘度透明液体 每100份标准树脂用4-7份 毒性较大,具有固化和催化两个反应,粘附性能良好,柔性也好,适用期长。
二乙胺基丙胺 DEAPA (C2H5)2N (CH2)3NH2 分子量130 活泼氢当量65 低粘度透明液体 每100份标准树脂用4-8份 固化:60-70℃4小时。性能:适用期50克25℃4小时,热变形温78-94℃,抗压强度920-1050kg/cm2,抗拉强度480-640kg/cm2,冲击强度 0.2尺-磅/寸 洛氏硬度90-98。介电常数(50赫、23℃)3.75 功率因数(50赫、23℃)0.007 中温固化、低温性能好。 文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 2文档收集于互联网,如有不妥请联系删除. 三甲基六亚甲基二胺 TMD ( H2N)2(C6H9)(CH3)3无色液体 冷固化,适用期长,毒性小。每100份标准树脂用21份 固化:80℃1小时+150℃2小时。性能:适用期400克25℃50分钟或50℃10分钟,马丁耐热92℃,抗弯强度1150kg/cm2,冲击强度 20Kg-cm/cm2 tg δ 0.0009(23℃,100C/S) 表面电阻5.4x1011Ω(300V)体积电阻9x1015Ω.cm(300V)中温固化、低温性能好。
二已基三胺 H2N(CH2)6 NH(CH2)6NH2 已二胺改性物 AMINE248 分子式不详 透明液体 粘度25℃1000-3000cps 每100份标准树脂用4-8份 常温-100℃固化。毒性较小、柔性好。
已二胺加合物 CH-2、L2505 分子式不详 胺值160-210 低粘度透明液体 每100份标准树脂用65份CH3 胺值400-500 低粘度透明液体 每100份标准树脂用60份
已二胺 HDA H2N(CH2)6NH2 分子量116 活泼氢当量29 无色片状结晶 熔点42℃ 每100份标准树脂用12-15份 毒性大,能常温固化但不好。适用期较短。
三甲基已二胺 分子量158 每100份标准树脂用20-25份 固化:20℃2小时+100℃30分钟或20℃7天。性能:适用期50克25℃45分钟,热变形温度105℃,抗弯强度1150kg/cm2,抗拉强度650kg/cm2,伸长率4.4%,冲击强度 0.4尺-磅/寸 。 介电常数(50赫、23℃)4.0 功率因数(50赫、23℃)0.001 体积电阻9x1015 Ω-cm
二乙胺 DEA HN(C2H5)2 分子量73 活泼氢当量73 无色液体 每100份标准树脂用12份 具有固化和催化两个反应。
聚醚二胺 H2N(CH2)nO(CH2CH2O)mNH2 固化剂--- 脂环多元胺 二氨甲基环已烷 1,3 BAC C260 ( H2NCH2)2C6H8 棕色液体 每100份标准树脂用18份 该环状多元胺在常温下不能完全固化,需进行后固化80-150℃,得HDT达150℃左右。常需加促进剂:叔胺、亚磷酸三苯酯、水杨酸、甲酚等。
孟烷二胺 MDA (CH3)(H2N)C6H8 C(CH3)2NH2 分子量169 活泼氢当量42.2 浅黄色液体 每100份标准树脂用6-22份 加温固化 80-130℃ 2小时-30分钟 适用期50克25℃长8-16小时。热变形温度148-158℃ 抗弯强度1050-1190kg/cm2, 抗压强度710kg/cm2,抗拉强度610kg/cm2,伸长率2.9%,冲击强度 0.4尺-磅/寸 洛氏硬度105。粘度低、
适用期长。加热迅速固化,毒性小。
氨乙基呱嗪 AEP H2NC2H4N2C4H9 分子量129 活泼氢当量43 无色液体 每100份标准树脂用13-23份 常温-200℃固化 3天-30分钟 适用期50克25℃30分钟,热变形温度100-120℃ 抗压强度590kg/cm2,抗拉强度610kg/cm2,伸长率8.8%,冲击强度 1-1.2尺-
磅/寸 洛氏硬度95-105。可常温固化、放热量大、适用期短。 耐冲击性好 文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持. 3文档收集于互联网,如有不妥请联系删除. 六氢吡啶 HHP NC5H11 分子量85 活泼氢当量85 无色液体 每100份标准树脂用5-7份 异佛尔酮二胺 IPDA (CH3)2 C6H3(CH3)(CH2NH2) 分子量169 活泼氢当量42.2 无色液体 每100份标准树脂用24份 固化80℃4小时+150℃4小时、常温24小时。性能:适用期400克25℃75分钟或50℃10-15分钟,马丁耐热135℃,(热变形温度149℃) 抗弯强度1250kg/cm2,冲击强度 17Kg-cm/cm2 抗张强度730 kg/cm2, 断裂伸长3.6 tg δ 0.002(25℃,100C/S) 表面电阻大於1012Ω(1000V)体积电阻大於1016Ω.cm(1000V)
介电常数(50赫23℃)3.78 功率因数(50赫23℃)0.002 中温固化、低温性能好。
二氨基环已烷 DAHM (NH2)2 C6H4 分子量112 无色液体 活泼氢当量28 每100份标准树脂用14-16份 固化常温7天、70℃、2小时。
二氨甲基环已基甲烷 DAMHM C-260 [(NH2)(CH3)C6H4 ]2CH2 分子量232 活泼氢当量58 无色液体 每100份标准树脂用33份 固化80℃2小时+150℃2小时 热变形温度130-150℃ 抗弯强度1070kg/cm2,抗张强度770 kg/cm2,介电常数(50赫23℃)4.0 功率
因数(50赫23℃)0.005 体积电阻大於2x1016Ω.cm
二氨基环已基甲烷 DACHM [(NH2)C6H4 ]2CH2 分子量206 活泼氢当量51.5 熔点40℃ 每100份标准树脂用30份 固化60℃3小时+150℃2小时。
固化剂--- 芳香胺类 间苯二胺 m-PDA MPD (NH2)2C6H4 分子量107 活泼氢当量26.7 白色结晶(黑色固体?) 熔点62℃ 每100份标准树脂用14-16份 固化60℃2小时 +150℃2小时 适用期500克50℃2.5小时 热变形温度150℃ 抗弯强度1050kg/cm2,抗压强度710kg/cm2,抗拉
强度540kg/cm2,伸长率3.0%,冲击强度 0.2-0.3尺-磅/寸 洛氏硬度108。 介电常数(50赫23℃)3.3 功率因数(50赫23℃)0.007 耐热、耐腐蚀性优,电性能好,毒性小。因是
固体,使用不方便,与树脂加热混合时需注意防止凝胶。
间苯二甲胺 MXDA (NH2CH2)C6H4 分子量135 活泼氢当量33.2 无色液体 每100份标准树脂用16-18份 固化常温24小时+70℃ 1小时或常温4天。适用期100克25℃50分钟 热变形温度130-150℃ 抗弯强度1200kg/cm2,抗压强度1030kg/cm2,抗拉强度720kg/cm2,伸长率6.7%,介电常数(50赫23℃)4.0 功率因数(50赫23℃)0.005 体积电阻大
於2x1016Ω.cm 可常温固化 耐热、耐腐蚀性优,电性能好,毒性小。固化温度低、粘度低、毒性小,适用期长、耐溶剂性好。它易吸收空气中的二氧化碳是造成制品气泡的原因。
二氨基二苯基甲烷 DDM HT-972 DEH-50 [(NH2)(CH3)C6H4 ]2CH2 分子量196 活泼氢当量49 白色结晶 长期暴露在日光下呈褐色 熔点89℃ 每100份标准树脂用25-30份 固化60℃2小时 +150℃2小时。 适用期500克50℃3小时 热变形温度145-150℃ 抗弯强度1190kg/cm2,抗压强度710kg/cm2,抗拉强度550kg/cm2, 伸长率4.4%,冲击强度 0.3-0.5尺-磅/寸 洛氏硬度106。介电常数(50赫23℃)4.4 功率因数(50赫23℃)0.004 体积电阻大於1015Ω.cm 耐热、耐腐蚀性优,电性能好,毒性小。 耐热、机械强度高。因是固体,使用不方便,与树脂加热混合时需注意防止凝胶。